Introduction to Scientific & Engineering Computing

BIL 106E (Fortran) Week 8
Improved Building Blocks

(Recursive procedures, passing procedures as arguments, Derived data types, Controlling access to entities within a module, Host association within a module)

Dr. Turgut Yılmaz

Istanbul Technical University

Faculty of Mechanical Engineering

Gümüşsuyu, Istanbul, Turkey

Room: 244

e-mail: turgut.yilmaz@itu.edu.tr
www.mkn.itu.edu.tr/~yilmaztur
8. IMPROVED BUILDING BLOCKS

Procedures and modules were first introduced in Chapter 4 (week 4) as the fundamental building blocks in F programming. This chapter introduces several important extensions.

Recursion is an important mathematical concept, and both function and subroutines may be declared to be recursive order to allow their use in appropriate recursive algorithms. Both recursive and non-recursive procedures in order to provide still more flexibility to a program.

8.1 Recursive procedures
Since the concept is easier to understand, the recursive procedures shall be examined with

functions, and then it will be extended to subroutines.

If a function is called recursively, either directly or indirectly, then the word recursive must be added before function in the initial statement:

recursive function rcsv_fnctn_name(...) result(result)

The calculation of factorials, which is a recursive algorithm, will be illustrated.

Example: Write a function to calculate n!.

Analysis: The factorial n is written by mathematicians as n! and is defined as follows:

0! = 1, and n! = n × (n-1) × (n-2) × ... × 2 × 1 for n.1

Another, recursive, way of expressing this is:

for n = 0 => n! = 1

for n (1 => n! = n × (n-1)!

It is noted that n must be not less than zero, and it should be taken appropriate steps in the function to deal with the situation in which it is called with an illegal value for n.

[image: image1.png]Case on n

ctorial n = 1

torial n =

Error - retur

Structure Plan

[image: image2.png]program example 8_1_2

recursive function factorial(n) result(factorial n)
ument and result variable
tent

recursion is

irs

has
torial n = 1.0
case

fac

more recursive
factorial n =
ault

n is negati

“ase

end function factorial

The recursion will continue until the function is called with “n” equal to zero, at which no recursive calls will be made. The program would be written using select case statement:

A recursive subroutine operates in much the same way, and it is specified by including the word recursive before subroutine in the initial statement of the subroutine:

[image: image3.png]end program example 8 1 _2

recursive subroutine factorial(n, factorial n)

is require

error indic

end select

end subroutine factorial

8.2 Passing procedures as arguments

It is possible to have a procedure as a dummy argument, in which case the dummy argument is called a dummy procedure. However, the declaration of a dummy procedure takes a quite different form from that of any other type of dummy argument. The purpose of the declaration is to provide information about the procedure’s interface in contrast to a dummy variable where only the type and certain other attributes (real, integer, character or logical) are required.
The declaration of dummy procedure takes the form of an interface block of the form:

interface

interface_body

end interface
where the syntax of the interface_body is the same as that of a procedure, but without any declarations of local variables and without any executable statements.

For example, the interface block for a function, which takes two real arguments and delivers a real result might be
interface

function dummy_fun(a,b) result(r)

real, intent(in) :: a, b

real :: r

end function dummy_fun

end interface
If there are several dummy procedures then all the interface bodies may be included in a single interface block:
interface

subroutine one_arg(x)

real, intent(inout) :: x

end subroutine one_arg

recursive subroutine two_args(x,y)

real, intent(inout) :: x, y

end subroutine two_args

end interface
The interface of the actual procedure argument corresponding to a dummy procedure must agree with that of the dummy procedure except that its name. The name of any dummy arguments or result variable may be different.
Example: Write a program which uses a procedure to print the values of a function for a sequence of values between two specified limits, and test the procedure with the following functions and values of x:

1. x3 – 3x2 – 4x + 12 = 0

2. 2ex – e-x = 0

3. sin(2x) – 2cos(x) = 0
Analysis: This program requires a module containing the three functions, a second module containing the print procedure, and a main program to set things going. It will be proceeded directly to the solution, using two modules.
i. First module: It contains the definitions of three functions.

