Circuit and System Analysis

 EEF 232EProf. Dr. Müștak E. Yalçın

Istanbul Technical University
 Faculty of Electrical and Electronic Engineering

mustak.yalcin@itu.edu.tr

Outline I

- Phasor diagram
- Sinusoidal Steady-State Power Calculation
- Average Power
- Complex, Real and Reactive Powers
- Lagging \& Leading power factor
- pf Correction
- Tellegen Theorem

Phasor diagram

A phasor diagram shows the magnitude and phase angle of each phasor quantity in the complex number plane.

$V_{R}=V, V_{S}=V e^{-j 120^{\circ}}, V_{R S}=\sqrt{3} V e^{j 30^{\circ}}=V_{R}-V_{S}$,

Serial Resonance Circuit Analysis on Phasor diagram

$$
\begin{aligned}
& V_{L}+V_{C}+V_{R}=|U| e^{j 0} \\
& V_{L}=L j w \frac{|U|}{Z(w)}=L w \frac{|U|}{|Z|} e^{j\left(-\theta+\frac{\pi}{2}\right)} \\
& V_{C}=\frac{1}{C j w} \frac{|U|}{Z(w)}=\frac{|U|}{C w|Z|} e^{j\left(-\theta-\frac{\pi}{2}\right)} \\
& V_{R}=R \frac{|U|}{Z(w)}=R \frac{|U|}{|Z|} e^{-j \theta}
\end{aligned}
$$

Sinusoidal Steady-State Power Calculation

v and i are steady-state sinusoidal signals
$v(t)=V_{m} \cos \left(w t+\theta_{v}\right)$ and $i(t)=I_{m} \cos \left(w t+\theta_{i}\right)$

Instantaneous Power

$$
\begin{aligned}
P & =V_{m} \cos \left(w t+\theta_{v}\right) I_{m} \cos \left(w t+\theta_{i}\right) \\
& =\frac{1}{2} V_{m} I_{m}\left\{\cos \left(\theta_{v}-\theta_{i}\right)+\cos \left(2 w t+\theta_{v}+\theta_{i}\right)\right\}
\end{aligned}
$$

Power factor angle

$$
\phi=\theta_{v}-\theta_{i}
$$

Power factor

$$
\mathrm{pf}=\cos \left(\theta_{v}-\theta_{i}\right)
$$

Reactive factor

$$
\mathrm{pf}=\sin \left(\theta_{v}-\theta_{i}\right)
$$

Example

$v(t)=\cos \left(2 \pi 50 t+\frac{\pi}{3}\right)$ and $i(t)=\cos \left(2 \pi 50 t+\frac{7 \pi}{8}\right)$ Instantaneous Power

$$
P(t)=-0.0653+\cos \left(2 \pi 100 t+\frac{\pi}{3}+\frac{7 \pi}{8}\right)
$$

Average Power

The average power associated with sinusoidal signals is the average of the instantaneous power over one period

$$
P_{\mathrm{avr}}=\int_{0}^{T} p(t) d t
$$

$$
\begin{aligned}
P_{\mathrm{avr}} & =\int_{0}^{T} p(t) d t \\
& =\frac{1}{2} V_{m} I_{m}\left\{\cos \left(\theta_{v}-\theta_{i}\right)\right. \\
& =\frac{1}{2} V_{m} I_{m} \cos \phi
\end{aligned}
$$

Complex Power

$$
\begin{aligned}
S & =\frac{1}{2} V \bar{I}=\frac{1}{2} V_{m} e^{j \theta_{v}} I_{m} e^{-j \theta_{i}} \\
& =\frac{1}{2} V_{m} I_{m} e^{j\left(\theta_{v}-\theta_{i}\right)} \\
& =\frac{1}{2} V_{m} I_{m} e^{j \phi}
\end{aligned}
$$

units volt-amps (VA)

$$
S=P+j Q
$$

P is Active Power (Watt) and Q is Reactive Power (VAR), $|S|=\sqrt{P^{2}+Q^{2}}$ Apparent pover (volt-amps)

$$
\begin{gathered}
P=\frac{1}{2} V_{m} I_{m} \cos \phi=P_{\mathrm{avr}}, \text { and } \mathrm{Q}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \sin (\phi) \\
\tan \phi=\frac{Q}{P}
\end{gathered}
$$

