Distinctive Image Features from Scale-Invariant Keypoints(SIFT)

Purpose

- -We want to Recognize
 - -For recognizing, need features
- -Extract features from image
 - -Edge detection(Sobel, Canny), Corner detection (Harris)...
- -False features due to bad illumunations, different scales, or rotation
- -This paper focus extracting distinctive invariant features
 - -invariant to: image scale and rotation, addition of noise or change in illumunation

Steps

- -Scale-space extrema detection
 - -Difference of Gaussian over all scales and all locations
- -Keypoint localization
- -Orientation assignment
 - Image gradient directions
- -Keypoint descriptor

Properties

- -Near real-time
- -For 500X500 pixel about 2000 stable features
- -Key point descriptors are highly distinctive, this allow a feature enough to find correct match

Detection of scale-space extrema

-Identify locations and scales

$$-L(x,y,\sigma) = G(x,y,\sigma) * I(x,y) *: convolution$$

 $-L(x,y,\sigma)$: scale space of an image

 $-G(x,y,\sigma)$: Gaussian

-I(x,y): Image

-G(x,y,
$$\sigma$$
) = $\frac{1}{2\Pi\sigma^2}e^{-(x^2+y^2)/2\sigma^2}$ Gaussian

Detection of scale-space extrema

-Difference-Gaussian

$$- D(x,y,\sigma) = L(x,y,k\sigma) - L(x,y,\sigma)$$

$$k = 2^{1/s}$$
 (generally $s = 2, k = \sqrt{2}$)

We divide each octave by s+3 Each octave image = image/2

Detection of scale-space extrema

-Local extrema detection

- -4 Scales for per octave (best result)
- -Take 3 difference-of-gaussian.

-Compare 8 neighbour and 9 pixels at the top scales and at the bottom 9 pixels.

-If it is higher or less then all of the pixels, it is local extrema point.

Keypoint localization

-Using taylor series DoG can be expand

$$-D(\mathbf{x}) = D + \frac{\partial D^{T}}{\partial x} x + \frac{1}{2} x^{T} \frac{\partial^{2} D}{\partial^{2} x^{2}} x$$
$$-\mathbf{x} = (x, y, \sigma)^{T}$$

- Extrema can be found with take derivative and set to zero.

$$-\bar{\mathbf{x}} = -\frac{\partial^2 D^{-1}}{\partial x^2} \frac{\partial D}{\partial x} \qquad \qquad \mathsf{D}(\bar{\mathbf{x}}) = \mathsf{D} + \frac{1}{2} \frac{\partial D^T}{\partial x} \bar{\mathbf{x}}$$

- If a extrema with $|D(\bar{x})|$ less than 0.03 were discarded
- Range of image [0,1]
- With this operation , ustable extreama with low constrast can be eliminate in an 233X197 image 832 ->729 points

Keypoint localization

-Eliminating edge responses

- H=
$$\begin{bmatrix} Dxx & Dxy \\ Dxy & Dyy \end{bmatrix}$$
 H: Hessian Matrix
- Tr(H) = Dxx + Dyy = $\lambda_1 + \lambda_2$ λ_1 , λ_2 : eigenvalues
- Det(H) = DxxDyy -(Dxy)² = $\lambda_1 \lambda_2$
- $\frac{\text{Tr}(H)^2}{\text{Det}(H)} = \frac{(r+1)^2}{r}$ $\lambda_1 = r$. λ_2

if r > 10 eliminate this point

-729->536 points

Orientation assignment

-Compute gradient magnitude and orientation using;

$$-m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$
$$-\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

- -The orientation histogram has 36 bins
- -Highest peak selected from histogram

-if other high nearly %80 of highest create multiple orientation

Image Descriptor

-Last step; Histogram to Descriptor

Image Descriptor

-For a key point we have 4X4X8 feauteres vector

-Each vector can be in 8 direction with different magnitude

-Before the transformation we should apply Gaussian to Image Gradient Histogram

References

Distinctive Image Features from Scale-Invariant Keypoints by David G.Lowe taken from:

http://www.cs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf