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Abstract: The authors deal with the design of high-rate, full-diversity, low-maximum likelihood (ML) decoding
complexity space-time block codes (STBCs) with code rates of 2 and 1.5 complex symbols per channel use for
multiple-input multiple output (MIMO) systems employing three and four transmit antennas. The authors fill
the empty slots of the existing STBCs from coordinate interleaved orthogonal designs (CIODs) in their
transmission matrices by additional symbols and use the conditional ML decoding technique, which
significantly reduces the ML decoding complexity of non-orthogonal STBCs while ensuring full-diversity and
high coding gain. First, two new schemes with code rates of 2 and 1.5 are proposed for MIMO systems with
four transmit antennas. The authors show that our low-complexity rate-2 STBC outperforms the corresponding
best STBC recently proposed by Biglieri et al. (2008) for quadrature phase shift keying (QPSK), due to its
superior coding gain while our rate-1.5 STBC outperforms the full-diversity quasi-orthogonal STBC (QOSTBC).
Then, two STBCs with code rates of 2 and 1.5 are proposed for three transmit antennas, which are shown to
outperform the corresponding full-diversity QOSTBC. The authors prove by an information-theoretic analysis
that the capacities of new rate-2 STBCs for three and four transmit antennas are much closer to the actual
MIMO channel capacity than the capacities of classical OSTBCs and CIODs.
i

1 Introduction
It has been shown that the capacity of wireless channels can
be significantly increased by the use of multiple antennas [1].
Therefore multiple-input multiple-output (MIMO)
transmission techniques have attracted too much attention
to realise the promising potential of multiple antennas.
Space-time block codes (STBCs) offer an effective way to
exploit this potential because of their simplicity and high
performance. In 1998, Alamouti invented a remarkable
scheme [2] for MIMO systems with two transmit
antennas, which allows low-complexity maximum
likelihood (ML) decoding due to its orthogonality.
Orthogonal STBCs (OSTBCs), which allow symbol-wise
decoding, are then generalised for three and four transmit
antennas in [3]. For such codes, the total ML decoding
complexity is linear and proportional to the size of the
signal constellation since all symbols can be decoded
independently from each other. Although OSTBCs can be
decoded with minimum decoder complexity, the
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orthogonality constraint is too restrictive. Moreover, in [4],
it has been proved that the code rate of an OSTBC is
upper bounded by 3/4 transmitted symbols per channel use
for more than two transmit antennas. Related by this
bound in transmission code rate, from an information-
theoretic point of view, OSTBCs can cause a significant
loss in MIMO channel capacity [5]. Therefore researchers
have focused on increasing the code rates of STBCs by
relaxing orthogonality constraint. Quasi-orthogonal STBCs
(QOSTBCs) that exceed the upper bound mentioned
above with a higher decoding complexity have been
proposed for three and four transmit antennas [6, 7]. These
original schemes are then improved to obtain full-diversity
by rotating some of the information symbols [8, 9]. STBCs
using coordinate interleaved orthogonal designs (CIODs)
proposed in [10] allow single-symbol decoding, which
enables easy ML decoders and offer higher data rates than
OSTBCs for three and four transmit antennas. However,
since years, the demand for STBCs with higher data rates
has not ceased since symbol rate 1 may not be sufficient for
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next generation wireless communication systems [11]. One
way to obtain full-diversity STBCs with higher data rates is
to use the algebraic number theory and cyclic division
algebras; however, these algebraic codes have very high ML
decoding complexities. A well-known example to such
codes for two transmit antennas is the rate-2 Golden Code
[12], which is reported to have a decoding complexity that
grows with the fourth power of the constellation size. Two
alternative STBCs are recently proposed by Parades et al.
[13] and Sezginer and Sari [14] with lower decoding
complexity and a slight degradation in error performance.
These STBCs have a ML decoding complexity that is
proportional with the third power of the constellation size.
For four transmit antennas, the best known scheme was
known as the DjABBA code [11, 15], however, recently
Biglieri, Hong and Viterbo (BHV) proposed the scheme in
[16], which is reported to outperform all existing schemes
for QPSK. However, when compared with OSTBCs and
QOSTBCs, both of the STBCs in [15] and [16] have a
very high decoding complexity, which is proportional to the
seventh power of the constellation size. A rate-1.5 STBC
has been proposed for four transmit antennas in [17],
which has an identical error performance with the
QOSTBC in [7, 9]. To the best of our knowledge, there is
no rate-2 or rate-1.5 STBC for three transmit antennas
given in literature.