	Active P	Reactive Q
Resistor	$\frac{1}{2} R I_{m}{ }^{2}$	0
Capacitor	0	$-\frac{1}{2 w C} I_{m}{ }^{2}$
Inductor	0	$\frac{W L}{2} I_{m}{ }^{2}$

- Power for Purely Resistive Circuits : Power can not be extracted from a purely resistive network. In a purely inductive and capacitive circuits, the average power are zero.
- In a purely inductive circuit, energy is being stored the magnetic field, and then it is being extracted from the magnetic fields.
- In a purely capacitive circuit, the power is continually exchanged between the source driving the circuit and the electric field associate with the capacitive element.

Lagging \& Leading power factor

Lagging power factor : $Q>0$ inductive load.
Leading power factor : $Q<0$ capacitive load.
Remember an inductive load impedance $Z_{L}=|Z| e^{j \theta_{L}}$ which means $\theta_{L}>0$ $\left|V_{L}\right| e^{j \theta_{v}}=\left|Z_{L}\right| e^{j \theta_{L}}\left|I_{L}\right| e^{j \theta_{i}}$ then $\theta_{L}=\theta_{v}-\theta_{i}>0$ meaning the current drawn by the circuit lags the supply voltage then

$$
Q=\frac{1}{2} V_{m} I_{m} \sin \left(\theta_{L}\right)>0
$$

If an capacitive load impedance which means $\theta_{L}<0$ then $\theta_{v}<\theta_{i}$ and $\theta_{L}=\theta_{v}-\theta_{i}<0$ meaning the current leads with the supply voltage then

$$
Q=\frac{1}{2} V_{m} I_{m} \sin \left(\theta_{L}\right)<0
$$

Why: \sin is an odd function $(\sin (-\theta)=-\sin (\theta))$.

Power Calculation based on RMS Values

$$
P=\frac{1}{2} V_{m} I_{m} \cos \phi=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos \phi=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi
$$

and

$$
Q=V_{\mathrm{rms}} I_{\mathrm{rms}} \sin \phi
$$

Example:

220 V 100 W lamp has a resistance of $\frac{220^{2}}{100}=484 \Omega$ and $I_{\mathrm{rms}}=\frac{220}{484}=0.45 \mathrm{~A}$.
Example: A series-connected load draws a current $i(t)=4 \cos \left(100 \pi t+10^{\circ}\right) A$ when the applied voltage is $v(t)=120 \cos \left(100 \pi t-20^{\circ}\right) V$. Find the apparent power and the power factor of the load.

$$
|S|=\frac{1}{2} 120 \cdot 4=240 \mathrm{VA}
$$

The $p f$ is leading because the current leads the voltage

$$
p f=\cos \left(-20^{\circ}-\left(10^{\circ}\right)\right)
$$

or

$$
Z=\frac{120 \angle-20^{\circ}}{4 \angle-20^{\circ}}=30 \angle-30^{\circ}
$$

then

$$
p f=\cos \left(-30^{\circ}\right)
$$

Example: Obtain the power factor and the apparent power of a load whose imped- ance is $Z=60+j 40$

$$
p f=\cos \left(\arctan \left(\frac{40}{60}\right)\right)=0.832
$$

$p f$ is lagging (why load inductive $(Q=40>0)$).
Homeworks: Example 10.4 (page 402), Example 10.5 (page 406), Example 10.6 (page 407), Electric Circuits, James W. Nilsson and Susan A. Riedel

Serial Resonance Circuit

$$
V_{R}=R I=(10-10 j) V, V_{C}=(-50-50 j) V, V_{L}=(60+60 j) V
$$

$$
S_{Z}=\frac{1}{2} 20(2+2 j)=(20+20 j),\left(S_{R}=20, S_{C}=-100 j, S_{L}=120 j\right)
$$

$Q=20>0$ Load is inductive $(Z=(5+5 j) \Omega)$
$w_{0}=\frac{1}{\sqrt{L C}}=91.2871 \mathrm{~Hz}$ and $Z\left(w_{0}\right)=5 \Omega$ and $I=\frac{U}{Z}=4 \mathrm{~A}$

$$
S_{Z}=\frac{1}{2}(20) 4=40 V A\left(S_{R}=24, S_{C}=-219.09 j, S_{L}=219.09 j\right)
$$

