
A Parallel Architecture for Video Processing

D Turgay ALTILAR, Yakup PAKER, A Vahit SAHINER

University of London
Queen Mary & Wesffield College
Department of Computer Science

Mile End Road E1 4NS London-UK

{ turgay, paker, alivahit} @dcs.qmw.ac.uk

A~stract. Video data consists of a sequence of frames that is produced at a constant rate and many
applications in real-time require the processing of these frames executing compute intensive algorithms.
To handle many of such applications in real-time, we developed a new architecture based on parallel
processing. The parallel architecture for video processing has been developed at Queen Mary and
Westlield College as a part of an European Union RACE II project called MONALISA. A multi-
processing kernel and a high level software environment called SAPS (self adapting parallel server)
model has been developed for this architecture. This environment makes it possible to introduce a
number of load balancing and data decomposition schemes that can be realised automatically in real-
time by the kernel without any explicit inputs from the user. The developed architecture aims at
applications such as image analysis algorithms, camera tracking, mixing captured foreground images
and synthetically generated background images using depth values in real-time for Virtual Studios. In
this paper we focus on the software architecture, frame buffer management and frame buffer access
protocols. The system architecture and hardware is explained first. The standard frame buffer access
protocol, SFBA, and the dedicated frame buffer access protocol, DFBA either of which address
different needs of video processing are introduced. System performance evaluation, benchmark results
and an analysis of DFBA protocol are given in detail.

1 Introduction

Technologies used in the broadcasting industry are changing rapidly as digital processing is entering all
aspects of TV programme making and distribution. With the advent of digital TV and interactive
multimedia over broadband networks, the need for high performance computing for broadcasting is
stronger than ever. Processing numerically a video sequence requires considerable computing. One of
the ways to cope with the demands of video sequence processing in real-time, we believe, is combining
parallel processing with frame buffer technology.

Computer graphics techniques like rendering and radiosity and most of the video processing techniques
like mixing, chroma-keying are compute intensive processes. These algorithms have been parallelised
for various types of computers [Whit94]. Most of the parallelised algorithms suffer from the
unbalanced loading because of highly irregular and unpredictable data processing power needed over a
given size of data, i.e. data dependency [Sing94]. Although video sequences are normally synchronous
streams with a standard number of frames per second, for some applications this is not true. For
example if an algorithm is data dependent then the frame processing time is not constant. An example
of such an application is MPEG compression/decompression, which has four different types of coded
frames, I,P,B, and D to be coded/encoded [Stei94]. A proper load balancing algorithm is needed to
cope with both data dependent and data independent cases.

Data decomposition schemes for a stream based data are similar to image processing ones. But video
streams have some additional properties that should be taken into consideration. Moreover, the frame
buffer management enables us to access a given rectangular part of a frame.

The properties of a video stream considering data decomposition are:

- Sequence of images refreshed with a fixed period
- A single image formed by three frames R, G, and B or two chrominance Y, U, and one
luminance V

930

Beating the properties of video streams in mind, the following decomposition schemes are possible for
parallel processing:

- Consecutive frames processed by distinct processors
- Decomposing a single frame (or frame section) over a number of processors and
recombining the frame sections into a single frame

Video sequence processing in addition to processing individual frames of a single sequence, like
chroma-keying, could also require processing more ~an one sequence at a time such as mixing two
flames by using Z depth values.

Our architectural approach is based on a scaleable shared address space multi-processors using Single
Program Multiple Data (SPMD) parallelism and is aimed at real-time processing of broadcast quality
video sequences. Automatic data distribution, load balancing, utilisation of the processors are the main
concerns to be addressed.

At QMW, we developed a parallel video accelerator, ML-PVA, for the MonaLisa I project supported
by the European Union, for real-time video processing. The project brought computer technology and
image processing concepts into studios towards creating a Virtual Studio [Blon96]. It comprises a
specially designed hardware and software architecture. The hardware architecture is aimed at the use of
a processor pool attached to a frame buffer via a high speed bus. A multi-processor kernel and a novel
server mechanism have been developed and implemented. SAPS (Self Adaptive Parallel Servers) is the
model used for the system software which addresses the issue of accelerating pre-selected and
computationally heavy procedures in a target application. This is done by building a server box, i.e. a
pool of processors, which is transparent to its users and has the potential of accelerating a library of
procedures on request [Sahi95].

