Rank of sparse {0,1}
Matrices

Supported by NSF grants 0098284 and 0112807
A. Duran, D. Saunders, and Z. Wan

1 Introduction

In this study we compare two distinct methods for solving basic linear algebra
problems over the integers and over finite fields. We focus on the problem of rank
and the case of 0, 1-matrices. One method is GSLU, an adaptation of the SuperLU
method [3] and is fundamentally Gaussian elimination. The second method, called
here BB for “black box”, is a variant of Wiedemann’s algorithm [14] and is a Krylov
space method. The methods may be applied to other problems such as determinant,
system solving, and Smith normal form. The observations made here apply quite
directly to those problems.

The results of the computations are exact but are Monte Carlo, as discussed
below. Exact methods are of interest when the matrix entries represent structural
properties of some system rather than measured quantities. Frequently the matrices
are incidence matrices of some kind. A 1 in the i, j position represents a relation of
row object i to col object j.

Our goal is to prepare the basis for a hybrid algorithm for LinBoxwhich is
a near optimal combination of the two basic methods. LinBox[4] is a library em-
phasizing the black box algorithms, but also using elimination where appropriate.
We have not pursued a comparison involving other elimination methods, but see
[6]. It is clear that there is more to be gained by working with a variety of elimi-
nation techniques. More generally our goal is to have a procedure for adapting to
improvements in the algorithms, to improvements in the underlying field arithmetic
(discussed in section 4), or to variation in machine parameters. In effect a set of
thresholds and a scheme for adjusting them to the computational environment is
desired. The requirements for this goal are rather strict, since a hybrid algorithm
which consists of a race between the two basic methods consumes at most twice the
time of the best one for the given matrix. Thus the hybrid we design should choose
the best method when it can and consume no more than twice the best time when
it guesses wrong.

2003/3/1
page
D

2 The algorthms

The black box method for rank computation that we use is Wiedemann’s method
[14] with the preconditioning strategy of Eberly-Kaltofen [10], see also [1]. For a
given matrix integer matrix A, a word size prime p is chosen and random vectore
vectors u,v € Z, are used. The sequence s; = uT A'v, is computed. The Berlekamp-
Massey algorithm is used to determine the minimal polynomial of the sequence.
With high probability this is the minimal polynomial of the matrix and, because of
the preconditioning, the rank is directly determined from the degree of the minpoly
and its constant term. See the above mentioned papers for details. If the trace of
the preconditioned matrix is less than the prime and equals the second coefficient
of the minimal polynomial it constitutes a certificate of the rank[12]. The early
termination strategy is used so that just a few more than 2r terms of the sequence
must be computed.

The run time of this algorithm, BB, is quite reliably computed a priori. Sup-
pose the matrix has order n and e nonzero entries. Then matrix vector product
costs e additions for a zero-one matrix and e multiply-adds in general. The algo-
rithm uses ©(r) matrix vector products with the matrix A and ©(n) additional work
per sequence element (consisting of dot products, preconditioner (diagonal matrix)
matrix-vector products, and the Belekamp-Massey step). Thus the arithmetic steps
and run time on a particular computer both may be described quite predictably by
a formula of the form Cir(e + C2n), for constants Cy,Cs. The Cj is the ratio of
the number of applications of A to the per step linear work, Cy = 1/4 for the BB
implementation used in our experiments.

GSLU (Generic SuperLU)[9] is adapted from SuperLU version 2.0 [3]. field
arithmetic is written in the LinBoxstyle, where the field object is an explicit pa-
rameter to each operation along with the the field elements involved. This allows
GSLU to be used with arbitrary fields including finite field representations from Lin-
Boxand light wrappers on traditional floating point types (float, double. complex).
The code uses C++ template parameters for the field.

SuperLU contains a set of subroutines to solve a sparse linear system AX =
B. Consider the factorization PAQT = LU of a sparse matrix A, using Sparse
Gaussian elimination with partial pivoting, where the row ordering P is selected
during factorization using standard partial pivoting and @) is a column permutation
chosen with the goal of reducing fill-in. The partial pivoting is simplified slightly
for finite fields, since there is no issue of numeric stability, and in any case size
comparisons of field elements make no sense. One must select a column preordering,
@, so that the factorization remains as sparse as possible, regardless of choice of P.
The column ordering can have dramatic impact on the number of nonzeros in L and
U. SuperLU has four options for determining @), which are: (1) MMD (Multiple
elimination Minimum Degree) applied to the structure of AT A, (2) MMD applied
to the structure of A+ AT, (3) COLAMD, and (4)natural (Q = I).

