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Adaptive Spectral Transform for Wavelet-Based
Color Image Compression

Ulug Bayazit, Member, IEEE

Abstract—Since different regions of a color image generally
exhibit different spectral characteristics, the energy compaction
of applying a single spectral transform to all regions is largely
inefficient from a compression perspective. Thus, it is proposed
that different subsets of wavelet coefficients of a color image be
subjected to different spectral transforms before the resultant
coefficients are coded by an efficient wavelet coefficient coding
scheme such as that used in JPEG2000 or color set partition-
ing in hierarchical trees (CSPIHT). A quadtree represents the
spatial partitioning of the set of high frequency coefficients
of the color planes into spatially oriented subsets which may
be further partitioned into smaller directionally oriented sub-
sets. The partitioning decisions and decisions to employ fixed
or signal-dependent bases for each subset are rate-distortion
(R-D) optimized by employing a known analytical R-D model
for these coefficient coding schemes. A compression system of
asymmetric complexity, that integrates the proposed adaptive
spectral transform with the CSPIHT coefficient coding scheme
yields average coding gains of 0.3 dB and 0.9 dB in the Y
component at 1.0 b/p and 2.5 b/p, respectively, and 0.9 dB and
1.35 dB in the U and V components at 1.0 b/p and 2.5 b/p,
respectively, over a reference compression system that integrates
the single spectral transform derived from the entire image with
the CSPIHT coefficient coding scheme.

Index Terms—Adaptive coding, color, image coding,
Karhunen–Loeve transform, quadtree, wavelet transform.

I. Introduction

TYPICALLY, a single global spectral transform is applied
to decorrelate the color planes of a color image prior

to compression. The trivial method of independently coding
each of the resulting spectral planes with high performance
wavelet-based grayscale image codecs, such as set partitioning
in hierarchical trees (SPIHT) [1], JPEG-2000 [2], or subband
block hierarchical partitioning (SBHP) [3], is highly inefficient
since nonlinear dependencies at high transition regions (such
as edges) do remain among the spectral planes.

The technical note in [4] presents a benchmark method
that processes the sets of wavelet coefficient bits in an
interleaved order for the three spectral planes by employing
SPIHT and thereby achieves efficient bit allocation among
the spectral planes. However, this method does not exploit the
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nonlinear dependencies among the spectral planes. A similar
method that employs set-partitioning embedded block coder
(SPECK), the predecessor of SBHP, is also suggested in [3]
under the name color SPECK (CSPECK).

As a step toward exploiting the nonlinear dependencies,
color embedded zerotree wavelet (CEZW) of [5] extends the
spatial orientation tree (SOT) of embedded zerotree wavelet
(EZW) by linking the chrominance nodes to their correspond-
ing luminance nodes as their children. However, too many
chrominance nodes or sets rooted at them are isolated too
early in the coding process and poor low rate performance
results due to coding their significance in many passes.

The CSPIHT algorithm, formulated in [6], links the SOTs
for the three spectral planes of coefficients by defining the
nodes in the lowest frequency subbands of the chrominance
planes [second and third eigenvector component planes for
Karhunen–Loeve transform (KLT)] as the children of the
spatially corresponding nodes in the lowest frequency subband
of the luminance plane (principal eigenvector component
plane for KLT). Due to the structure of the overall tree,
only luminance nodes and sets rooted at them are tested
for significance at the initial passes. This is unlike CEZW
of [5], where the chrominance root nodes or sets rooted
at them are unnecessarily separately tested for significance
at the initial passes even though they are almost always
insignificant. Thereby, a savings in bit expenditure is achieved
with respect to CEZW at low rates. However, for a discrete
wavelet transform (DWT) with a large number of levels, the
performance gain of CSPIHT over [4] is significant only at
very low rates. At higher rates, the gain is negligible since the
difference between the number of SOT roots for CSPIHT and
the number of SOT roots for the benchmark method is small
and the SOT roots are only visited in the bitplanes visited
early in the coding process. The SOT of CSPIHT was later
extended to link spatially related blocks of coefficients in [7].

By revealing that DWT yields correlations between lumi-
nance nodes in the spatial vicinity of each chrominance node,
[8] suggests the use of a context covering these luminance
nodes for coding the significances of chrominance nodes.