This paper deals with the design of low ML decoding
complexity rate-2 and rate-1.5 full-diversity STBCs for
three and four transmit antennas. To reduce the decoding
complexity of these codes, we use the conditional ML
decoding technique, recently used for decoding of the non-
orthogonal STBC in [14]. For four transmit antennas, we
propose a new rate-2 STBC that achieves better error
performance with a lower decoding complexity than the
BHV code [16] for QPSK due to its higher coding gain.
Moreover, a new rate-1.5 STBC is proposed for four
transmit antennas, which outperforms the STBCs in [9]
and [17] for QPSK. Finally, two STBCs with rates of
2 and 1.5 are proposed for three transmit antennas that are
shown to outperform the corresponding full-diversity
QOSTBC. These better error performances of the
proposed STBCs are the result of their optimised design
parameters for QPSK constellation. An information-
theoretic analysis is performed for the new rate-2 STBCs,
which shows that when compared with the OSTBCs, the
new rate-2 STBCs maximise the potential of multiple
antennas in terms of ergodic channel capacity.

The rest of the paper can be summarised as follows. We
give our channel model and design criteria in Section 2. In
Section 3, we review the conditional ML decoding
technique and demonstrate the way we start our discussion.
In Sections 4 and 5 we introduce the high-rate STBCs for
four and three transmit antennas, respectively. Information-
theoretic analysis for the proposed rate-2 STBCs is given
in Section 6. We give performance comparisons in
Section 7 and our conclusions in Section 8.
72
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2 Channel model and code design
criteria
Let us consider an nT � nR quasi-static Rayleigh flat fading
MIMO channel, where nT and nR denote the number of
transmit and receive antennas, respectively. The received
T � nR signal matrix Y [ C

T�nR can be modelled as

Y ¼ XH þ N (1)

where X [ C
T�nT is the codeword (transmission) matrix,

transmitted over T channel uses. H and N are the nT � nR

channel matrix and the T � nR noise matrix, respectively.
The entries of H and N are i.i.d. complex Gaussian
random variables with the pdfs NC(0, 1) and NC(0, N0),
respectively. We assume, H remains constant during the
transmission of a codeword, and take independent values
from one codeword to another. The realisation of H is
assumed to be known at the receiver, but not at the
transmitter. We give the following definitions:

Definition 1 (Code Rate): The code rate of an STBC
with the codeword matrix X is defined as R ¼ k/T symbols
per channel use where k is the number of information
symbols embedded in X. An STBC is said to be full-rate
or high-rate if R ¼ 1 or R .1, respectively.

Definition 2 (Decoding Complexity): The ML
decoding complexity is the number of metric computations
performed to decode the codeword X.

By direct approach, ML decoding of X is performed by
deciding in favour of the codeword, which minimises the
following metric

X̂ ¼ arg min
X

Y � XHk k
2 (2)

where k.k denotes the Frobenius norm. For a signal
constellation of size M, the minimisation in (2) requires the
computation of Mk metrics, which is the worst-case
detection complexity since all the symbols in X are detected
jointly. Note that OSTBCs [2, 3, 10] allow the
decomposition of (2) to k individual metrics each having a
complexity of M, that is, a total decoding complexity of kM
is obtained. A non-orthogonal STBC is said to be reduced
complexity if its ML detection is performed with less than
Mk total metric computations.