[image: image4.png]module functions
public :: fI,
contains

function
real, int
real :

fx = x*%3 < 3.0-x*x -

end function

x) result (£
t(in) :: x

function
real, int
real ::

fx = 2.0%exp
end function

function £3
real, intent(in)
real :: £

£x = sin(2.0%x) - 2.0%cos (x

end function £3

end module functions

ii. [image: image5.png]Module geometry

r points a

2) result (distinct)
~oordinates or

s(pl,p

ts(pl,p2) result(
return the coefficients

Second module: It contains the print and interface procedures.

[image: image6.png]module use_functions
public :: Iist_func
contains
subroutine list_function (f,x1,x2,xinc)
' dummy arguments

interface

func
real, intent (in
real :: f
end function
end inter
real

ion

ion £(x) resu

intent

local

do
print *,"x=",x, "£(x)=", £ (x)
: = x + xinc

< > x2) then

do
subroutine list_function
module use functions

8.3 Creation of special data types
F includes the capability for programmers to create their own data types to supplement the five intrinsic types, which are integer, real, character, logical and complex. Since these data types must be derived from the intrinsic data types they are called derived types.
A derived data is defined by a special sequence of statements, which in their simplest form are as follows:

type, public:: new_type

component_definition

. . .

end type new_type
There may be as many component definitions as required, and each takes the same form as a variable declaration. Unlike the declaration of variables, however, derived type definitions may only appear in a module. It gains an access to the new data type with a public attribute. It is also permissible to declare derived types to be private, but then the

type is only available within the module.

As an example a new data type called person, which would contain all information, could be defined as:

type, public:: person

character (len=12) :: first_name

character (len=1) :: middle_initial

character (len=12) :: last_name

integer :: age
character (len=1) :: sex ! Male or Female

character (len=11) :: social_security

end type person
Once a new type has been defined the variables may be declared in a similar way to that used for intrinsic types:

type(person) :: jack, jill

Such declarations will need access to the type a definition, which is why such definitions must always be placed in a module.

A constant value of a derived type is written as a sequence of constants corresponding to the components of the derived type, enclosed in parentheses and preceded by the type name:
jack = person(“Jack”,”R”,”Hagenbach”,47,”M”,”123-45-6789”

jill = person(“Jill”,”M”,”Smith”,39,”F”,”987-45-6789”

This form of defining a constant value for derived type is called a structure constructor.

In a similar fashion, a read statement will expect a sequence of data values which matches the components in both type and order, while a print statement will output the value of a derived type variable as a sequence of its components part.
A component of a derived type variable is referred directly by following the name of variable by a percentage sign and the name of the component.
The following statement changes the last name of Jill to that of Jack, for example if she had married with Jack.
jill%last_name = Jack%Last_name

A derived type can be used in the definition of another derived type:

type, public:: employee

type(person) :: employee

character (len=20) :: department

real :: salary

end type employee
The same notation using a % character is used to obtain a component of a component of a derived data type. Thus, if Pat is a variable of type employee whose sex had been incorrectly coded, it could be changed by a statement of the form:

Pat%employee%sex = “F”

It may be written

staff(i) = Pat

where staff is an array of type employee and Pat is a variable of the same type. In this case the assignment takes place component by component exactly as if a series of separate assignment statement for each component had been written had:

staff(i)%employee%first_name = Pat%employee%first_name

staff(i)%employee% middle_initial = Pat%employee% middle_initial

. . .

staff(i)%salary = Pat%salary
In general this is what is required.

However, operations between two objects of the same derived type are more difficult because although it would be meaningful to write

Pat%salary - Tom%salary

to establish the difference between the salaries of Pat and Tom, since both are real values, the expression

Pat%department - Tom%department

is meaningless because both components are character strings. It is not possible, therefore, to write expressions such as
Pat – Tom

where Pat and Tom are of derived type.
Example: Define two data types, one to represent a point by means of its coordinates (in two-dimensional space only) and the other to represent a line (also in two-dimensional space) by the coefficients of its defining equation. Write a program which reads the coordinates of two points and which then calculates the line joining them, printing the

equation of the line.

Analysis: First the two derived types – point and line must be established. The point consists of two real components, representing the x and y coordinates, respectively.

