Circuit and System Analysis

 EEF 232EProf. Dr. Müștak E. Yalçın

Istanbul Technical University
 Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Outline I

(1) Circuit Analysis in the s-domain

- Circuit elements in the s-domain
- Mesh currents method
- Node-voltage Method
- Network Parameters
- Combinations of two-port networks
- Reciprocal Network
- Thevenin - Norton Equivalent Circuits

Circuit elements in the s-domain

s-domain equivalent circuit for each circuit element

A resistor in the s-domain

In time-domain

$$
v=R i
$$

s-domain equivalent circuit for the resistor

$$
V(s)=R I(s)
$$

where $V(s)=\mathcal{L}\{v\}$ and $I(s)=\mathcal{L}\{i\}$.
A Capacitor in the s-domain:
Terminal current in time-domain

$$
i=C \frac{d v}{d t}
$$

Laplace transform the above equ.

$$
I(s)=C s V(s)-C v(0)
$$

or

$$
V(s)=\frac{1}{C s} I+\frac{1}{s} v(0)
$$

Norton and Thevenin equivalents of a capacitor in the s-domain

An inductor in the s-domain:

In time-domain

$$
L \frac{d i}{d t}=v
$$

After Laplace transform

$$
L s I(s)-L i(0)=V \text { or } I(s)=\frac{1}{L s} V+\frac{1}{s} i(0)
$$

Equivalent circuits for the inductor

Energy is stored in the inductor and capacitor

The s-domain impedance and admintance

If no energy is stored in the inductor or capacitor, the relationship between the terminal voltage and current for each passive element takes the form:

$$
V(s)=Z(s) I(s)
$$

or

$$
I(s)=Y(s) V(s)
$$

$Z(s)$ is impedance and $Y(s)$ is admintance function.
Resistor has an impedance of $R \Omega$, an inductor has an impedance of $L s \Omega$, and a capacitor has an impedance of $1 / \mathrm{sC} \Omega$

KCL and KVL in s-domain

The algebraic sum of the currents/voltages at the node/loop is zero in time domain, the algebraic sum of the transformed currents/voltages is also zero.

Mesh currents method

Write mesh equations

$$
B V(s)=0
$$

Laplace transform of the equ.

$$
B V(s)=B_{1} V_{e}(s)+B_{2} V_{k}(s)=0
$$

where $V_{k}(s)$ and $V_{e}(s)=\left[V_{R}(s) V_{C}(s) V_{L}(s)\right]^{T}$ voltages of independent voltage sources and the others, respectively. The terminal equ.s

$$
V_{e}(s)=\mathbf{Z}(\mathbf{s}) I_{e}(s)+\left[\begin{array}{ccc}
0_{n_{R} \times n_{R}} & 0 & 0 \\
0 & \frac{1}{s} I_{n_{C} \times n_{C}} & 0 \\
0 & 0 & -\mathbf{L}_{n_{L} \times n_{L}}
\end{array}\right]\left[\begin{array}{c}
i_{R} \\
v_{C}(0) \\
i_{L}(0)
\end{array}\right]
$$

Substituting the above equ. into the mesh equ.

$$
B_{1} Z I_{e}+B_{1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{s} I & 0 \\
0 & 0 & -L I
\end{array}\right]\left[\begin{array}{c}
i_{R} \\
v_{C}(0) \\
i_{L}(0)
\end{array}\right]+B_{2} V_{k}=0
$$

Hence the mesh currents is obtained

$$
B_{1} Z B_{1}^{T} I_{c}(s)+B_{1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{s} I & 0 \\
0 & 0 & -L I
\end{array}\right]\left[\begin{array}{c}
i_{R} \\
v_{C}(0) \\
i_{L}(0)
\end{array}\right]+B_{2} V_{k}=0
$$

Example

Example

$$
\begin{array}{ll}
\text { M1 } & L_{3} s I_{c 1}-L_{3} i_{L 3}(0)+\left(\frac{1}{C_{s}}+R\right)\left(I_{c 1}-I_{c 2}\right)+\frac{1}{s} v_{C}(0)-V_{G}=0 \\
M 2 & L_{4} s I_{c 2}-L_{4} i_{L 4}(0)+R_{2} I_{c 2}+\left(\frac{1}{C s}+R\right)\left(I_{c 2}-I_{c 1}\right)-\frac{1}{s} v_{C}(0)=0
\end{array}
$$