MMD is a local minimization of nonzeros in the factored matrix. It is also
a practical approximate solution to the NP-complete fill minimization problem.
Liu[11] describes the method and gives a modification of the standard algorithm.

COLAMD (Column Approximate Minimum Degree Ordering Algorithm) [2]

2003/3/1
page
D

is based on symbolic LU factorization of the nonzero pattern of A. It is an improved
version of Matlab’s COLMMD. The former is faster and computes better orderings
in general, with fewer nonzeros in the factors of the matrix. We found it to perform
best for most of our non-symmetric examples. When it wasn’t best, the MMD
appied to AT A was. We report times for these two preorderings in our data below.
There are cases where SuperLU has a memory problem and segmentation fault
occurs. This remains true in GSLU. Also we found some cases where an erroneous
rank occurs. We eliminated these matrices from our study, believing the bug fix will
not likely affect the performance in the currently correct cases. Certainly clearing up
these problems is desired. For the rank of an integer matrix, we choose to compute
mod a word size prime. So the algorithm is Monte Carlo, with a high probability
of success.

As with all elimination methods, the run time of GSLU is quite variable. It
depends on the rate of fill-in, which in turn depends on the success of the fill-in
avoidance method used and on the zero-nonzero pattern of the matrix. For the
rank problem, elimination may stop at the r-th step. For various classes of sparse
matrix, the run time varies from O(r) to ©(rn?). For example, if e = 2n and there
are exactly 2 entries per row, only ©(r) operations are necessary. On the other
hand for dense matrices and for matrix patterns in which there is rapid fill-in. the
©(rn?) run time is experienced. Also important for practical computation is that
the overall memory requirement can vary from e to n? matrix entries, depending
on fill-in.

This makes it very difficult to guess a-priori which method will run faster.
Some generalities are that (1) BB is surperior for very large matrices, in particular
when fill-in causes the matrix storage to exceed machine real memory, and that (2)
GSLU is generally superior when e/n is very small, less than 3, say. Experience
with some very large, very sparse matrices, for instance in [7], has lead one of us,
Saunders, to provoke proponents of black box methods with the claim ”When the
matrix fits in real memory throughout the LU computation, elimination beats black
box.” This is certainly not true on a sporadic basis, and this paper gives evidence
that it is systematically not true for some families of matrix.

To start, let us benchmark the situation for dense matrices. Here e = n2.
Due to the non-symmetric projection used in this implementation, 2 matrix-vector
products are computed for each of the 2r s;s, for 4n? ops per s; and 4rn? ops overall.
From an observation of Dumas, it is possible to reduce this by a factor of 2, [7].
In the fully dense case, GSLU takes about (1/3)rn? field ops. Thus we expect the
ratio of BB time over GSLU time for dense matrices to be about 12.

We see in figure 1 that the actual ratio is about 9.5. The deviation from the
predicted 12 is not great and may be explained by the net faster field arithmetic for
dot products versus the element by element arithmetic in row and col operations
during elimination. Thus we expect equal performance for matrices which are about
10% non-zero and in which the elimination method experiences rapid fill-in. The
rest of this paper concerns learning, for matrices more sparse than that, how we
may choose the best algorithm. We remark that the method of choice for dense
matrices is a scheme for using floating point BLAS in an exact way, see [5].

All timings in this paper were taken on a Sun sparc running solaris, specifically

2003/3/1
page
D

10.000

9.750 —

9.500 —

9.250 —

9.000

8.750

Speedup GSLU over BB

8.500

8.250

8.000
100 200 300 400 500 600 700 800 900 1000

random dense matrix order

Figure 1. comparison of black box and GSLU algorithms for dense matrices
a SUN4U/750 Sun-Fire V880 with 32GB main memory, SunOS 5.8.