ML-PVA hardware and software architecture has been developed for addressing the following issues:

- Acceleration of time consuming image analysis algorithmslike real-time camera tracking
- Acceleration of illumination ofpreprocessing
- Acceleration of computer graphics algorithms
- Capturing of camera output, bluebox output and graphics workstation output
- Multi-frame delay of captured foreground images to compensate pipeline delay from camera

tracking and rendering
- Real time mixing of captured foreground images and synthetically generated background

images based on blue box key signal and depth values

Using this architecture a camera tracking algorithm has been realised and run successfully satisfying
real-time constraints [Rout95].

The paper is organised in seven sections. Section 2 gives the description of the systems hardware. The
systems software and the application programs are briefly explained in Section 3. Section 4 presents the
SAPS model. Section 5 describes frame buffer accessing protocols. Evaluation of processing schemes
and benchmark results are presented in Section 6. The paper ends with conclusions in Section 7.

2 T h e H a r d w a r e A r c h i t e c t u r e

The hardware structure can be defined under two substructures which are a graphics station front end
and the Parallel Video Accelerator (ML-PVA). As seen in the Figure 1, a camera and a monitor are
connected to the frame buffer respectively via an ADC and a DAC. The graphics workstation, SGI, is
connected to the host of pool manager via the Ethernet. Software interfaces have been developed such
as Administration Tool, Command Tool, and Studio to manage the system.

I
MonaLisa (MOdelling NAturaL Images for Synthesis and Animation) is an EU supported RACE II project

whose main goal is to develop a virtual reality platform by means of both hardware and software, for TV studio
production and post production by mixing environment for using synthetically generated images and real images
together.

931

A UNIX based workstation, SGI with OSF/Motif and X11 utilities, run the user interface modules, and
the application programs, A Motorola 68030 based computer board, running a real time operating
system, 0S9, is responsible for controlling and managing the overall system which consists of a DSP
based processor pool running a kernel (WKernel), and a frame buffer system with a high speed bus
interface. These platforms are attached to each other via different mediums such as Ethernet, VME bus,
high speed bus, and I/O channels (Fig. 1).

FIFO-buffered I/O processors (IOPs) are used to connect UO devices and clusters to the frame buffer,
IOPs are connected to 601/656 interfaces to cope with digital video signals. Another interface has been
developed for DSP-IOP connections. All data transfers are controlled by the address generator
consisting four address processors, each controlling one data transfer.

Figure t. ML-PVA and its environment

ML-PVA comprises a 68030 main processor, a frame buffer of 32 Mbytes with 5 IOPs and an address
generator, and g DSPs (DSP96002). The two main parts of ML-PVA are the processor pool and the
frame buffer of which hardware characteristics are given in the following two subsections.

2.1 The Processor Pool

The processor pool is based on DBV dual processor boards, manufactured by LSI, containing two
Motorola 96002 DSPs. There exists four boards in the current system. Two boards make a cluster
attached to a single I/O processor. Boards are plugged to VME bus through the shared global A-BUS.

DBV boards operate at a speed of 40 MHz. Each DSP has a local SRAM of 256K words, one dbex and
one hyperbus interface for external devices, dbex Interface is used for I/O processor attachment via a
specially developed interface card. Each DSP has also front panel interfaces serving for monitoring
and debugging purposes. Two DSPs on the same board also share a SRAM of 256K words and a
DRAM of 4M words attached to A-BUS of both processors. They both have access to arbiter, dual
RS232 port and VME Bus interface via this common A-Bus.

2.2 The Frame Buffer

The frame buffer system, ISP 400, manufactured by DVS, is used for video input/output and buffering
[DVS93]. FIFO buffered I/O processors are used to connect I/O devices and DSPs to memory bank.
The memory bank has a capacity of 32 Mbytes which can be expanded up to 2 GBytes. All of these
devices are attached to the high speed bus with 400 Mbytes/second and all activities are controlled by a
68030 based host processor. An interface compatible with CCIR 601t656 is available for video
c6nnection and is attached to existing I/O processors.

