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A novel technique is presented for the construction of full-rate, full-
diversity space–time block codes (STBCs) from orthogonal STBCs
(OSTBCs), having empty slots left in their codeword matrices for
orthogonality. Two new STBCs are obtained, which are both full-
rate and full-diversity, for three and four transmit antennas. The
higher decoding complexity of these structures is reduced owing to
non-orthogonality by using a conditional maximum-likelihood
decoder. The new optimised codes provide better error performance
than their full-rate full-diversity counterparts given in the literature.

Introduction: Orthogonal STBCs (OSTBCs) are one of the most attrac-
tive space–time coding techniques for exploiting the spatial diversity of
a MIMO fading channel [1]. They allow low-complexity ML detection;
however, their code rate is low for more than two transmit antennas.
Space–time block codes (STBCs) using co-ordinate interleaved orthog-
onal designs (CIODs) proposed in [2] allow single-symbol maximum
likelihood (ML) decoding and offer higher data rates than OSTBCs.
However, contrary to OSTBCs, CIODs may not achieve full-diversity
with the conventional constellations such as PSK or QAM. To achieve
full-diversity, signal constellations must be rotated by an angle. In this
Letter, we present a novel approach to construct fast decodable, full-
rate, full-diversity STBCs from OSTBCs given in the literature and give
two new designs for three and four transmit antennas.

System model: We consider an n � m MIMO system where n and m are
the number of transmit and receive antennas, respectively. At each sig-
nalling interval t, t ¼ 1, 2, . . . , l, ct

i, i ¼ 1, 2, . . ., n are simultaneously
transmitted from n antennas through the quasistatic flat fading channel
with path gain from transmit antenna i to receive antenna j denoted by
hij. The path gains are assumed to be independent complex Gaussian
random variables with variance 0.5 per dimension. As a result, the
received signal at time t and receive antenna j is given as

rj
t ¼

Pn
i¼1

hi;jc
i
t þ nj

t ð1Þ

where the noise samples nt
j are zero-mean complex Gaussian random

variables with variance N0/2 per dimension. Assuming that perfect
channel state information (CSI) is available, the receiver minimises
the ML decision metric
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over all possible symbols ct
i. For the case of ML decoding, we denote the

total number of metric computations, g, as the decoding complexity of
the corresponding STBC. Decoding complexity g of an STBC, which
transmits k information symbols during n � l space-time slots, cannot
exceed Mk where M is the size of signal constellation. In this work,
we try to reduce this decoder complexity from Mk into an acceptable
level.

Design procedure: Let Qn denote a classical complex orthogonal design
for n transmit antennas such as those given in [1], which transmits k

information symbols having empty slots left in its codeword matrix
for orthogonality; we obtain a full-rate, full-diversity STBC Xn from
Qn as

X n ¼ Qn þ PG ð3Þ

where G is the codeword matrix with l additional information symbols
to be transmitted from empty slots of Qn. Since the matrix Xn is non-
orthogonal due to the added matrix G, an optimising diagonal matrix
P with complex entries is introduced in (3) to make Xn full-rank and
further to maximise its minimum determinant. Qn and PG contain
non-overlapping entries. Owing to the non-orthogonal structure of Xn,
by direct computation, M (kþl) metric computations are required for
ML decoding. When compared with the decoding complexity of Qn,
which is kM, this increase in complexity is unacceptable. However,
we try to eliminate the terms transmitted from empty slots of Qn,
which comes from PG and causes a non-orthogonal structure, by
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computing intermediate signals from the received signals for all possible
values of the additional symbols xkþ1, xkþ2, . . ., xkþl; then we use the
same decoding procedure for Qn to obtain conditional ML estimates of
x1, x2, . . ., xk. Finally, we minimise the decision metric given in (2) for
x1

ML, x2
ML, . . ., xk

ML, xkþ1, xkþ2, . . ., xkþl. In other words, instead of
searching over all possible values of x1, x2, . . ., xkþl, and suffering
from Mk þl metric computations, we only search with a decoding com-
plexity of M l, and obtain conditional ML estimates of x1, x2, . . ., xk,
which needs an additional decoding complexity of kM per each step
of M l calculation. Therefore, we obtain a total decoding complexity
of g ¼ kM � M l ¼ kM lþ1.