In matrix form

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{cc}
L_{3} s & -\frac{1}{C_{s}}-R_{1} \\
-\frac{1}{C_{s}}-R_{1} & L_{4} s+R_{2}
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{c}
I_{c 1} \\
I_{c 2}
\end{array}\right]=\left[\begin{array}{c}
V_{G} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
-\frac{1}{s} & L_{3} & 0 \\
\frac{1}{s} & 0 & L_{4}
\end{array}\right]\left[\begin{array}{l}
v_{C}(0) \\
i_{L 3}(0) \\
i_{L 4}(0)
\end{array}\right] \\
& {\left[\begin{array}{l}
I_{c 1} \\
I_{c 2}
\end{array}\right]=\underbrace{A^{-1}\left[\begin{array}{c}
V_{G} \\
0
\end{array}\right]}_{\text {zero-state response }}+\underbrace{A^{-1}\left[\begin{array}{ccc}
-\frac{1}{s} & L_{3} & 0 \\
\frac{1}{s} & 0 & L_{4}
\end{array}\right]\left[\begin{array}{l}
v_{C}(0) \\
i_{L 3}(0) \\
i_{L 4}(0)
\end{array}\right]}_{\text {zero-input response }}}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \uparrow \mathrm{I}_{1} \\
& {\left[\begin{array}{ccccc}
R_{2} & -R_{2} & 0 & 0 & 0 \\
-R_{2} & R_{2}+\frac{1}{C_{5 S} s} & -\frac{1}{C_{5 S}} & 0 & 0 \\
0 & -\frac{1}{C_{55}} & \frac{1}{C_{5 S}}+L_{6} S & 0 & -L_{6} S \\
0 & 0 & 0 & R_{3} & 0 \\
0 & 0 & 0 & -L_{6} S & L_{6} S
\end{array}\right]\left[\begin{array}{c}
I_{c 1} \\
I_{c 2} \\
I_{c 3} \\
I_{c 4} \\
I_{c 5}
\end{array}\right]} \\
& =\left[\begin{array}{c}
-V_{1} \\
0 \\
-V_{4} \\
V_{4} \\
-V_{7}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
-1 / s & 0 \\
1 / s & L_{6} \\
0 & 0 \\
0 & L_{6}
\end{array}\right]\left[\begin{array}{c}
v_{C}(0) \\
i_{L}(0)
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
I_{1}=I_{c 1} \\
I_{4}=2 V_{2} \\
I_{c 3}-I_{c 4}=-2 V_{1} \\
{\left[\begin{array}{cccccc}
R_{2} & -R_{2} & 0 & 0 & 0 & 1 \\
-R_{2} & R_{2}+\frac{1}{C_{5} s} & -\frac{1}{C_{5} s} & 0 & 0 & 0 \\
0 & -\frac{1}{C_{5} s} & \frac{1}{C_{5} s}+L_{6} s & 0 & -L_{6} s & 0 \\
0 & 0 & 0 & R_{3} & 0 & 0 \\
0 & 0 & -L_{6} s & 0 & L_{6} s & 0 \\
0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 2 \\
0
\end{array}\right]\left[\begin{array}{c}
I_{c 1} \\
I_{c 2} \\
I_{c 3} \\
I_{c 4} \\
I_{c 5} \\
V_{1} \\
V_{4}
\end{array}\right]} \\
\\
\end{gathered}
$$

Node-voltage Method

Write the fundamental cut-set equations for the nodes which do not correspond to node of a voltage sources:

$$
\begin{gathered}
A I(s)=0 \\
A_{1} I_{e}(s)+A_{2} I_{k}(s)=0
\end{gathered}
$$

where $I_{k}(s)$ currents of current sources and the currents of others $I_{e}=\left[\begin{array}{lll}I_{R} & I_{C} & I_{L}\end{array}\right]$

$$
I_{e}=\mathbf{Y}(\mathbf{s}) V_{e}+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\mathbf{C} & 0 \\
0 & 0 & \frac{1}{s} I
\end{array}\right]\left[\begin{array}{c}
V_{R} \\
v_{C}(0) \\
i_{L}(0)
\end{array}\right]
$$