Definition 3 (Full-Diversity STBC): Let r denote the
rank of the codeword difference matrix X � X̂

� �
, with

X = X̂ . An STBC is said to be full-diversity if X � X̂
� �

is full-rank for all realisations of the possible codeword
pairs. In this case, r ¼ nT, and the resulting diversity gain
is nTnRat high SNR.

For a full-diversity STBC, the worst-case pairwise error
probability (PEP) also depends asymptotically to the
IET Commun., 2009, Vol. 3, Iss. 8, pp. 1371–1378
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minimum determinant dmin, defined as

dmin ¼ min
X=X̂

det (X � X̂ )(X � X̂ )H
h i

(3)

where (.)H denotes Hermitian transpose, the resulting coding
gain being dmin

� �1=nt . The rank and determinant criteria [18]
provide the maximisation of diversity and coding gains. Note
that for high signal-to-noise ratio (SNR), the dominant
parameter is the diversity gain that determines the slope of
the error curve. After the full-diversity is ensured, we have
to maximise dmin to obtain optimum performance.

3 Design procedure and
conditional ML decoding
Let Qn,k denote an OSTBC for n transmit antennas such
those given in [10], which transmits k information symbols
(x1, x2, . . . , xk) with having empty slots left in its
codeword matrix for orthogonality, we obtain kþ l

information symbols transmitting high-rate, full-diversity
STBC Xn,kþl from Qn,k as

X n,kþl ¼ Qn,k þ PGl (4)

where Gl is the codeword matrix with l additional
information symbols to be transmitted from empty slots of
Qn,k. Here P is the optimisation matrix whose entries are
complex design parameters to be determined by the rank
and determinant criteria, and Qn,k and PGl contain non-
overlapping entries. Owing to non-orthogonal structure of
Xn,kþl, by direct computation, M (kþl) metric computations
are required for the ML decoding, that is

X̂ n,kþl ¼ arg min
x1,x2,:::,xkþl

Y � X n,kþlH
�� ��2

(5)

When compared with the decoding complexity of Qn,k,
which is kM, this increase in complexity is unacceptable.
However, we try to eliminate in (5) the terms coming from
additional transmitted symbols from empty slots of Qn,k, by
computing intermediate signals from the received signals
for all possible values of the additional symbols
xkþ1, xkþ2, . . . , xkþl in Gl, as

Z ¼ Y � PGlH (6)

Going over this search for all combinations of
xkþ1, xkþ2, . . . , xkþl, we use the decoding procedure of
Qn,k to obtain conditional ML estimates of x1, x2, . . . , xk

given xkþ1, xkþ2, . . . , xkþl, although only for the correct
combination of xkþ1, xkþ2, . . . , xkþl (6) reduces to

Z ¼ Qn,kH þ N (7)

Finally, we minimise the decision metric given in (5) for
xML

1 , xML
2 , . . . , xML

k , xkþ1, xkþ2, . . . , xkþl over all possible
values of xkþ1, xkþ2, . . . , xkþl. In other words, instead of
searching over all possible values of x1, x2, . . . , xkþl and
suffering from Mkþl metric computations, we only search
Commun., 2009, Vol. 3, Iss. 8, pp. 1371–1378
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with a decoding complexity of Ml, and obtain conditional
ML estimates of x1, x2, . . . , xk, which needs an additional
decoding complexity of kM per each step of Ml

calculations. Therefore we obtain a total decoding
complexity of kM � Ml

¼ kMlþ1. Empirical tests show
that the use of conditional ML technique, gives the same
result with the direct approach given in (5).

