Introduction to Scientific & Engineering Computing

BIL 106E (Fortran) Week 6
Repetitive Execution

(do constructs)

Dr. Turgut Yılmaz

Istanbul Technical University

Faculty of Mechanical Engineering

Gümüşsuyu, Istanbul, Turkey

Room: 244

e-mail: turgut.yilmaz@itu.edu.tr
www.mkn.itu.edu.tr/~yilmaztur
6. REPEATING PARTS OF A PROGRAM
A very large proportion of mathematical techniques rely on some form of iterative process, while the processing of most types of data requires the same, or similar actions to be carried out repeatedly for each set of data. One of the most important of all programming concepts, therefore, is the ability to repeat sequences of statements either a predetermined number of times or until some condition is satisfied.

6.1 Program repetition and the do construct

[image: image1.png]

The repetition of a block of statements a number of times is called a loop. It is called a do construct and takes one of the following forms:
[image: image2.png]

or

[image: image3.png]

or simply

A loop created by use of a do construct is called a do loop.

6.2 Count-controlled do loops

[image: image4.png]

The first statement of a do loop is called a do statement.

The first two alternatives define a count-controlled do loop, in which an integer variable known as the do variable, is used to determine how many times the block of statements which appears between the do statement and the end do is to be executed. The third alternative shall be discussed later.
The meaning of the second alternative, in which inc is absent, is that the loop is executed for count taking the value initial the first time and the loop is executed with initial+1 for next time, and so on, until it takes the value final on the last pass through the loop.
In a similar manner, the meaning of the first form is that the loop is executed for count taking the value initial the first time, and the loop is executed, initial+inc the next time and so on, until the value of count is greater than final.
The formal definition of this process is that when the do statement is executed an iteration count is first calculated using the formula,
max((final-initial+inc)/inc,0)

[image: image5.png]

At the beginning of the execution the value of count is initial, and on each subsequent pass its value is increased by inc. If inc is absent then its value is taken as 1. The effect of the max function is that if final<initial then the loop will not be executed at all.
The do variables count, initial and final must be a scalar integer (Fortran Power Station User’s can use the variables as real also). Because of its special role the do variables between the initial do statement and the corresponding end do statement can not be altered while the do loop is under processing.

It must always be remembered that once the loop has been completed the value count will be final+inc.
Example: Write a program which first reads the number of people taking an exam. It should then read their marks (or scores) and print the highest and lowest marks, followed by the average mark for the class.
Analysis: In this problem, it will be used a do loop to repeatedly read a mark and use it to update the sum of all the marks, the maximum mark so far, and the minimum mark so far. The initial value of the cumulative sum obviously starts zero. The maximum and minimum marks are both set to the first value (first mark or score) of the do loop by using an if construct, which obviously works for only the first loop (i=1 case).

Solution: An F program is

program examination_marks

! This program prints statistics about a set of exam results

! variable declerations

integer :: i,number,mark,maximum,minimum,total

real :: average

! initialize variable

total = 0

! read number of marks , and then the marks

print *,"how many marks are there"

read *,number

print *," please type ",number," marks, one per line"

! Loop to read and process marks

do i = 1 , number

read *, mark

! initialize max. and min. marks for only the first loop.

if (i==1) then

! this if construct is executed for the case only i=1.

maximum = mark

minimum = mark

end if

! on each pass ,update sum, maximum and minimum

total = total + mark

if (mark > maximum)then

maximum = mark

else if (mark < minimum)then

minimum = mark

end if

end do

! calculate average mark and print out results

average = real(total) / number

print *,"highest mark is",maximum

print *,"lowest mark is",minimum

print *,"average mark is",average

end program examination_marks

The intrinsic function real(), which converts an integer to its real equivalent, had to be used because of the integer division risk since both total and number are integer the expression.

6.3 More flexible loops

The third form of the do statement mentioned in Section 6.1, together with a statement, exit, which causes a transfer control to the statement immediately following the end do statement. When executed all the remaining statements in the loop are omitted and it is always used in association with one of the control statements (if constructs).
For example, the following loop will continue to be executed until the value of term becomes less than the value small:

[image: image6.png]do statement

Iteration,

do variable values

count
G0 110 10 6.789.10
4020505 7 35404550
dop=7.194] 19
doq—456 1

dor6.5.4 0 G}

dox=-20206 3 20-14-8-24.10.16
don-250-5 3 20151050
do m=20.20-6 7 148241016

In the above example, this form of do statement does incur the risk that the condition for obeying the exit statement may never occur. In that situation the loop will continue executing until the program is terminated by some external means such as exceeding a time limit or switching off the computer. In order to avoid this situation a fail-safe mechanism in which a do variable is used to limit the number of repetitions a predefined maximum, should be used. Therefore the simple example given above should be designed with such a mechanism:
[image: image7.png]if

exit

mall)

th

i

o

ue

6.4 Giving names to do constructs

It is possible to give a name to do construct by preceding the do statement by a name, which follows the normal F rules for names and is separated from the do by a colon, and by following the corresponding end do by the same name.

[image: image8.png]

do count=1,max_iterations

.

.

if (term < small) then

exit

end if

. .

end do

! After obeying the exit statement, or after obeying

! the loop max_iterations times, execution continues

! from the next statement (that is, after this comment)

.

.

� EMBED Word.Picture.8 ���

1
6
Dr. T. YILMAZ BIL106E

_1128330887.doc
[image: image1.png]