3 The matrices chosen for experiments

Experimental measurements were done with several families of matrices and a few
sporadic examples, mostly taken from the matrix market. Their properties are
sketched here. Most are 0, 1l-matrices, but a few have a wider range of integers
among the non-zero entries. For example the dense matrices used above had random
entries in [1..100] so that full rank would result.

e The matrix Tref [n] is n X n with the first n primes on the diagonal and 1’s
wherever |i — j| is a power of 2. Tref20000 was the subject of one of Nick
Trefethen’s “Hundred dollar, hundred digit challenge” problems[13], and was
the basis for a study of BB methods for determinant and system solving|[§].

e The TF [n] matrices have the nonzero entres distributed near diagonal and are
of almost full rank. http://www-1mc.imag.fr/Imc-mosaic/Jean-Guillaume.
Dumas/Matrices/Forest

¢ The rnd[n] random with exact order, n, number of non-zero, e, and approx-
imate target rank, . This was done by adding a sum r rank k matrices each
with k2 nonzero entries, for very small k.

e The matrices Besstk29, 855 _mat9, Saylr3, Saylr4, and tols4000 were extracted
from the MCS/NASTRAN or Boeing ATLAS structural engineering programs
by Randy Cigel, Roger Grimes, John Lewis, and Ed Meyer. These are five very
large problems encountered in detailed modeling of structures. http://math.
nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruch/besstruch.html
Although they are numeric, we used their patterns to make 0, 1-matrices for
our study with properties emerging from real applications. The bibd_81_3

2003/3/1
page
D

is the incidence matrix of a balanced incomplete block design. It has 85320
columns, but just a few hundred non-zero rows, a fact not indicated in figure
9. This accounts for the greater success of GSLU over BB on this matrix. .

Figure 9 summarizes their key parameters together with our main group of
timing results. But first we study the field representation issues and then the
algorithm behaviour on some of the families.

Figure 2. Picture of trefethen and TF class matrices

4 Field representation issues

Linbox contains several representations of finite fields, particularly of prime fields
for word sized primes, i.e. primes less than 232. The fastest field arithmetic is
achieved for word sized primes, so such primes are chosen in algorithms on integer
matrices which use computations over modular images, i.e. over a Z/Zp, for some
p. The results are then lifted and/or combined by the Chinese remainder algorithm
to achieve the integer solutions. For multiplication of prime field elements z,y, the
result is generally normalized to r, where r is the remainder in integer division,
zy = ¢gp + r. In this section we compare the performance of three prime field
representations. It is the reduction modulo p, not the multiplication which is the
dominant cost for these representations. The first is that of the NTL package by
Victor Shoup. It’s dominant performance enhancement is a fast modular reduction
using a floating point representation of 1/p with suitable adjustment to achieve an
exact result. In linbox this representation is wrapped in the field class NTL-zz_p.
The second is that of the Givaro package by the Apache group. It’s dominant
performance enhancement is to avoid almost all modular reductions in dot products
by summing products, detecting 32 bit integer overflow, and adjusting when it

2003/3/1
page
D

occurs. For this a prime less than 2! must be used. In linbox this is wrapped in
Givaro-zpz. The third is a Modular<uint32>implemented directly in LinBoxitself.
It uses summation of dot product terms in a 64 bit value with a reduction modulo
the prime only when in danger of overflow. The prime must be less than 232.

The latter two are more effective for the BB algorithms which heavily de-
pend on dot products. The NTL implementation is generally faster for the GSLU
algorithms which are dominated by vector axpy and do not involve long sums of
products.

Figure 3 shows that the NTL field representation performs better than the
Modular field on GSLU. The bar heights are Modular field time over NTL field time
for primes of 3 sizes and for 4 matrices (described more fully later). Greater bar
height represents greater speedup of NTL over Modular. The speedups are slightly
better when the COLAMD preordering is used. This presumably reflects less time
in the preordering stage in which there is no field arithmetic. The tols4000 matrix
has a very fast run time (also shown later) and the preordering stage dominates so
there is little difference due to field arithmetic.

7.000
6.000
5.000 I
o
=
® 4.000 [p=65521, A*A
=3 Il P=65521, COLAMD
n - -
Y 3.000- [P=1048573, A*A
= [[1P=1048573, COLAMD
= Il P=1073741789, A*A
2.000 7 [P=1073741789, COLAMD
1.000 ——
0.000
TF13 Tref500 SaylIr3 tols4000
Matrices

Figure 3. Speedup of NTL field representation over Modular field for
GSLU matriz rank computation with primes of three sizes and with COLAMD
and AT A preordering.