932

3 Software Overview

The software consists of a collection of systems software and application modules running under three
different operating systems which are UNIX, OS-9, and WKernel (developed at QMW). The
communication between UNIX and OS9 has been implemented over TCP/IP and NFS. The
communication between OS9 and WKernel has been implemented by RPC, based on shared data
objects and VME interrupt mechanism.

On the UNIX side of the software the user interface and application tools are the main concerns. The
only low level system software is the implementation of socket communication. There are three
different tools developed on the UNIX side, which are the Administration Tool (AdmTool), Command
Tool(ComTool) and Studio [LeFI95].
Almost all of the software developed under OS9 is low level systems software, including the device
drivers, the pool manager, and the VME interrupt handler. OS9 serves as a system administrator, a
supervisor, and a resource manager on the ISP-VME Bus which can be considered as the backbone of
ML-PVA. OS9 communicates with UNIX and WKernels.

OS9 provides the host environment for the utilisation of the frame buffer and the processor pool. The
system management processes for the ML-PVA system run in this environment. These processes
consist of two distinguishable parts which are the Pool Manager and the ISP Server. The Pool Manager
performs the functions of scheduling, object managing, dispatching, and name serving in our
implementation [Sahi95].

The DSPs run a light weight kernel called WKernel which provides the process creation and process
management functionalities for parallel server execution on the Processor Pool.

The three separate software platforms, programs running on these platforms and the nature of data used
in communication for a typical client-server based application are shown in Figure 2. Client-server
based approach is supported by SAPS model based on Single Program Multiple Data type of
programming. SAPS pro, ides a number of tasks running con~-aa-rentty over the processor pool. Client
initialises the tasks by sending a list to the Pool Manager. Prior to this, client sends data to the frame
buffer if it is needed. The Pool Manager dispatches task to DSPs on their requests. DSPs read/write
data directly from the frame buffer. The SAPS model and use of it is explained in the next section.

PVA

PROCESSOR POOL
(96002's)

Figure 2. ML-PVA Software environments and the nature of data in communication.

933

4 T h e SAPS Model

The SAPS model is based on the Single Program Multiple Data (SPMD) parallelism [Sahi91]. In this
model, a parallel application is composed of a number of copies of the same sequential program, each
running on a separate processor node. This form of parallelism is widely used on message passing
multi-processor systems because it has a relatively simple and well defined structure [Gabb90]
[Lucc87]. SPMD style also provides a framework for developing parallel application software using
sequential programming techniques, and, therefore, enables application software already developed for
sequential machines to be used for parallel architectures, without undergoing major changes.

Under the SAPS model, the mechanisms for SPMD parallelism are encapsulated within servers. A
server when requested executes multiple copies of an associated sequential procedure in parallel in
SPMD mode. The data is provided by the client within the service request. The interface between the
application programs, as clients, and the parallel servers is conveniently hidden in the procedure call
mechanism which is a well-understood facility to develop modular programs.

The interaction between a SAPS and an application as its client, for the actual provision of the service,
is based on standard remote procedure call which is structured as a service-request and a service-reply
is also supported by a data objects scheme which enables data decomposition. Servers fetch application
data via operation invocations on data objects.

The server-application (client) duality provides the means for the separation of concerns and therefore
the separation of the building of servers and their utilisation by the applications. Applications are
conventional sequential programs developed independent of the concerns for parallelism. The main
building block of a server is also a sequential procedure; a parallel SPMD structure is obtained when
this procedure is interfaced to a standard template. This scheme allows building servers using existing
sequential software without major modifications.

A SAPS has a multi-process structure (Fig. 2). This structure contains the mechanisms for the reception
of service requests, their processing, and the transmission of the results back. A dispatcher process,
implemented within the Pool Manager, and a pool of workers form a process farm where the dispatcher
farms out work to workers and each worker when becomes idle, requests for more work from the
dispatcher process. It is the multiplicity of the workers that provide parallelism within the server.
Workers run on the pool processors in a one node per worker fashion. The number of nodes used by the
workers of a particular server is not fixed, it depends on run time availability of nodes. A server can
start operating with a single worker and dynamically increase its worker population at run time as more
nodes become available.