Serial Resonance Circuit

Serial Resonance Circuit

Adding $C_{c}=1 m F$ such as $Y+C_{c} w j \in R$ and $Z_{\text {total }}=10 \Omega$

$$
\begin{gathered}
I=\frac{U}{Z_{\text {total }}}=2 A, \quad I_{C}=|U|(1 m) j 100=2 j A \\
S_{U}=\frac{1}{2} 20(-2)=-20
\end{gathered}
$$

Why : pf Correction

Why : pf Correction

$$
\begin{aligned}
P_{L} & =\frac{1}{2}\left|V_{L}\right|\left|I_{L}\right| p f \\
\left|I_{L}\right| & =\frac{2 P_{L}}{\left|V_{L}\right| p f} \\
P_{H} & =\frac{1}{2} R_{H}\left|I_{L}\right|^{2}=\frac{1}{2} R_{H} \frac{4 P_{L}^{2}}{\left|V_{L}\right|^{2} p f^{2}}=R_{H} \frac{2 P_{L}^{2}}{\left|V_{L}\right|^{2} p f^{2}}
\end{aligned}
$$

If $|p f|=1$ then P_{H} is minimum! Idea to have $p f=1$.
Solution : pf correction such that adding Z_{C} to Load impedance making $p f=1$

Why : pf Correction

pf correction such that adding Z_{C} to Load impedance making $p f=1$

$$
\begin{gathered}
Z_{e q}=Z_{L} / / Z_{C} \\
Y_{\text {equ }}=(G+X j)+\frac{1}{Z_{C}}=G, \frac{1}{Z_{C}}=Y_{C}=-X_{j}
\end{gathered}
$$

$I_{L}=\frac{V}{Z_{\text {equ }}}$ then $p f=1$!

Example: A load is connected in parallel across a 120 V (rms) voltage source. The load is deliveding a reactive power of 1800 VAR at leading power factor pf $=\frac{\sqrt{3}}{2}$. The frequency of the voltage source is $80 \mathrm{rad} / \mathrm{sn}$. (a) Calculate the admittance of the load. (b) compute the value of element that would correct the power factor to 1 if placed in parallel with the load.

Power factor is described as leading therefore the load is capacitive, furthermore the laod is delivering a reactive power so $Q<0$ which means that again load is capacitive.

$$
\cos \theta=\frac{\sqrt{3}}{2}
$$

then $\theta=-30^{\circ}$

$$
Q=|S| \sin \left(-30^{\circ}\right)=|V||I| \sin \left(-30^{\circ}\right)=-1800
$$

$I=30 e^{30^{\circ} j}$. In order to find admittance $Y=V / I=0.25 e^{30^{\circ} j}$.

To obtain power factor to 1 , let Y_{x} placed in parallel with the load. The load is deliveding a reactive power of 1800VAR therefore Y_{x} must be absorb 1800 VAR in order to get 0 total reactive power! The Y_{x} must be inductive and absorb a reactive power of 1800 VAR. From $S=V \bar{I}=|V|^{2} \bar{Y}$ we obtain $1800=120^{2} \frac{1}{L 80}$ equation and $L=0,1 H$.

Example: Calculate the average power and the reactive power at the terminal of an one-port circuit element if $v=100 \cos \left(w t+15^{\circ}\right) \mathrm{V}$ and $i=4 \sin \left(w t-15^{\circ}\right)$ Amp.

$$
\begin{aligned}
S & =\frac{1}{2} \cdot 100 \cdot e^{j 15^{\circ}} \cdot 4 \cdot e^{j(90+15)^{\circ}} \\
& =\frac{1}{2} \cdot 100 \cdot 4 \cdot e^{j(15+105)^{\circ}}=100+j 173.21 \\
& =\frac{1}{2} \cdot 100 \cdot 4 \cdot\left(\cos \left(120^{\circ}\right)+j \sin \left(120^{\circ}\right)\right)
\end{aligned}
$$

Hence $P=-100 \mathrm{~W}$ and $Q=173.21$ VAR. The negative value of -100 W means that the one-port is delivering average power and absorbing reactive power.