4 New rate-2 and rate-1.5 STBCs
for four transmit antennas
In this section, we propose rate-2 and rate-1.5 STBCs for
four transmit antennas by using the high-rate STBC
design procedure given in Section 3. Let us consider the
rate-1 CIOD for four transmit antennas [10], which takes
a block of four modulated symbols and transmits them
from four antennas in four time intervals according to the
code matrix given by

Q4,4 ¼

x0R þ jx2I x1R þ jx3I

�(x1R þ jx3I)
� (x0R þ jx2I)

�

0 0

0 0

2
6664

0 0

0 0

x2R þ jx0I x3R þ jx1I

�(x3R þ jx1I)
� (x2R þ jx0I)

�

3
7775 (8)

where xiR and xiI for i ¼ 0, . . . ,3 denote real and imaginary
parts of xi, respectively. According to (4), we propose the
following rate-2 STBC, which transmits eight information
symbols in four time intervals

X 4,8 ¼

x0R þ jx2I x1R þ jx3I

�(x1R þ jx3I)
� (x0R þ jx2I)

�

x6R þ jx4I x7R þ jx5I

�(x7R þ jx5I)
� (x6R þ jx4I)

�

2
6664

e ju(x4R þ jx6I) e ju(x5R þ jx7I)

�e ju(x5R þ jx7I)
� e ju(x4R þ jx6I)

�

x2R þ jx0I x3R þ jx1I

�(x3R þ jx1I)
� (x2R þ jx0I)

�

3
7775 (9)

for the optimisation matrix

P ¼

e ju 0 0 0
0 e ju 0 0
0 0 1 0
0 0 0 1

2
664

3
775 (10)

An exhaustive computer search was performed for unit
energy QPSK signal constellation to check the non-
vanishing determinant property for X4,8. For u ¼ 908, we
obtained the maximum dmin value of 0.64, which
corresponds to that for Q4,4 for the same average
transmitted signal energy per symbol. Therefore we
1373
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conclude that the matrix in (10) is optimum for u ¼ 908 in
terms of coding gain. Note that for the coordinate
interleaved STBCs in (8) and (9), the QPSK signal
constellation with symbols on the two axes must be rotated
by an angle of 13.298 to ensure full-diversity and maximum
coding gain [10].

The decoding procedure for X4,8 is given as follows. The
receiver calculates intermediate signals from the received
signals for all possible values of x4, x5, x6 and x7, since for
the correct combination, intermediate signals are found as

Z ¼ Q4,4H þ N (11)

the receiver follows the decoding procedure of Q4,4. Let
zij [ Z be the intermediate signal calculated from rij [ Y ,
i and j denoting the ith column and jth row of the
corresponding matrix. The receiver combines the
intermediate signals to obtain ~y0 ¼

PnR
i¼1 h�i,1zi,1þ
�

hi,2z�i,2Þ, ~y1 ¼
PnR

i¼1 h�i,2zi,1 � hi,1z�i,2
� �

, ~y2 ¼
PnR

i¼1 h�i,3zi,3þ
�

hi,4z�i,4Þ, and ~y3 ¼
PnR

i¼1 h�i,4zi,3 � hi,3z�i,4
� �

, then uses the
following rules to obtain ML estimates for xi, i ¼ 0, . . . , 3
conditioned on the quadruple x4, x5, x6 and x7

xML
0 ¼ arg min

x0

b x̂0R � ax0R

�� ��2� �
þ a x̂0I � bx0I

�� ��2� �n o
xML

1 ¼ arg min
x1

b x̂1R � ax1R

�� ��2� �
þ a x̂1I � bx1I

�� ��2� �n o
xML

2 ¼ arg min
x2

a x̂2R � bx2R

�� ��2� �
þ b x̂2I � ax2I

�� ��2� �n o
xML

3 ¼ arg min
x3

a x̂3R � bx3R

�� ��2� �
þ b x̂3I � ax3I

�� ��2� �n o
(12)

where a ¼
PnR

i¼1 hi,1

�� ��2þ hi,2

�� ��2� �
, b ¼

PnR
i¼1 hi,3

�� ��2þ�
hi,4

�� ��2Þ and x̂0 ¼ Re ~y0

� 	
þ jIm ~y2

� 	
, x̂1 ¼ Re ~y1

� 	
þ

jIm ~y3

� 	
, x̂2 ¼ Re ~y2

� 	
þ jIm ~y0

� 	
, x̂3 ¼ Re ~y3

� 	
þ jIm ~y1

� 	
.