A straight line is defined by an equation of the form ax + by + c = 0. From simple analytical geometry knowledge, the coefficients can be defined with

a = y2 – y1 ; b = x1 – x2 ; c = y1x2 – y2x1
where (x1, y1) and (x2, y2) are the two coordinate points on the line.

The structure plan would be:

[image: image7.png]program geometry example

Solution: The module and program would be:

8.4 Controlling access to entities within a module

Derived types provide good programming practice to group related variables together in a derived type definition in a module in order that the type may then be easily used throughout a program. The access control within a module can be supplied by using private attribute. This restricts the use of the derived component outside the module.
type, public :: velocity

private

real :: u, v, w

end type velocity

The privacy only applies outside the module in which the type definition appears. Within the module, including all its module procedures, the components are fully accessible.

The principle of data hiding or, more generally, of only allowing access to a restricted set of the entities in a module is extremely important for secure programming.

8.5 Host association within a module

Host association creates potential for complications if a module procedure has a local variable of the same name as one of the entities declared in the first part of the host module.

module first

real, public :: z

end module first

module second

public :: inner

real, parameter, public ::pi=3.141, e=2.718

real, public :: x,y,z

contains

subroutine inner(x)

use first

real intent(inout) ::x

real :: y

.

.

end subroutine inner

end module second

In this example, constants pi and e which are declared in the first part of module second are available in subroutine inner, but none of the module variables x, y or z are available due to the existence of a dummy argument called x, a local variable called y and a variable z available by use association from the module first.

module geometry

public :: distinct_points,line_from_points

! type definitions

type, public :: point

! cartesian coordinates of the point

real :: x,y

end type point

type, public :: line

! coefficients of defining equation

real :: a,b,c

end type line

! constant declaration

real, parameter, public :: small = 1.0e-5

contains

function distinct_points(p1,p2) result(distinct)

! returns true if the two points supplied as arguments

! are not efficiently coincident

! dummy arguments and result variable declaration

type(point), intent(in) :: p1,p2

logical :: distinct

! set result true if either pair of corresponding

! coordinates are different

distinct = abs(p1%x-p2%x)>small .or. abs(p1%yp2%y)>small

end function distinct_points

function line_from_points(p1,p2) result(join_line)

! returns the line joining the two points supplied as

! arguments

! dummy arguments and result variable declaration

type(point), intent(in) ::p1,p2

type(line) :: join_line

! calculate coefficients of line

join_line%a = p2%y - p1%y

join_line%b = p1%x - p2%x

join_line%c = p1%y*p2%x - p2%y*p1%x

end function line_from_points

end module geometry

program geometry_example

! A program to use derived types for two-dimensional

! geometric calculations

use geometry

! contains point and line type definitions

! constant small definition and functions

! distinct_points and line_from_points

! variable and constants declarations

type(point) :: p1,p2

type(line) :: p1_to_p2

! read data

print *, "enter coordinates of first point (x,y)"

read *, p1

print *, "enter coordinates of second point(x,y)"

read *, p2

! test for coincident points

if (distinct_points(p1,p2)) then

! calculate coefficients of equation representing the

! line

p1_to_p2 = line_from_points(p1,p2)

! print result

print *,"the equation of the line joining these two"

print *,"points is ax + by + c = 0"

print *,"where a =",p1_to_p2%a

print *," b =",p1_to_p2%b

print *," c =",p1_to_p2%c

else

print *,"error: the two points supplied

c are coincident!"

end if

end program geometry_example

program test_functions

use functions

use use_functions

real, parameter :: pi=3.1415927, twopi=2.0*pi,

piby4=0.25*pi

print *,"f(x) = x**3 - 3.0*x*x - 4.0*x + 12"

call list_function(f1, -4.0, 4.0, 0.5)

print *,"f(x) = 2.0*exp(x) - exp(-x)"

call list_function(f2, -10.0, 10.0, 1.0)

print *,"f(x) = sin(2.0*x) - 2.0*cos(x)"

call list_function(f3, -twopi, twopi, piby4)

end program test_functions

1
1
Dr. T. YILMAZ BIL106E