A blender motor is modelled by a 30Ω resistor (modelling the coil resistance) in series with a $\frac{40}{2 \pi 60} H$ inductor (modelling the inductive effects of the coil). What power is dissipated by the motor?

$$
I_{\mathrm{rms}}=\frac{120}{30+2 \pi 60 \frac{40}{2 \pi 60} j}=2.4 e^{-j 53^{\circ}}
$$

Average power dissipated:

$$
P=\operatorname{Re}\left\{120 \times 2.4 e^{53^{\circ}}\right\}=172.8 \text { Watts. }
$$

The motor draws current:

$$
\mathrm{i}(\mathrm{t})=2.4 \sqrt{2} \cos \left(2 \pi 60 t-53^{\circ}\right)
$$

The voltage and current are 53° out of phase, so the motor draws more current than it should.

The voltage and current are 53° out of phase, so the motor draws more current than it should.

Hook a capacitor C in parallel with the motor.
RMS current phasor: $I_{r m s}=120\left(\frac{1}{30+40 j}+j \pi 60 C\right)$
What value of C makes the phase of $I_{r m s}$ zero?

You should obtain $C=42.4 \mu F$. Then $I_{r m s}=1.44$
Average power dissipated $P=\operatorname{Re}\{120 \times 1.44\}=172.8$ Watts.
But the current amplitude has dropped from $2.4 \sqrt{2}$ to $1.44 \sqrt{2}$ Amps.
We have almost halved the peak current, while maintaining average power is 172.8 Watts.

Tellegen Theorem

Tellegen's theorem is based on the fundamental law of conservation of energy!

Tellegen Theorem

It states that the algebraic sum of power absorbed by all elements in a circuit is zero at any instant.

Tellegen's theorem asserts that

$$
\begin{gathered}
P=\sum_{i=1}^{n_{e}} \frac{1}{2} V_{i} \bar{l}_{i}=0 \\
P=\sum_{i=1}^{n_{e}} \frac{1}{2} V_{i} \bar{l}_{i}=\frac{1}{2} V_{e}^{T} \overline{l_{e}} \\
=\frac{1}{2} V_{n}^{T} M^{T} \bar{l}_{e}=\frac{1}{2} V_{e}^{T} M^{T} \bar{l}_{e}=0
\end{gathered}
$$

see : EHB211E Slayt Number 73.

The 60Ω resistor absorbs an average power of 240 W . Find the complex powers of each circuit elements.

$$
\begin{aligned}
& \mathrm{Z} 1=30-10 * \mathrm{j} ; \mathrm{Z2}=60+20 * j ; \\
& \mathrm{Y} 1=1 / \mathrm{Z} 1 ; \mathrm{Y} 2=1 / \mathrm{Z} 2 ; \\
& \mathrm{I} 2=\mathrm{sqrt}(240 * 2 / 60) ; \\
& \mathrm{V} 2=\mathrm{I} 2 * \mathrm{Z} 2 ; \mathrm{V} 1=\mathrm{V} 2 ; \\
& \mathrm{S} 1=0.5 * \mathrm{~V} 1 * \operatorname{conj}(\mathrm{~V} 1 * \mathrm{Y} 1) \\
& \gg 480-160 \mathrm{j} \\
& \mathrm{~S} 2=0.5 * \mathrm{~V} 2 * \operatorname{conj}(\mathrm{~V} 2 * \mathrm{Y} 2) \\
& \gg 240+80 \mathrm{j} \\
& \mathrm{I} 1=\mathrm{V} 1 * \mathrm{Y} 1 ; \mathrm{I}=\mathrm{I} 1+\mathrm{I} 2 ; \\
& \mathrm{VR}=\mathrm{I} * 20 ; \\
& \mathrm{SR}=0.5 * \mathrm{VR} * \operatorname{conj}(\mathrm{VR}) / 20 \\
& \gg 656 \\
& \mathrm{Vs}=\mathrm{VR}+\mathrm{V} 1 ; \mathrm{Is}=-\mathrm{I} ; \\
& \mathrm{Ss}=0.5 * \mathrm{Vs} * \operatorname{conj}(\mathrm{Is}) \\
& \gg-1376+80 \mathrm{j}
\end{aligned}
$$

Verify that $S s+S R+S 1+S 2=0$