According to the conditional ML decoding procedure
given in Section 3, for k ¼ l ¼ 4 we obtain a total
decoding complexity of 4M5 instead of M8 by minimising
(5) for xML

0 , xML
1 , xML

2 , xML
3 , x4, x5, x6, x7 over all possible

values of x4, x5, x6 and x7.

For a further reduction in ML decoding complexity, (9)
can be modified by setting x6 ¼ x7 ¼ 0 to obtain a new
rate-1.5 STBC, given as

X 4,6 ¼

x0R þ jx2I x1R þ jx3I

�(x1R þ jx3I)
� (x0R þ jx2I)

�

jx4I jx5I

�(jx5I)
� (jx4I)

�

2
6664

e ju(x4R) e ju(x5R)

�e ju(x5R) e ju(x4R)

x2R þ jx0I x3R þ jx1I

�(x3R þ jx1I)
� (x2R þ jx0I)

�

3
7775 (13)
74
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Since the matrix P given in (10) is optimum for X4,8 when
u ¼ 908, by using the same optimisation matrix P for X4,6,
we obtain full-diversity with the maximum possible dmin

value of 0.64. The decoding of X4,6 is similar to that of
X4,8. By calculating intermediate signals for all possible
values of x4 and x5, the receiver obtains Z from (11), and
following the same decoding procedures in (12), it obtains
ML estimates for xi, i ¼ 0, . . . , 3 conditioned on the pair
(x4, x5). Instead of M6, a total decoding complexity of 4M3

is obtained since k ¼ 4 and l ¼ 2. (A rate-7/4 STBC X4,7

is also possible by setting only x7 ¼ 0 in (9). Since the
optimisation matrix in (10) is optimum for X4,8 when
u ¼ 908, the same dmin value of 0.64 is obtained for X4,7.
A total decoding complexity of 4M4 is required to decode
X4,7 since k ¼ 4 and l ¼ 3.)

5 New rate-2 and rate-1.5 STBCs
for three transmit antennas
In this section, we propose two novel STBCs with rates of
2 and 1.5 for three transmit antennas. Let us consider the
generalised CIOD for three transmit antennas from [10]

Q3,4 ¼

x0R þ jx2I x1R þ jx3I 0
�(x1R þ jx3I)

� (x0R þ jx2I)
� 0

0 0 x2R þ jx0I

0 0 �(x3R þ jx1I)
�

2
664

3
775

(14)

According to (4), we obtain a rate-2, full-diversity STBC as

X 3,8 ¼

x0R þ jx2I x1R þ jx3I

�(x1R þ jx3I)
� (x0R þ jx2I)

�

e ju(x6R þ jx4I) e ju(x7R þ jx5I)

�e ju(x7R þ jx5I)
� e ju(x6R þ jx4I)

�

2
6664

e ju(x4R þ jx6I)

�e ju(x5R þ jx7I)
�

x2R þ jx0I

�(x3R þ jx1I)
�

3
7775 (15)

for the optimisation matrix P ¼ e juI 4 where I4 is the 4 � 4
identity matrix. An exhaustive computer search was
performed to obtain maximum coding gain for X3,8 by
optimising u. The optimum value for u was found as
13.918, which gives a dmin value of 0.1564 (Since the
codeword matrices for Q3,4 and X3,8 are non-square, the
determinant of the codeword difference matrix of Q3,4 and
X3,8 is zero while its rank is 3, that is full since r ¼ nT. In
this case we calculate the minimum determinant as
dmin ¼ minX=X̂

Q3
i¼1 li where, li is the non-zero

eigenvalues of the distance matrix (X � X̂ )(X � X̂ )H.) for
QPSK while the dmin of Q3,4 is equal to 0.3381. Note that,
the optimum constellation rotation angle for the STBCs in
(14) and (15) is equal to 168 for QPSK. Here X3,8 is
decoded with the same manner as X4,8 by taking
hi,4 ¼ 0,i ¼ 1, . . . , nR for combining ML decision rules.
IET Commun., 2009, Vol. 3, Iss. 8, pp. 1371–1378
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Similar to the four transmit antennas case, we obtain a total
decoding complexity of 4M5 instead of M8 since k ¼ l ¼ 4.