Within the SAPS structure it is the scheduler process, implemented within the Pool Manager, which is
responsible for the resource management activities. It manages the configuration (it creates the
dispatcher and worker processes), and it reconfigures the SAPS structure by adding or deleting
workers. The scheduler coordinates its activities with other SAPS schedulers through the pool manager.
The structure of a server is completely transparent to its clients. Each server has two message
communication access points: one for handling service requests (service access point), and the other for

�9 monitoring the processor resources and coordinating its resource usage with other computing agents
(resource management access point).

The SAPS structure as a whole is supported by a standard software template. The complete
functionality of a SAPS as a generic server object is programmed within this template. To create a
SAPS blueprint for a particular service all that is required is the interfacing of a conventional sequential
procedure (the task proper) to a copy of the template. This is achieved via a local procedure call
interface.

5 The Frame Buffer Management

The frame buffer management has an important impact on the overall performance of the architecture.
In order to improve the performance of the system's throughput, a number of access schemes have been
developed.

934

5.1 Frame Buffer Access Protocols

The frame buffer acts as a disk space under OS9 operating system which enables us to define memory
allocation and memory management on the basis of disk management. A video sequence is created
(allocated) prior to its use. If there is not enough space for a specified file it is not created as there is no
pre-emption/swap space available. Processes running on either the 68030 main processor or the DSPs
can access such a file through input/output processors (IOPs). Several IOPs can be attached to the same
file, providing a powerful means of sharing the frame buffer.

The DSPs' frame buffer accesses are controlled by the pool manager via the name server, implemented
on the 68030, which handles the name table, availability and access rights. Since one lOP serves four
DSPs, this authorisation mechanism is essential for resolving conflicting access requests coming from
within the same cluster.

I

F a i l t t ~

_..,~o,.,,.,~, ~ Proe:

Figure 3. Standard frame buffer access protocol (SFBA)

The Standard Frame Buffer Access Protocol, SFBA, has been developed to access the frame buffer by a
request/grant/free mechanism between the pool manager and any one of the DSPs (Fig. 3). Only one
DSP from a cluster of four is allowed to access the frame buffer at a time. The pool manager keeps the
connection between DSP and the frame buffer until DSP sends a detach command. This is a generic
protocol. However, the frame buffer management, initialisation and communication itself results in
considerable overhead as this is repeated whenever a new frame is required by any of the DSPs.

Taskn ~ q ~,n 0

ii

i
9 lira

J

Proc.

7;

?

Figure 4. Dedicated frame buffer access protocol (DFBA)

935

In order to reduce this overhead a protocol called Dedicated Frame Buffer Access Protocol (DFBA) has
been implemented whereby a process holds an tOP throughout its lifetime (Fig.4). Once allocated, the
process can access the frame buffer via the dedicated IOP without asking or waiting for any grant from
the pool manager. Accessing through only one process running in the same cluster is a constraint of this
protocol. The DFBA protocol is useful when dealing with continuous stream of frames such as for the
implementation of camera tracking algorithm[Rout95] whereas SFBA is useful for frame based
processing like image processing.

On top of these two protocols, various kinds of video sequence access schemes have been realised.
TheSe schemes are only the programmers concern and they are not known to the end-users. As it can be
seen in Figure I, four IOPs are attached to the frame buffer: one to video in device, one to video out
device and two to DSP clusters. For simplicity suppose that only each DSP runs one process and
process numbers are identical to DSP numbers. The schemes are explained as follows, where the first
two schemes use the SFBA Protocol and the last two use the DFBA Protocol.

1) Eight processes access to the frame buffer in turn, called generic parallel execution mode which is a
typical use of the SFBA Protocol. The requests that can not be met immediately are queued to serve
when the related IOP becomes available. There is a separate queue for each lOP to provide separate
control of IOP connections.

2) Only four processes (one from each DSP board) access the frame buffer. By making use of the
shared memory on the board, it is possible to run processes dealing with the same data (frame) on the
same board which is called generic shared memory execution mode One processor from a board reads
data into DRAM and signals the second one on the same board to inform the existance of the frame.

3) Two processes (one from each cluster) access the frame buffer without breaking the connection till
the processes are completed, called dedicated simple execution mode. Thus a stream based connection
is provided in which initialisation happens once so that both the high speed and the dbex buses could be
optimally used for data transfer.