Figure 4 shows that the Givaro representation performs better that the others
when the prime 65521 is used. Since the speedup of Givaro over NTL is greater
than the speedup over Modular, this again shows Modular outperforming NTL for
this small prime. Again the tols4000 matrix provides an exception to the rule. We
don’t have precise explanations for these relative performances but we observe that
several future changes may affect the picture. The GSLU does not yet emphasize the
use of field axpy calls, which can reduce field normalization overhead. The Modular
field may recieve several kinds of tuneups including combining NTL’s wonderful
scheme with the delayed normalization of sums.

Next we look at the BB algorithm where dot products dominate. We consider
5 primes in size from 16 bits to 32 bits. The NTL representation is not sensitive to

2003/3/1
page
D

2.75

25

2.25

S

3 175

3

& 157 B a+a, NTL

o 1.25- — — W A=A M

2

g [JcoLAmD, NTL
5} ! Ccotavp, M

0.75 — —
0.5 — —

0.25 7 | — | —

tols4000 SayIr3 TF13 Tref500
Matrices

Figure 4. GSLU matriz rank computation with two A'A and COLAMD
preordering strateges. Speedup of Givaro field representation over NTL and over M
(Modular) fields, for the prime 65521.

the size of the prime in this range. The points plotted are times divided by the NTL
time thus are speedup relative to the NTL performance. We see that the speedup
is highest for the smallest prime and degrades from there. This is consistent with
being able to take longer sums of terms in dot products before the necessity of
reduction modulo the prime.

2.75 Il‘\‘\/A
2.5

= 65521
+ 1048573

"\ 16777259

A 268435459
> 1073741789
< NTL:zz_p

speedup

0.75

0.5 T T T T
bcsstk33 bcsstk29 bcsstk30 bcsstk31 bcsstk32

Matrices

Figure 5. speedup of Modular field representation relative to NTL field for
black box matrixz rank computation. As modulus increases, performance decreases.

2003/3/1
page
D

5 Matrix representation issues

For the GSLU computation, the matrix is initally stored in “comp col” format in
which an arrays of e non-zero values, e row indices, and n+ 1 indexes which indicate
where the columns begin. The algorithm then modifies the storage scheme for the
final L, and U, using the “SuperMatrix” form for one of them. The storage scheme
is not altered for the implementation over finite fields.

For the BB algorithm, LinBox, provides a couple of basic representations. We
used the ”SparseMatrix” class, wherein a vector of rows is used and each row is a
vector of pairs, a non-zero entry with its col index. For zero-one matrices this may be
simplified. No entry need be stored. We created a format, ZeroOne, which consists
merely of a list of row,col pairs for the one’s. They are stored as a pair of arrays of
length e, one for row index, one for col index. A “comp col” or “comp row” format
could have been used as well, but this wasn’t done. The result is substantially faster
than SparseMatrix, taking about 2/3 of the time. We compared using the fastest
field representation for each case. As shown in figure 5, that turned out to be NTL
for the ZeroOne class and Modular for the SparseMatrix.

N
i
L

zeroone rep. speedup over sparse rep.
PR RRERRRR R

[S N N I T S
TR S A S S

besstk29 bcsstk30 besstk31 bcsstk32 bcsstk33

matrix name

Figure 6. Speedup of ZeroOne/NTL representation over Sparse/Modular
for 32 bit prime.

6 Experimental results

Two sparse families, Tref and TF, showed particularly fast fill-in in GSLU. For
these the crossover between the two methods occurs at order about 500 and 1000
respectively, as shown in figure 7 and figure 8. The number of non-zero entries is
O(logn) for these families.

Similarly, the randomly generated matrices tend to fill-in rapidly and thwart
preordering strategies, so that there again the crossover is low, provided the average
number of non-zero entries per row, e/n, is large enough. Even for small ratio,
eventually there will be show stopping fill-in for elimination methods. We studied
the case of small ratio, e/n = 3 and found the crossover occurring at about n =
10000. For the random matrices with more entries per row than that, and of all
sizes measured the BB performed better. For the one random matrix, rnd6_14,

2003/3/1
page
D

225 o

-

Fe
1.75 - = BB 20 o OCERD

& GSLU -
154 17.5 -

15 o
1.25 4
1255 -

1 -

speedup
speedup

10
0.75 -
7.5 -
0.5

5 -
0.25 1

25

o T T T T T T T T T T
100 200 300 400 500 600 700 800 900 n 1000

1000 5000 10000
matrix order matrix arder

Figure 7. Trefethen’s banded matriz family. Speedup of BB over GSLU.
Crossover is at order 500.