By modifying (15), a rate-1.5 STBC that transmits six
information symbols at four time intervals, is obtained as
follows

X 3,6 ¼

x0R þ jx2I x1R þ jx3I e ju(x4R)
�(x1R þ jx3I)

� (x0R þ jx2I)
�

�e ju(x5R)

e ju( jx4I) e ju( jx5I) x2R þ jx0I

�e ju( jx5I)
� e ju( jx4I)

�
�(x3R þ jx1I)

�

2
664

3
775

(16)

for the optimisation matrix P ¼ e juI 4. Unlike X3,8, for
u ¼ 458, we obtained the same dmin value as for Q3,4,
which is equal to 0.3381. Therefore the maximum possible
dmin value is achieved for X3,6 while the total decoding
complexity is reduced from M 6 to 4M3for k ¼ 4 and l ¼ 2.

6 Information-theoretic analysis
of new rate-2 STBCs
In this section, we analyse the maximum mutual information
(MMI) achieved by our rate-2 STBC designs given in
previous sections and compare them with MMI achieved
by classical CIODs and the actual MIMO channel
capacity. We start by the ergodic capacity of an nT � nR

MIMO channel [1], which is characterised by an nR � nT

channel matrix H that is known at the receiver but not at
the transmitter. At an SNR value r, the ergodic MIMO
capacity is given as

C r, nT, nR

� �
¼ E log det I nT

þ
r

nT

H HH


 �� 

(17)

where the expectation is taken over the distribution of the
random channel matrix H. To perform an information-
theoretic analysis, the channel model in (1) must be
modified as

y ¼

ffiffiffiffiffiffi
r

nT

r
H xþ n (18)

where H is the equivalent channel matrix [5] of the STBC
X, y, x and n are the received signal, unit-variance
transmitted signal and noise vectors, respectively. The
normalisation factor in (18) ensures that r is the SNR at
each receive antenna. For the CIOD Q4,4 given in (8), the
equivalent channel model with nR receive antennas can be
expressed from (18) as

y ¼

ffiffiffi
r

4

r ffiffiffi
2
p

H1

H2

..

.

HnR

2
6664

3
7775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
H4nR�4

x0R þ jx2I

x1R þ jx3I

x2R þ jx0I

x3R þ jx1I

2
664

3
775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
x

þ n (19)
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where

Hl ¼

hl ,1 hl ,2 0 0
h�l ,2 �h�l ,1 0 0
0 0 hl ,3 hl ,4

0 0 h�l ,4 �h�l ,3

2
664

3
775 with l ¼ 1, . . . , nR

and H4nR�4 is the 4nR � 4 equivalent channel matrix for
Q4,4. The MMI attained by Q4,4 is given as [10]

CQ4,4
(r, 4, nR) ¼

1

4
E log det I 4 þ

r

4
H H

4nR�4H4nR�4

� �n o

¼
1

2
E log 1þ

r

2

XnR

i¼1

hi,1

�� ��2þ hi,2

�� ��2h i !( )

þ
1

2
E log 1þ

r

2

XnR

i¼1

hi,3

�� ��2þ hi,4

�� ��2h i !( )

¼
1

2
C(nRr, 2nR, 1)þ

1

2
C(nRr, 2nR, 1)

¼ C(nRr, 2nR, 1) , C(r, 4, nR)

(20)

where the factor 1/4 normalises for the four channel uses
spanned by Q4,4. We conclude that Q4,4 cannot achieve full
channel capacity even for nR ¼ 1, which can be explained
by the zeros in (8). On the other hand, for X4,8 the
equivalent channel model with nR receive antennas is given
from (18) as

y ¼

ffiffiffi
r

4

r H1

H2

..