4) In the dedicated simple execution mode there is only one processor active on the board. However, by
using shared memory on board as in protocol 2, the number of processors can be doubled, which is
called dedicated shared memory execution mode.

6 B e n c h m a r k s a n d E v a l u a t i o n

A number of experiments have been carried out to evaluate the performance of the ML-PVA with
respect to some of the above explained properties and constraints. The main objective has been to
investigate:

- the effects of using one IOP for a cluster (4 DSPs)
- system performance dependence on I/O intensive and compute intensive processes
- the effects of frame size
- the effects of the using shared DRAMs by two DSPs on the same board
- optimal DSP configuration with respect to a given application

Two groups of benchmark programs have been run to investigate the above mentioned objectives. The
first group used an edge detection algorithm that takes a PAL frame of 576x720 pixels and produces a
new one having only the edges. The number of the neighbourhood pixels taken into account makes the
benchmark more or less compute intensive. Each task, once the computing is finished also writes back
the computed frame into the frame buffer. The purpose of this group of benchmarks is show the effect
of shared input/output processors (IOP) each IOP serving one cluster which has four DSPs. Also
because of sharing the same DRAM, board based effects are important. This benchmark will also lead
us to define a DSP loading scheme to get the best performance.

In general there are three different steps in a stream manipulation: The first step is getting the frame
into a DSP's RAM, the second step is to process the frame and the third step is to put the processed
frame back to the frame buffer, if required. The first and the third steps are called input/output and the
second step is called compute cycle.

936

Operation/frame Operation/pixel
Operation Read Write +

Edoe Detection (Type A) 1 1 0 4 1
Edge Detection (Type B) 1 1 0 8 1
Edge Detection {Type C) 1 1 4 8 2

Table I. Benchmark Operations.

Total
5
9
14

5.0"

4.o- / ~ . ~ r �9
3 '5 ' / .~

.~ 30: / ~ / - , , ~ , . ~ ~
2.5~

2.0 j
1.5 : /
1.0 : /
0.5"
0.0.'

0 1 2 3 4 5 6 7
Number of Processors

9

Figure 5. The best performance curves.

6.1 Benchmark Group 1

For the benchmarks carried out each of the tasks copies a PAL frame into its DRAM and writes it back
after processing. These benchmark programs, A, B, and C execute different number of operations per
pixel as shown in Table 1. After running a number of benchmarks for different schemes, the best
performance curves are plotted in Figure 5 which show the following:

a) There is a trade-off between I/O and CPU intensive programs as expected. I/O dependency causes
lower speed-up values as frame buffer accesses are done via a shared resource IOP. Speed-up for CPU
intensive task is almost 8 when using 8 processors since I/O initialisation requests are processed
immediately by the pool manager as I/O requests do not overlap each other because of relatively longer
data processing time.

b) The practical highest speed-up value we obtained is 4.8 for 6 processors running concurrently for the
benchmark program Type C which is the most compute intensive one. After this value, speed-up for
processors decreases a bit since concurrent frame buffer access requests are queued and requests are
met in turn.

c) As the number of frames used is even, configurations having odd number of processors give worse
speed up values than expected since runs over odd number of processors, always one processor stays
idle at the very last step. A closer look shows that the utilisation of processors decreases of the same
reason as well. This problem can be overcome by decomposing data into the multiplies of the number
of processors.

d) Best performance curves shows that processor allocation algorithm should have a priority scheme.
Given the first four processors P0-P3 constitutes the first cluster and the next P4-P7 the second one, the
frame allocation should be done by selecting processors from different clusters, then different boards
within a cluster. In other words, there is a balanced way of processor allocation at cluster and board
levels. An example for the order of selecting processor to get the best performance is P0, P4, P2, P6,
P1, P5, P3, and P7.

6.2 Benchmark Group 2

The second group of benchmarks demonstrate the impact of data size and the impact of the SFBA and
DFBA given above. Basically 100 are frames read with no computation. Thus, the maximum real data
transfer rate can be measured. While running a benchmark over two clusters concurrently, 50 frames
are read by each DSP at separate clusters. These benchmarks are run for five different frame sizes:
720*576, 360*288, 180* 144, 90*72, and 45*36 pixels. Four different schemes are tested"

937

- Single processor with SFBA protocol (S-S)
- Double processors with SFBA protocol (D-S)
- Single processor with DFBA protocol (S-D)
- Double processors with DFBA protocol (D-D)

The actual measured values for reading 100 frames are given in Table 2 and the data size vs. reading
duration curves are plotted in Figure 6.