50.000
45.000 +

= BB
40.000 1 * GSsLU
35.000 1

30.000 -

25.000

speedup

20.000
15.000 -
10.000 -

5.000

0.000 # T
107 236 552 1302 3160 7742 19321

matrix order

Figure 8. TF family. Crossover is near order 1000.

with average per row less than 3, GSLU was strikingly better (30 times better).
Indeed this was also evident in the assorted group of matrices. GSLU performed
best on those with e/n <= 3, with two exceptions where it performed within a
factor of two of best.

Given this data we propose the heuristic to choose GSLU when n < 1000 or
e/n < 3, otherwise choose BB. This strategy succeeds rather well with this data.
The choice gives you an algorithm which is fastest or within a factor of two of fastest
except in two cases, £855_mat9 and bcsstk29 which seem to be cases where the
structure was very well used by the column preordering for GSLU and fill-in was
substantially avoided.

In the future we would like to determine if properties of the elimination graph
during preordering or fill-in rates observed in early steps of elimination can be used
to bail out and switch to the black box method. If this can be done early enough,
i.e. well before the time reliably predicted for BB, then a hybrid algorithm may
start out with LU in many more cases than the heuristic suggests (larger order and
larger number of non-zeroes), switching to BB soon enough for an overall efficient
algorithm. For conservation of resources such a scheme would be useful even when
racing the algorithms in parallel is used.

2003/3/1
page
D

Matrices
besstk29
Bibd_81_3
f855_mat9
SaylIr3
TF10
TF11
TF12
TF13
TF14
TF15
TF16
tols4000
Rnd3000
Rnd6000
Rnd12000
Rnd18000
Rnd6_18
Rnd12_36
Rnd18_54
Rnd3_15
Rnd3_30
Rnd3_45
Rnd6_14
Rnd6_30
Rnd6_45
Tref200
Tref300
Tref400
Tref500
Tref600
Tref1000
Tref5000

Tref10000

n

13992

85320

2511

1000

107

236

5562

1302

3160

7742

19321

4000

3000

6000

12000

18000

6000

12000

18000

3000

3000

3000

6000

6000

6000

200

300

400

500

600

1000

5000

10000

nnz

619488

255960

171214

3750

622

1607

4231

11185

29862

80057

216173

8784

9000

18000

36000

54000

18000

36000

54000

15000

30000

45000

14004

30000

45000

2890

4678

6578

8478

10554

18954

118618

257234

Rank
10006
3240
2456
998
99
216
488
1121
2644
6334
15437
3999
2789
5564
11144
16658

2718
2876
2973
5010
5419
5847
200
300
400
500
600
1000
5000

10000

nnz/n
44.27
3
68.19
3.75
5.81
6.81
7.66
8.59
9.45
10.34
11.19

2.2

10
15
2.33
5
7.5
14.45
15.59
16.45
16.96
17.59
18.95
23.72

25.72

t(GSLU)
1164.77

97.82

2.16
25.41
438.49
5495.14
117664
0.04
16.35
139.72
1217.55
415451
0.04
0.07
0.11
180.90
743.69
1409.22
6.50
1502.21
4526.92
0.41
1.48
3.38
5.67
12.12
40.15
7192.09

65698.30

t(BB)
4077.71
3154.60
273.22
27.37
0.12
0.57
3.20
18.92
114.77
723.64
2395.59
410.95
59.79
239.71
1005.38
2288.45
0.70

1.41

75.28
126.46
178.72
192.08
301.54
423.05

0.78

3.49
5.62
8.38
24.14
736.57

3255.86

BB/GSLU
3.50
32.25
39.30
228.05
7.67
4.74
1.48
0.74
0.26
0.13
0.02
10273.65
3.66
1.72
0.83
0.55
18.97
21.32
17.40
0.42
0.17
0.13
29.55
0.20
0.09
1.89
1.24
1.03
0.99
0.69
0.60
0.10