Substituting

$$
A_{1} \mathbf{Y}(\mathbf{s}) V_{e}+A_{1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\mathbf{C} & 0 \\
0 & 0 & \frac{1}{s} I
\end{array}\right]\left[\begin{array}{c}
V_{R} \\
v_{C}(0) \\
i_{L}(0)
\end{array}\right]+A_{2} i_{k}=0
$$

Using $V_{e}=A_{1}^{T} V_{d}$, we obtain the node voltage

$$
A_{1} \mathbf{Y}(\mathbf{s}) A_{1}^{T} V_{d}+A_{1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\mathbf{C} & 0 \\
0 & 0 & \frac{1}{s} I
\end{array}\right]\left[\begin{array}{c}
V_{R} \\
v_{C}(0) \\
i_{L}(0)
\end{array}\right]+A_{2} i_{k}=0
$$

See :EHB211 E

Example

Example

$$
\begin{array}{r}
{\left[\begin{array}{cc}
G_{1}+C_{3} s+\frac{1}{L_{3} s} & -C_{3} s-\frac{1}{L_{3} s} \\
-C_{3} s-\frac{1}{L_{3} s} & G_{2}+C_{3} s+\frac{1}{L_{3} s}
\end{array}\right]\left[\begin{array}{c}
V_{d 1} \\
V_{d 2}
\end{array}\right]=\left[\begin{array}{c}
I_{5} \\
0
\end{array}\right]} \\
+\left[\begin{array}{cc}
C_{3} & -\frac{1}{s} \\
-C_{3} & \frac{1}{s}
\end{array}\right]\left[\begin{array}{c}
V_{3}(0) \\
i_{4}(0)
\end{array}\right]
\end{array}
$$

Example

$$
\begin{gathered}
V_{7}=V_{d 1} \\
I_{4}=2 V_{2}=2 V_{d 1} \\
{\left[\begin{array}{c}
V_{d 1} \\
V_{d 2} \\
I_{7}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
G_{2}+2+G_{3}+C_{5} s \\
-G_{3}-2 & -G_{3} & 0 \\
1 & G_{3}+\frac{1}{L_{6} s} & 1 \\
0
\end{array}\right]^{-1}\left[\begin{array}{c}
I_{1} \\
0 \\
V_{7}
\end{array}\right]}_{\text {zero-state response }}} \\
+\underbrace{\left[\begin{array}{ccc}
G_{2}+2+G_{3}+C_{5} s \\
-G_{3}-2 \\
1 & G_{3}+\frac{1}{L_{6} s} & 0 \\
0
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 / s & 0 \\
0 & -L_{6} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{5}(0) \\
i_{6}(0)
\end{array}\right]}_{\text {zero-input response }}
\end{gathered}
$$

Network Parameters

Impedance matrix (z-parameter) The two currents I_{1} and I_{2} are assumed to be known, and the voltages V_{1} and V_{2} can be found by:

$$
\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
l_{1}(s) \\
l_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
z_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{I_{2}=0} & z_{12}=\left.\frac{V_{1}(s)}{I_{2}(s)}\right|_{I_{1}=0} \\
z_{21}=\left.\frac{V_{2}(s)}{I_{1}(s)}\right|_{I_{2}=0} & z_{22}=\left.\frac{V_{2}(s)}{I_{2}(s)}\right|_{I_{1}=0}
\end{array}
$$

Network Parameters

Admittance matrix (y-parameters) The two voltages V_{1} and V_{2} are assumed to be known, and the currents I_{1} and I_{2} can be found by:

$$
\left[\begin{array}{l}
l_{1}(s) \\
l_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
y_{11}=\left.\frac{l_{1}(s)}{V_{1}(s)}\right|_{V_{2}=0} & y_{12}=\left.\frac{l_{1}(s)}{V_{2}(s)}\right|_{V_{1}=0} \\
y_{21}=\left.\frac{l_{2}(s)}{V_{1}(s)}\right|_{V_{2}=0} & y_{22}=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{V_{1}=0}
\end{array}
$$