Frame
Size 720*576

Procs. Single I Double
,SFBA 16.210 [16.440
DFBA 7.880 3.940

360'288
Single I Double
10.790 16.580
1.980 0.990

180" 144 90*72 45"36

9.290 17.200 8.920 17.33 8.770 1,7.020
0.495 0.248 0.126 0.06 0.032 0.017

Table 2. Reading times of 100 frames (in milliseconds).

20

18

16

14

=~ 12

10

i
r4 r~

8

6i
4 '

0 ' ;

0

m r "
/

/

100000 200000 300000
Datasize to be read (in bytes)

�9 m. S -D

D - D

"~" S-S

" ~ D-S

400000 500000

Figure 6. Performance comparison of protocols.

Concerning the four curves drawn in Figure 6 the following evaluations are done:

a) The curves S-D and D-D show linear change with respect to data size. Evaluating these two curves
together shows that there is a speed up of 2 in data transfer rate when 2 clusters are being used. Thus, it
is observed that DFBA Protocol provides linear transfer rate, irrespective of the data size, proportional
to the number of clusters.

b) On the other hand, although SFBA protocol, is suitable for frame by frame processing, can not
provide real-time performance requirements for continuous video processing as data transfer
initialisation takes 87ms per frame.

c)Although the curve S-S is linear, it shows the initialisation overhead of 87ms. As there is no other
active processor in the system the pool manager serves just for this particular DSP. Thus, there is no
queuing impact. The curve D-S shows the queuing effect when there are two processors running
concurrently to access the frame buffer under the control of a unique authority, the pool manager. As
data transfer time is less than initialisation time, almost a constant value is observed which is around the
twice of the initialisation time.

6.3 Analysis of the DFBA Protocol Performance

DFBA Protocol is capable of running real-time applications. In order to see the scaleability of the
system, let the total execution time for a single frame be Tt, then

Tt = Ti + Tr + Tr + Tw

938

where Ti is data transfer initialisation and termination time, Tr is data read time, Tr is computation time,
and Tw is data write time. Assume that e~ is the data transfer rate of the bus (in Mbytes/sec), di is the
size of input data (in bytes), do is the size of output data, and 13 is the number of pixels computed per
second. If the computation is data independent then,

Tr= di / ix , Tw=do/Ct, Tc =di]~]

For the same size of frame read and written d i becomes equal to do and, therefore, Tr = Tw.

As the DFBA protocol initialises data transfer once, there is practically no overhead introduced by this
initialisation process, therefore Ti=0. If Nc is the number of clusters then Nc frames are transmitted
concurrently. Therefore the average time for processing each frame, so long as a sequence of frames are
fed to all clusters, becomes

~ = (2 T r + T r) /No
or in terms of the data size

~ = d i (2 / a + 1 / ~) / N e (1)

To satisfy the real-time requirements,"Tt should be less than 40 ms for a PAL frame. Thus, from
Equation 1 one can derive

Nr d~ (2 /o t+ 1/[3) /0 .04 (2)

For ML-PVA Machine e~ is 5 Mbytes/sec (Figure 6) restricted by the cluster bandwidth eventhough the
IOP rate is 20 Mbytes/sec. For a simple frame inversion algorithm 13 is 1/300 109pixels per second. For
a sequence of 360*288 pixels Equation 2 yields

Nc > (360*288) (2/5242880+300/109) / 0.04
Nc > 1.766

Therefore
N~= 2

In order to run the same application over full sized PAL frame (576"720), we would need higher data
transmission rates to reduce the data transmission time. For more complex operations more powerful
processors like C80 would be required. For example for a machine with ty.=20 Mbyteslsec and
13=1/60 109 pixels/second

Nc > (720*576) (2/20971520+60/109) / 0.04
Nc > 1.611

N~=2

7 Conclusion

A multi-processor machine has been built to meet the computational requirements of video processing
tasks for Virtual Studios and other similar applications. The architecture has been applied successfully
to a camera tracking algorithm in real-time. The accelerator is based on a pool of DSP processors
tighdy-coupled with an intelligent frame buffer system over concurrent buffered I/O channels. It has an
OSF/Motif windows based user interface running on a host graphics workstation which makes the
application acceleration completely transparent to the end-user.

