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Why Laplace Transform

REPUBLIQUE FRANCAISE
Fm &

Laplace transform (F(s)) of f(t) function is given by

F(s) = L{f(t)} = /Ooo e St (t)dt.

The Laplace transform converts linear differential equations into algebraic
equations. These are linear equations with polynomial coefficients. The
solution of these linear equations therefore leads to rational function
expressions for the variables involved.

Initial Conditions, Generalized Functions, and the Laplace Transform, by Kent H.
Lundberg; Haynes R. Miller ; David L. Trumper, IEEE Control Systems
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https://ieeexplore.ieee.org/document/4064845

Laplace Transform

’ Signal Laplace Transform
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Properties of the Laplace Transform

) L{kh(t) + kefao(t)} = kiFi(s) + k2 Fa(s)
' e{#O) i 0
and
L { dnd’; (nt) } = s"F(s) — s"1f(0) — s"2f(0) — ... — £(0)
O z{/otf(f)dT}:F(ss)

LA{f(t—to)u(t — to)} = F(s)e ®°
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Distinguishing 0, 0, and 0*

e e e
with the solution of diferentil equations, the need to

really a matter of properly defining signals and their trans-
forms, and is not fundamentally connected o the solution of

any dynamic-
systems context. For a discontinuous functon f(1), the deriva
tive £(1) must be interpreted as the generalized erivative of
(1, which includes the singulary function

)

1)

@)

at every point &, at which /(1) is discontinuous. In partiular, if
10°) #(0°), then the derivative includes a et function at
the origin.

In the following example, adapted from Problem 11.17 of
(23], we apply the unilateral transform o three signals and
their derivatives. This example larifies that the need for
using the Laplace transform (3) and properties (4) and (5) is

‘Consider the three signals (1, g(1, and h(1) defined for all

=e*
9 = &,
) = o7 *uit) — w0,

which are plotted for the value a= 1 in Figure S1. Since all
three functions are nonsingular and agree for positive time they
have the same Laplace transform by means of (3). However,
theic derivatives include diferent impulse valuos at f = 0, and
thus the Lapiace ransforms of their derivatives must diffr. Ou
choice of Lapiace transfor properties should give consistent
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FIGURE $1 Three functons /(1)
for all ime.

&%, gy = & *uD, h(D) = & *uD)
arows,

(~1), and their derivatives, plotied for a = 1 and defined
rumber next to the arrowhead. Since
However, flor at

alltvee for positve time,

the orgin. Therefore, the Lapiace transforms of their derivatives also difer.
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Properties of the Laplace Transform

L{e ®f(t)} = F(s+a)

n L,d"F(s
cqer) = (-1
Inverse Laplace Transform
c+joo
F(t) = £ (F(s)} = / ¢ F(s)ds
c—joo
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Partial-Fraction Expansion Method

s-transform of a linear time invariant system is often of the form (n > m)

P(s)  ams™ + am_1S™ 14+ ...+ a1s+ ap

F = =
() Q(s)  bps"+ by_15" 1+ ...+ bis+ bg

which is ratio of two polynomials. The value(s) for s where P(s) = 0 are
called zeros. The value(s) for s where Q(s) = 0 are called poles.

If spi # spj, poles distinct.

if lims_00 F(5)(s — spi) = 00 and lims_c F(s)(s — sp,-)k is constant then
s = sp; is a k-multiple pole.
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Lets assume that poles distinct

e {2)

- {(5 —klspl) G _k25p2) o (s_knsp")}

ki is the residue located at the corresponding pole s,; which is

ki = F(s) (s = spi)|

S=Spi

L1 {F(s)} = keetu(t) + koe?tu(t) + ... + knetu(t)

L7 ko + F(s)} = kod(t) + kpe*'tu(t) + koe2tu(t) + ... + ke tu(t)
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—3s2 4+ 235 — 38 -9 2 2

Y == =
() (s=1)(s—2)(s—3) s—1+s—2+s—3
y(t) = —9e' + 4%t +2e3 for t >0
242 1/6j 1/6j 1/6j
Y(s) = s°+25+3 _ /6j B /6j n /6j L

(s2+2s+2)(s?+2s+5) s+1—j s+1+j s+1-2j s+

1 1
y(t) = 5e—tsin(t) + ge_tsin(Zt) for t >0

x =2x—-3y, x(0)=38
y=-2x+y, y(0)=3
Using Laplace transform
sX—8=2X-3Y - (s—=2)X+3Y =28
sY-3=-2x+y - 2X+(s—-1)Y =3
8s — 17 5 3

X: =
s2—3s—4 s+1+s—4

— x(t) = 5e t 4+ 3e*t
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Example: x 4+ 7x = 2sin 10t and x(0) =5

X, andx, i

L e = e
20 14 20 s
_ —Tt ey Tt el T e _
x(t) = 56. + 1496 + 129 sin(10t) 129 sin(10t + 2)
zero-input Jor (;gt to
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Using Laplace Transform

20
20
(5+7)X(5) =5+ m
5 20
X =
(s) (s+7) + (s2+100)(s + 7)
——
zero-input zero-state
5 20 —20s + 140
X =
()= 57 T 1a9(s 77y T 1a9(s2 + 100
Xe)— 5, 20 . —20s 140
© (s+7)  149(s+7) 149(s2+100) = 149(s2 + 10
~—— ~~
zero-input zero-state
20 20 14
=he T4 e Tt_ 1 ——sin(10t)Page4
x(t) =b5e "F+ 129°¢ 149cos( 0t) + 149sm( 0t)Page
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https://www.symbolab.com/solver/partial-fractions-calculator/partial

Q(s) has a multiple pole.