.

HnR

2
6664

3
7775

|fflfflfflffl{zfflfflfflffl}
H4nR�8

x0R þ jx2I

x1R þ jx3I

x2R þ jx0I

x3R þ jx1I

x4R þ jx6I

x5R þ jx7I

x6R þ jx4I

x7R þ jx5I

2
66666666664

3
77777777775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
x

þ n (21)

where

Hl ¼

hl ,1 hl ,2 0 0 jhl ,3 jhl ,4 0 0

h�l ,2 �h�l ,1 0 0 �jh�l ,4 jh�l ,3 0 0

0 0 hl ,3 hl ,4 0 0 hl ,1 hl ,2

0 0 h�l ,4 �h�l ,3 0 0 h�l ,2 �h�l ,1

2
6664

3
7775

with l ¼ 1, . . . , nR

and H4nR�8 is the 4nR � 8 equivalent channel matrix for X 4,8.
The MMI of the new rate-2 STBC X 4,8 is obtained as

CX4,8
(r, 4, nR)¼

1

4
E log det I 8þ

r

4
H H

4nR�8H4nR�8

� �n o
(22)

Owing to the complexity of determinant calculations for (22),
CX4,8

(r, 4, nR) is directly evaluated by Monte Carlo
1375
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simulations. For three transmit antennas, after appropriate
normalisations in (18), the MMI attained by Q3,4 is
calculated as

CQ3,4
(r, 3, nR)¼

1

2
C

4rnR

3
, 2nR, 1


 �
þC

2rnR

3
, nR, 1


 �� �
, C(r, 3, nR) (23)

Finally, we obtain the MMI attained by the new rate-2
STBC X3,8 as

CX3,8
(r, 3, nR)¼

1

4
E log det I 8þ

r

3
H H

4nR�8H4nR�8

� �n o
(24)

where H4nR�8 is the 4nR � 8 equivalent channel matrix for X3,8.
It is shown in [10] that the capacities of Q3,4 and Q4,4 are greater
than those of rate-3/4 OSTBCs (It is shown in [19] that the
capacity of a rate-R OSTBC for nT transmit antennas is
given as COSTBC(r, nT, nR)¼ RC(rnR=R, nTnR, 1) which is
smaller than the capacity of CIODs for nT . 2 since when
nT . 2, R � 3=4 for OSTBCs [4].) for three and four
transmit antennas, respectively. However, the zeros in Q4,4

and Q3,4 prevent them achieving the actual MIMO channel
capacity even for one receive antenna. In Figs. 1 and 2, the
MMI of rate-1 CIODs and rate-2 STBCs are depicted for
four and three transmit, one and two receive antenna cases.
As seen from Figs. 1 and 2, for one receive antenna case, both
X4,8 and X 3,8 achieve the actual channel capacity, however,
when the number of receive antennas are increased to two,
they suffer a slight loss. On the other hand, while the capacity
loss of the orthogonal designs is negligible for one receive
antenna, this loss becomes substantial for more than one
receive antenna since these schemes have lower transmission
rates compared to the proposed STBCs.