In this paper, we focused on the frame buffer access protocols. Two different protocols, SFBA and
DFBA are described. The DFBA Protocol is essential for real-time processing as it is a stream based
protocol with one initialisation and one termination step. An analysis has been presented for the DFBA
Protocol to explain the benchmarking results. The interdependencies of frame size, frame rate, channel
transfer rate and number of clusters have been demonstrated. This shows that the ML-PVA architecture
is a scaleable parallel system under the DFBA protocol. The disadvantage of this protocol is the
dedication of an IOP to a single cluster.

The SFBA protocol is important as it provides the ability of processing a video sequence of
independent frames. Although a speed-up of 4.8 has been achieved for 6 processors, the SFBA

939

protocol suffers from the overhead of initialisation and termination. Sharing an IOP among the
processors of a cluster is an advantage of the SFBA protocol.

The current architecture provides concurrent access to the frame buffer including the same video
sequence on the frame buffer. The bandwidth of high speed bus is shared among the attached clusters
via IOPs equipped with buffers. This structure provides a good way of accessing the frame buffer.
However, we observe that having a single authority in resource management like frame buffer
management introduces severe bottlenecks if resource requests are come from different processing
units. A stream based protocol overcome this difficulty.

8 References

[Blon96] Blonde L., Buck M., Galli R., Niem W., Paker Y., Schmidt W., Thomas G., A Virtual
Studio for Live Broadcasting: The MonaLisa Project, IEEE Multimedia, Summer 1996.
[DVS93] Image Storage and Processing System ISP500 User Manual, DVS GmbH, Hannover,
Germany, 1993.
[Feit95] Feitelson D.G., Rudolph L. , Parallel Job Scheduling: Issues and Approaches, Job
Scheduling Strategies for Parallel Processing, IPPS'95 Proceedings, Springer, 1995.
[Gabb90] Gabber E., VMMP: A Practical Tool for the Development of Portable and Efficient
Programs for Multiprocessors, IEEE Trans. on Par. and Dist. Systems, Vol.1, No.3, July 1991.
[LeF195] Le Floch P., Sahiner A.V.,PakerY., Visual Tools for Parallel Server Handling,
Proceedings of the European Workshop on Combined Real and Synthetic Image Processing for
Broadcast and Video Production, Paker Y. and Wilbur S., (Eds.), Springer, 1995.
[Lucc87] Lucco S.E., Parallel Programming in a Virtual Object Space, Sigplan Notices, Vol.22,
No. 12, December 1987.
[Rout95] Routsis D., Le Floch P., Sahiner A.V., Real-Time Camera Tracking Server on the ELSET
Accelerator, Proceedings of the European Workshop on Combined Real and Synthetic Image
Processing for Broadcast and Video Production, Paker Y. and Wilbur S, (Eds.), Springer, 1995.
[Sahi91] Sahiner A.V., A Computation Model for Parallelism: Self-Adapting Parallel Servers,
Ph.D. Thesis, The Polytechnic of Central London, 1991.
[Sahi95] Sahiner A.V., Le Floch P., Paker Y., A Parallel Accelerator for Using Synthetic Images
in TV and Video Production, Proceedings of the European Workshop on Combined Real and Synthetic
Image Processing for Broadcast and Video Production, Paker Y. and Wilbur S.(Eds.), Springer, 1995.
[Sing94] Singh J.P., Gupta A., Levoy M., Parallel Visualisation Algorithms: Performance and
Architectural Implications, IEEE Computer, July 1994.
[Stei94] Steinmetz R., Data Compression in Multimedia Computing: Standards and Systems,
ACM Journal of Multimedia Systems, March 1994.
[Whit94] Whitman S., Hansen D.C., Crockett T.W., Recent Developments in Parallel Rendering,
IEEE Computer Graphics and Applications, July 1994.