Let us consider the following OSTBC for four transmit antennas:

Q4 ¼

x1 x2 x3 0
�x�2 x�1 0 x3

x�3 0 �x�1 x2

0 x�3 �x�2 �x1

2
664

3
775 ð4Þ

In accordance with our definition given in (3) we propose the following
full-rate STBC:

X 4 ¼

x1 x2 x3 ax4

�x�2 x�1 bx�4 x3

x�3 cx�4 �x�4 x2

dx�4 x�3 �x�2 �x1

2
664

3
775 ð5Þ

where a, b, c, and d are the entries of the diagonal matrix P to be deter-
mined by the rank and determinant criteria [3]. The decoding procedure
for (5) can be summarised as follows.

From the received signals rt
j, j ¼ 1,2, . . ., m, we eliminate the effect of

the additional symbol x4 in (5) by computing the intermediate signals for
all possible values of it as

zt
j ¼ rt

j � hk;jbt;k ðx4Þ ð6Þ

where bt,k (x4) represents the codeword element at the tth row and kth
column of X4, which is the extra transmitted symbol x4 or its conjugate
x4
�. Then, by considering the orthogonal nature of Q4, we obtain con-

ditional ML estimates for x1, x2 and x3 as
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We obtain a total decoding complexity of 3M 2 by minimising decision
statistics for x1

ML, x2
ML, x3

ML, x4 instead of M 4 metric computations. By
removing the rightmost column of (5) we obtain the new STBC for
three transmit antennas, which can be expressed in the form of (3).
ML decoding procedure for this new STBC is the same as that described
above for X4 when taking h4,j in (6) and (7) as equal to zero.

STBCs for quasistatic fading channels are designed according to rank
and determinant criteria [3], to maximise diversity gain Gd and coding
gain Gc, respectively. Complex design parameters a, b, c, and d in (5)
are used to obtain full-diversity and high coding gain. In terms of the
equal total transmitted power in each symbol interval and for each
symbol, the constraint on a, b, c, and d is given as jaj ¼ jbj ¼ jcj ¼
jdj ¼ 1. Thanks to the special forms of the proposed STBCs, after an
exhaustive computer search, by setting these parameters as a ¼ j, b ¼
c ¼ d ¼ sin 308þ jcos 308 for QPSK with symbols on the two axes,
and as a ¼ b ¼ c ¼ d ¼ sin 308þ jcos 308 for M-QAM having odd
integer co-ordinates, we obtain full-diversity with the same minimum
determinants as for OSTBCs, namely, both Q4 and X4 have minimum
determinant values of 16 and 256, OSTBC and the new STBC for
three transmit antennas both have minimum determinant values of 8
and 64 for QPSK and M-QAM, respectively.

Simulation results: QPSK symbol error rate (SER) curves of the
OSTBC, the new STBC and CIOD [2] for a 4 � 2 MIMO system oper-
ating on a quasistatic Rayleigh fading channel are shown in Fig. 1 as a
function of Es/N0, where Es denotes the average transmitted signal
energy per symbol. From these results, we conclude that the new
design outperforms full-rate CIOD with increasing SNR values. For
an SER value of 1025, the new design provides 0.25 dB advantage
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over CIOD. However, as expected, both CIOD and the new design are
outperformed by OSTBC, but the slopes of these three curves are the
same. Performance curves for OSTBC, the new STBC and CIOD for
a 3 � 2 MIMO system are also shown in Fig. 1. From these curves,
we see that the new design outperforms CIOD for all SNR values. For
example, at the SER value of 1024, the new design provides 0.8 dB
advantage over CIOD.
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Fig. 1 QPSK SER performance comparisons

—A— 4Tx and OSTBC
—S— 4Tx and new STBC
—W— 4Tx and CIOD
---A--- 3Tx and OSTBC
---S--- 3Tx and new STBC
---W--- 3Tx and CIOD
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Conclusions: We present a novel design technique for the construction
of full-rate, full-diversity STBCs with reduced ML decoder complexity
from classical OSTBCs. We have given two specific examples with two
new STBCs for three and four transmit antennas. We have also opti-
mised the proposed schemes to obtain best performance in the context
of full-diversity and maximum coding gain. When compared with the
previous most powerful full-rate, full-diversity STBCs from CIODs,
the new scheme provides better error performance.
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