y_{21} and y_{12} are transfer admittances

g-parameters

Inverse hybrid model, we assume V_{1} and I_{2} are known, and find V_{2} and I_{1} by :

$$
\left[\begin{array}{c}
I_{1}(s) \\
V_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1}(s) \\
I_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{rr}
g_{11}=\left.\frac{l_{1}(s)}{V_{1}(s)}\right|_{l_{2}=0} & g_{12}=\left.\frac{l_{1}(s)}{l_{2}(s)}\right|_{V_{1}=0} \\
g_{21}=\left.\frac{V_{2}(s)}{V_{1}(s)}\right|_{l_{2}=0} & g_{22}=\left.\frac{V_{2}(s)}{l_{2}(s)}\right|_{V_{1}=0}
\end{array}
$$

h-parameters

Hybrid model, we assume V_{2} and I_{1} are known, and find V_{1} and I_{2} by:

$$
\left[\begin{array}{l}
V_{1}(s) \\
l_{2}(s)
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
l_{1}(s) \\
V_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
h_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{V_{2}=0} & h_{12}=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{\iota_{1}=0} \\
h_{21}=\left.\frac{l_{2}(s)}{I_{1}(s)}\right|_{V_{2}=0} & h_{22}=\left.\frac{I_{2}(s)}{V_{2}(s)}\right|_{\iota_{1}=0}
\end{array}
$$

ABCD-parameters

Transmission model, we assume V_{1} and I_{1} are known, and find V_{2} and I_{2} by:

$$
\left[\begin{array}{c}
V_{1}(s) \\
I_{1}(s)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
V_{2}(s) \\
-I_{2}(s)
\end{array}\right]
$$

where

$$
\begin{array}{ll}
A=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{I_{2}=0} & B=\left.\frac{V_{1}(s)}{-I_{2}(s)}\right|_{V_{2}=0} \\
C=\left.\frac{I_{1}(s)}{V_{2}(s)}\right|_{I_{2}=0} & D=\left.\frac{-I_{1}(s)}{I_{2}(s)}\right|_{V_{2}=0}
\end{array}
$$

Example

$$
\begin{aligned}
& z_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{I_{2}=0}=Z_{A}+Z_{C} \quad z_{12}=\left.\frac{V_{1}(s)}{I_{2}(s)}\right|_{I_{1}=0}=Z_{C} \\
& z_{21}=\left.\frac{V_{2}(s)}{I_{1}(s)}\right|_{I_{2}=0}=Z_{C} \quad z_{22}=\left.\frac{V_{2}(s)}{I_{2}(s)}\right|_{I_{1}=0}=Z_{B}+Z_{C}
\end{aligned}
$$

ABCD

$$
1+\frac{Z_{3}}{Z_{2}} \quad Z_{3} \frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{Z_{3}}{Z_{1} Z_{2}} 1+\frac{Z_{3}}{Z_{1}}
$$

Example

For h-parameters

$$
\begin{aligned}
& h_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{V_{2}=0} \text { Port } 2 \text { short circuit } \\
& h_{21}=\left.\frac{l_{2}(s)}{I_{1}(s)}\right|_{V_{2}=0} \text { Port } 2 \text { short circuit } \\
& h_{11}=\left.\frac{V_{1}(s)}{I_{1}(s)}\right|_{V_{2}=0} \quad h_{21}=\left.\frac{I_{2}(s)}{I_{1}(s)}\right|_{V_{2}=0}
\end{aligned}
$$

Input current $\left(i=I_{1}\right)$

$$
I_{1}=k \frac{V_{1}}{R_{1}}+\frac{V_{1}}{R_{1}}
$$

then

$$
h_{11}=\frac{R_{1}}{1+k}
$$

for h_{21}

$$
I_{2}=-k i
$$

Substituing $I_{1}=(k+1) i$ into the above equ

$$
h_{21}=-\frac{k}{1+k}
$$

Problems: Richard C. Dorf, James A. Svoboda-Introduction to Electric Circuits-Wilev (2013) nage: 859

The rest of the parameters

$$
h_{12}=\left.\frac{V_{1}(s)}{V_{2}(s)}\right|_{\iota_{1}=0} \quad h_{22}=\left.\frac{l_{2}(s)}{V_{2}(s)}\right|_{\iota_{1}=0}
$$

