Comment on the gas constant

One of the annoying things about converting between cgs and SI units is that you must be especially careful whenever using a formula involving the gas constant,

$$
\begin{equation*}
\mathcal{R}=8.3143 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \text { or } \quad 8.3143 \times 10^{7} \mathrm{erg} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

As an example, let us look at the ideal gas law (or perfect gas law),

$$
\begin{equation*}
P=n k T=\frac{\rho}{\mu m_{u}} k T \tag{2}
\end{equation*}
$$

where P is the pressure, T the temperature, n the number density of particles, ρ the mass density, μ the mean molecular weight and $m_{u}=1.66 \times 10^{-27} \mathrm{~kg}$ the atomic mass unit. The gas constant \mathcal{R} is related to the Boltzmann constant k by

$$
\begin{equation*}
\mathcal{R}=k N_{A} \tag{3}
\end{equation*}
$$

where $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ is Avogadro's number. The ideal gas law then becomes

$$
\begin{equation*}
P=\frac{\mathcal{R}}{\mu m_{u} N_{A}} \rho T \tag{4}
\end{equation*}
$$

Both Eqs. 2 and 4 are valid regardless of whether you use cgs or SI units. In terms of dimensions, if m_{u} is regarded as a mass, then μ is dimensionless.

One important point is that $m_{u} N_{A}=1\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$, but only in cgs units. This is because 1 mole is defined in terms of grams and not kilograms. Thus many books write the ideal gas law as

$$
\begin{equation*}
P=\frac{\mathcal{R}}{\mu} \rho T \quad[\operatorname{cgs}] \tag{5}
\end{equation*}
$$

Please note: omitting the factor $m_{u} N_{A}$ means that μ is no longer dimensionless but now has the units of $\mathrm{g} \mathrm{mol}^{-1}$. This could lead to problems if you use SI units but still assume that μ is dimensionless, because then there will be this missing factor of $m_{u} N_{A}=0.001 \mathrm{~kg} \mathrm{~mol}^{-1}$. For example, if you plug in the correct SI values for ρ and \mathcal{R} into Eq. 5 but take the mean molecular weight μ of an element equal to its atomic weight \mathcal{A}, then your numerical result will be 1000 times too small.

The course textbook states the gas constant not as $\mathcal{R}=k N_{A}$ but as $\mathcal{R}=k / m_{u}$, again assuming that $m_{u} N_{A}=1$. This gives the gas constant in terms of kilograms rather than moles (i.e., $\mathcal{R}=8.3143 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$), which yields the correct numerical result in cases like Eq. 5. Personally, I find the resulting units somewhat inconsistent, e.g., the atomic mass unit $m_{u}=1 / N_{A}=1.66 \times 10^{-24} \mathrm{~mol}^{-1}$ is in inverse moles rather than in (kilo)grams.

Of course there may be a simpler way to understand the hassle with the units, and if so, please tell me about it! In the meantime, my advice is: if you want to avoid cgs units, stick with the Boltzmann constant k rather than the gas constant \mathcal{R}.