1 [P(s) .1 ki1 kio Kik Pi(s)
£ {o(s)}“ {<s—sp,->*(s—sp,-)z'“*(s—sp;)k*@1<s>}

where
kix = F(s) (s — Spi)k

S5=sp;

and
1 dk_’F(s)(s—sp,-)k

(k—1)! dsk—1

ki =

S=Spi

for/=1,2,...k—1.
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252 — 255 — 33 k1 ko k

Y —
()= a7 12(s=5) " s+1 (s+17 55
_252—255—33| _ 5
T (s+1)2 T
1 d 2s2 —25s — 33
METG T osy TR
2s2 — 255 — 33
fp=2 2202 =1
(s—5)

y(t) =5e " +te " —3e”
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s-plane

C(s+3)(s*+25+2)
Fo) = a1 op

zeros "0" and poles "x" on s-plane:

Almg{s}

Re{)s}

9
X
XK
K
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The Convolution Theorem

The convolution operation: Let fi(t) and f(t) be functions defined on
[0,00) , and let us take them to be equal to zero for t < 0: The
convolution of the time functions f; and £ is a new time function denoted
by (f1 *x 2)(t) and defined for all t by

f(t):fl(t)*fz(t):/Otfl(T)fz(t—T)dT:/Otfg(t—T)fg(T)dT

The Convolution Theorem

Let f1(t) and f(t) have Fi(s) and Fy(s) as Laplace transforms. We
assume that for i = 1,2, f(t) = 0 for t < 0. Laplace transform of the
convolution of f; and f; is given by

L{A(t) x H(t)} = Fi(s)Fa(s)

Thus, the operation of convolution in the time domain is equivalent to
multiplication in the frequency domain.
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Using The Convolution Theorem, lets find inverse Laplace transform of

F(s) = 52(sl+2)

= L {tu(t) * e ?tu(t)}

t
tu(t) x e 2tu(t) = / re 2t dr
0
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Analysis of state space equation

Linear time invariant system

x = Ax+ Be
y = Cx+ De

where x state variable and y is output, u is input vectors. Using Laplace

transform sX(s) —x(0) = AX(s) + BE(s)
Y (s) = CX(s) + DE(s)

we have Laplace transform state variable

X(s) = (sl — A)"1x(0) + (sl — A)"LBE(s)

Spring, 2023
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Output

Y(s) = C(sl — A)"'x(0) + (C(sl — A)"'B + D)E(s)

X(s) = (sl — A)71x(0) + (s/ — A)"IBE(s) = Q(s)x(0) + Q(s)BE(s)

where Q(s) = (sl — A)~! and q(t) = L~{(sl — A)71}.
Using The Convolution Theorem, we have

Q(s)x(0) + Q(s)BE(s) = L {q(t)x(O) + /0 q(t — T)Be(T)dT}
the state variable in time domain

x(t) = q(t)x(0) + /Ot q(t — 7)Be(1)dt
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we know that

x(t)=  o(t)x(0) +/ o(t — 7)Be(T)dT
N——— 0

. .
zero-input response

zero-state response

In this case
®(s) = (sl — A)*

and

() = L{(s/ - A)}
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Example: x 4+ 7x = 2sin 10t and x(0) =5

20
sX(s) =5+ 7X(s) = 2510
5 20
X =
&)= 59 Y e+ 100
H/_/ >3
zero-input zero-state
1
[0 =
&) =657
X(s) = ®(s)5 +(s) 5
== (s2 +100)

zero-input = S—————~—

zero-state
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Network Functions

L{zero — state response}

Network Function = C{input}

Y(s)
E(s)

Transfer (Network) functions : voltage transfer functions, transfer
admittances, current transfer function, transfer impedance.

= (CP(s)B+ D) = H(s)

y(t) = L7HH(s)E(s)} = h(t) x e(t) = / h(t — 7)e(r)dT
0
if we chose e(t) = o(t)
y(t) = L7HH(s) 1} = /t h(t — 7)é(7)dT = h(t)
0

NETWORK FUNCTION = L{IMPULS RESPONSE}
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E(S) H(S) H(S)E(S)
e I

e(t) h() h()e(t)

impuls response = h(t) = L71{H(s)}
step response = h(t)u(t) = ﬁ_l{H(s)%}
I zero-input response = 0 !
what happen if zero-input response is not zero (or system is not stable)?
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Characteristic polynomial

P(s) _ Y(s)
H(s) = =

®) =06 T Ee)
The characteristic polynomial of A is defined by

— (Co(s)B + D)

Q(s) =det{sl — A} =0

The solutions of the characteristic equation are precisely the eigenvalues of
the matrix A. The roots of the characteristic equation is sp,; = o; + jw;

e if o; > 0 unstable
e if o; < 0 stable

@ o; = 0 check the repeated eigenvalue !
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Example : The transfer function for a linear time-invariant circuit is
H(s) = SJ%I If E(t) = 3cost what is the steady-state expression of the
output?

3s 1

T 211s+1
and in time domain
3s+1 3 1
-1
t) = e _2
y(t) =L {252+1 25—1—1}

3 .
= E(cos t+sint—e ")

Y(s)

Using convolution
1
(t) {s + 1} ¢

t
y(t):/ e "T"3 cos(7)dT
0

T

=3¢t [Z(cos(T) +sin(7))

|

3

= “(cost+sint—eF)
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