Figure 1 Maximum mutual information (ergodic) of new
STBC (X4,8) and CIOD (Q4,4) for one and two receive
antennas
6
he Institution of Engineering and Technology 2009
7 Simulation results and
comparisons
In this section, we evaluate the bit error rate (BER)
performance of the proposed STBCs by computer
simulations and compare the results with the existing
comparable schemes given in the literature. Bit error rate
(BER) curves of the proposed STBC X 4,8 and the BHV
code [16] for a 4 � 2 MIMO system operating on a quasi-
static Rayleigh fading channel are depicted in Fig. 3 as a
function of received SNR for QPSK constellation
corresponding to a transmission data rate of 4 bits/s/Hz
for both schemes. From these curves, we conclude that the
new STBC achieves better error performance than the
BHV code and the performance gap between the BHV
code and the new STBC increases with increasing SNR
values due to the diversity loss of the BHV code since its
dmin value is zero. In [16], the BHV code is reported to
outperform all existing rate-2 schemes for four transmit
antennas. Until [16], the best known rate-2 STBC for four
transmit antennas was known as the DjABBA code [11,
15], whose dmin value is equal to 0.04 for the same average
total transmitted power with X 4,8. However, the better
performance of the BHV code is explained in [16] by the
optimisation of its multiplicity defined as the total number
of different codeword pairs giving dmin. BER performance
of the QOSTBC [7, 9] for 16-QAM is omitted, since it
performs significantly worse (approximately 2.5 dB) than
rate-2 STBCs. BER performance of the proposed STBC
X 3,8 is also depicted in Fig. 3 and compared with the best
known STBC for three transmit antennas, which is the
full-diversity QOSTBC with constellation rotation [9],
obtained by removing the last column of the QOSTBC in
[6]. Our STBC uses QPSK while QOSTBC uses 16-
QAM, that is, both schemes have a transmission rate of
4 bit/s/Hz. Approximately, 1.4 dB SNR advantage is
obtained by the new scheme, which provides an increase in

Figure 2 Maximum mutual information (ergodic) of new
STBC (X3,8) and GCIOD (Q3,4) for one and two receive
antennas
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code rate by a factor of 2 while ensuring full-diversity and
high coding gain.

BER curves of the proposed rate-1.5 STBCs are given in
Fig. 4. To obtain a transmission rate of 3 bits/s/Hz, rate-
1.5 schemes use QPSK while reference rate-1 full-diversity
QOSTBCs use non-rectangular 8-QAM for four and three
transmit antennas. From these curves we conclude that our
STBC X 4,6 has an approximately 1.5 dB SNR advantage
over QOSTBC of [7, 9]. For three transmit antennas, X 3,6

provides approximately 0.6 dB SNR advantage over the
QOSTBC of [6, 9]. These better performances are the
result of an increase in code rate, since rate-1 QOSTBCs
use larger and less efficient constellations with smaller
normalised minimum Euclidean distance between symbols,
than our rate-1.5 schemes, to achieve the same spectral
efficiency. It should be noted that the performance gaps
between the new rate-1.5 STBCs and QOSTBCs are
lower than those between rate-2 STBCs and QOSTBCs.

Figure 3 BER performance of the proposed rate-2 STBCs for
4 bits/s/Hz

Figure 4 BER performance of the proposed rate-1.5 STBCs
for 3 bits/s/Hz
Commun., 2009, Vol. 3, Iss. 8, pp. 1371–1378
: 10.1049/iet-com.2008.0697
However, decoding complexity of rate-1.5 STBCs is 4M3

while decoding complexity of rate-2 STBCs is 4M5.
Therefore the proposed STBCs offer a trade-off between
complexity and transmission rate.

8 Conclusions
We have derived an efficient method to obtain high-rate,
full-diversity STBCs with simplified ML decoding, and
applied it to STBC designs from CIODs. We have shown
that it is possible to obtain high-rate STBCs with
significantly lower decoding complexities without
degradation in error performance. A total of four schemes
are proposed, which offer a trade-off between code rate and
complexity, and outperform their counterparts given in the
literature in accordance with their optimised minimum
determinants for QPSK constellation. Moreover, we have
shown that the new rate-2 STBCs can more effectively
exploit the potential of multiple antennas in terms of
attainable capacity compared to the classical OSTBCs and
CIODs. However, the optimisation of the proposed
STBCs is left as a future work for higher constellations
such as 16/64-QAM since minimum determinant searches
take extremely long computation time.
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