For $I_{1}=0$, the circuit is given

$$
h_{12}=-\frac{R_{1} k}{(1+k) R_{2}} \quad h_{22}=\frac{1}{(1+k) R_{2}}
$$

Combinations of two-port networks

Series-series connection

From KCL and KVL

$$
I_{1}=I_{1 A}=I_{1 B} \quad I_{2}=I_{2 A}=I_{2 B}
$$

and

$$
V_{1}=V_{1 A}+V_{1 B} \quad V_{2}=V_{2 A}+V_{2 B}
$$

$$
\left.\left.\left.\left.\begin{array}{c}
{\left[\begin{array}{l}
V_{1}(s) \\
V_{2}(s)
\end{array}\right]=\left[\begin{array}{l}
V_{1 A}(s) \\
V_{2 A}(s)
\end{array}\right]+\left[\begin{array}{l}
V_{1 B}(s) \\
V_{2 B}(s)
\end{array}\right]}
\end{array}=\left[\begin{array}{ll}
z_{11 A} & z_{12 A} \\
z_{21 A} & z_{22 A}
\end{array}\right]\left[\begin{array}{l}
l_{1 A}(s) \\
l_{2 A}(s)
\end{array}\right]\right]\left[\begin{array}{ll}
z_{11 B} & z_{12 B} \\
z_{21 B} & z_{22 B}
\end{array}\right]\left[\begin{array}{l}
l_{1 B}(s) \\
l_{2 B}(s)
\end{array}\right]\right\}\left[\begin{array}{ll}
z_{11 B} & z_{12 B} \\
z_{21 B} & z_{22 B}
\end{array}\right]\right\}\left[\begin{array}{l}
l_{1}(s) \\
l_{2}(s)
\end{array}\right]\right\}
$$

Parallel-parallel connection

$$
Y=Y_{A}+Y_{B}
$$

Parallel-series connection

$$
g=g_{A}+g_{B}
$$

Series-parallel connection

Cascade connection

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{A}+\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{B}
$$

Good to read : http://en.wikipedia.org/wiki/Two-port_network

Common emittor

$$
v_{b e}=f\left(i_{b}, v_{c e}\right) \quad i_{c}=g\left(i_{b}, v_{c e}\right.
$$

small signal analysis:

$$
\begin{gathered}
v_{b e}=\frac{v_{b e}}{i_{b}} i_{b}+\frac{v_{b e}}{v_{c e}} v_{c e}=h_{i} i_{b}+h_{r} i_{b} \\
i_{c}=\frac{i_{c}}{i_{b}} i_{b}+\frac{i_{c}}{v_{c e}} v_{c e}=h_{f} i_{b}+h_{o} v_{c e}
\end{gathered}
$$

- h_{i} input impedance with $v_{c e}=0$. This is AC resistance between base and emitter, the reciprocal of the slope of the current-voltage curve of the input characteristics.
- h_{r} reverse transfer voltage ratio with $i_{b}=0$. In general is small and can be ignored.
- h_{f} forward transfer current ratio or current amplification factor with $v_{c e}=0$.
- h_{o} output admittance with $i_{b}=0$. It is slope of the current-voltage curve in the output characteristics. In general is small and can be ignored.

Reciprocal Network

Reciprocity theorem For a reciprocal two-port N, the following relationship holds for each associated two-port representation which exists:

$$
\begin{array}{r}
z_{12}=z_{21} \\
y_{12}=y_{21} \\
h_{12}=-h_{21} \\
g_{12}=-g_{21}
\end{array}
$$

READ : PROOF OF THE RECIPROCITY THEOREM (Chua's book page: 776)

- A gyrator ($i_{1}=G v_{2}$ and $i_{2}=-G v_{1}$) is not reciprocal two-port
- An ideal transformer $\left(v_{1}=n v_{2}\right.$ and $\left.i_{2}=n i_{1}\right)$ is a reciprocal two-port.

Thevenin - Norton Equivalent Circuits

Driving-point characteristic of Thevenin equivalent circuit is defined by

$$
V=Z_{\mathrm{th}}(s) I+V_{\mathrm{th}}(s)
$$