0.05

Matrices
tols4000
SaylIr3
f855_mat9
Bibd_81_3
Rnd6_14
Rnd12_36
Rnd6_18
Rnd18_54
TF10
TF11
Rnd3000
bcsstk29
Tref200
Rnd6000
TF12
Tref300
Tref400
Tref500
Rnd12000
TF13
Tref600
Tref1000
Rnd18000
Rnd3_15
TF14
Rnd6_30
Rnd3_30
TF15
Rnd3_45
Tref5000
Rnd6_45
Tref10000

TF16

4000

1000

2511

85320

6000

12000

6000

18000

107

236

3000

13992

200

6000

5562

300

400

500

12000

1302

600

1000

18000

3000

3160

6000

3000

7742

3000

5000

6000

10000

19321

nnz/n

2.2

44.27

14.45

7.66
15.59
16.45

16.96

17.59

18.95

9.45

10
10.34
15
23.72
7.5
25.72

11.19

BB/GSLU
10273.650
228.050
39.295
32.251
29.547
21.318
18.973
17.402
7.667
4.744
3.657
3.501
1.895
1.716
1.484
1.241
1.031
0.990
0.826
0.744
0.692
0.601
0.551
0.416
0.262
0.201
0.170
0.132
0.127
0.102
0.093
0.050

0.020

Figure 9. a table organized by matrixz family and o table sorted by perfor-

mance ratio: BB time over GSLU time. Less than 1 means BB better, greater than
one means GSLU better.

2003/3/1
page

BRo

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

Bibliography

L. CHEN, W. EBERLY, E. KALTOFEN, W. J. TURNER, B. D. SAUNDERS,
G. VILLARD, Efficient Matriz Preconditioners for Black Box Linear Algebra,
LAA 343-344, 2002, pp. 119-146.

T. A. Davis, J. R. GILBERT, S. I. LARIMORE, AND E. NG, A column ap-
proximate minimum degree ordering algorithm, Technical Report, CISCE, Uni-
versity of Florida. Oct. 2000.

J. W. DEMMEL, J. R. GILBERT AND X. S. LI, SuperLU User’s Guide
download: http://www.nersc.gov/ xiaoye/SuperLU/

DumaAs, GAUTIER, GIESBRECHT, GIORGI, HOVINEN, KALTOFEN, SAUNDERS,
TURNER, AND VILLARD, Linbox: A Generic Library for Ezact Linear Algebra,
ICMS 2002, the International Congress of Mathematical Software, 2002, World
Scientific, to appear.

J-G. Dumas, T. GAUTIER, AND C. PERNET, Finite Field Linear Algebra
Subroutines, In Proc. 2002 Internat. Symp. Symbolic Algebraic Comput. (IS-
SAC’02), ACM Press, pp. 63-74.

J-G. DumMas, G. VILLARD, Computing the rank of large sparse matrices over
finite fields, CASC’2002 : Computer Algebra in Scientific Computing.

J-G. Dumas, B. D. SAUNDERS, AND G. VILLARD, Integer Smith Form via
the Valence: FExperience with Large Sparse Matrices from Homology, In Proc.
2000 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’00), ACM Press,
pp- 95-105.

J-G. Duwmas, W. TURNER, AND Z. WAN, Ezact solu-
tion to large sparse integer linear systems, ECCAD 2002,
http://www.cis.udel.edu/"wan/publication/eccad2002_abstract.ps

A. DURAN AND D. SAUNDERS, GenBLAS: Basic Lin-
ear Algebra Subroutines mn C++ over Any Fields,
http://www.cis.udel.edu/~duran/GenBLAS.pdf, (GenBLAS version 1
download: http://www.cis.udel.edu/"duran/GenBLAS.tar.gz).

2003/3/1
page
D

[10] W. EBERLY AND E. KALTOFEN, On randomized Lanczos algorithms, In Proc.
1997 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’97), pp. 176-183.

[11] J. W. H. LIU, Modification of the minimum-degree algorithm by multiple elim-
ination. ACM Trans. Math. Software, 1:141-153, 1985.

[12] D. SAUNDERS, A. STORJOHANN, AND G. VILLARD, Matrix Rank Certifica-
tion, ELA accepted, 2001.

[13] L. TREFETHEN The Hundred Dollar, Hundred Digit Challenge, STAM News,
15, No. 6, July/August 2002.

[14] D. WIEDEMANN, Solving sparse linear equations over finite fields, IEEE Transf.
Inform. Theory , IT-32:54-62, 1986.

2003/3/1
page
D