Vector SPIHT [9] is an extension of SPIHT that builds
a SOT on vectors of DWT coefficients at corresponding
locations in the three color planes to exploit the statistical
dependencies among them. For video coding, [9] reports
decent gains over H.263 at medium to high rates.

The works of [10]–[12] primarily address the nonuniformity
of spectral content in the image for compression purposes. In
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[10], a region adaptive 1-D KLT across the color planes is
followed by the spatial 2-D discrete cosine transform (DCT)
within each spectral plane. A quadtree represents the recursive
subdivision of the image is divided into variable size blocks.
Each block is transformed with the KLT derived from its
covariance matrix. The quadtree and the quantizer for the
transform coefficients are jointly R-D optimized.

Unlike the block-based approach of [10], the works of [11]
and [12] allow for more arbitrary shaped regions or classes
that represent approximately homogeneous land cover, but the
sizes of individual regions or classes are not R-D optimized.
Moreover, side information resulting from class or region-
based segmentation is only noted, but not controlled.

Locally adaptive resolution codec [13] exploits the unifor-
mity in chrominance components by region-based coding. In
the proposed semantic scalable two layers of coding, the first
layer partitions an image into variable size blocks based on
dynamic range and represents small blocks at contours and
large blocks of uniform regions with their mean values. The
second layer refines local texture with respect to this partition.
The region segmentation map, generated at the decoder based
on first layer information, facilitates region of interest (ROI)
formation and region-based coding of chrominance informa-
tion at little extra cost.

The DWT-based color image coding system proposed in
this paper is similar to that of [10] in that an adaptive
spectral transform (KLT) is applied across the spectral planes.
The proposed method is more relevant than the one in [10]
since the proposed adaptive spectral transform is designed to
operate together with the DWT that has a proven superior
performance record over the DCT. Unlike [10], where the
adaptive spectral transform is applied in the spatial domain,
the adaptive spectral transform of the current work is applied
in the DWT domain for reasons to be explained in the
next section. In this respect, it is similar to the work of
[14], where filters for linear prediction of the chrominance
transform coefficients are designed and applied in the DCT
domain followed by rate-distortion (R-D) optimal bit allo-
cation to the DCT subbands, uniform scalar quantization of
the prediction errors, and entropy coding of the quantization
levels.

The primary contribution of the current work is the speci-
fication of a R-D optimized design procedure for an adaptive
spectral transform whose color image compression perfor-
mance surpasses that of the widely used single global spectral
transform at all rates when integrated with zerotree or block-
based DWT coefficient coding algorithms.

In its minimization of a R-D cost function, the proposed
method is somewhat similar to the coding mode selection
process formulated in [15] for video coding. Coding mode
selection has been extended to the adaptive selection of a fixed
spectral transform from a small set of candidate, fixed spectral
transforms for each fixed size block of the frame residual
prediction error in a H.264/AVC advanced 4:4:4 profile setting
in [16]. Unlike the proposed method, the side information rate
for conveying the spectral transform identity is very little and
not factored into the cost functions of the candidate, fixed
transforms in [16].

In H.264/AVC, an experimentally determined model [17]
for the Lagrange multiplier (slope of the distortion–rate curve
at operating point) in terms of the quantization step size
is employed. The proposed method determines the slope
analytically by employing distortion and rate models suitable
for DWT-based image coding.

In the next section, the key features of the proposed
color image coding system are discussed by emphasizing the
application of the proposed adaptive transform in the DWT
domain. For coding the spectrally transformed DWT coeffi-
cients of the color planes, the SPIHT algorithm that forms
the basis of CSPIHT, and JPEG2000, are briefly reviewed
in this section. In Section III, the models of distortion, rate,
and slope estimates, as well as the efficient encoding of the
side information, are presented first. Based on the derived
estimates of the costs of representing subsets of spatially
oriented coefficients by their bases, the design procedure for
the adaptive transform, that consists of iterative R-D optimized
decisions to merge small subsets into larger ones, is also
described in Section III. Section IV discusses the necessity
of performing multiple coding iterations to achieve a specified
target rate, and proposes a two iteration solution. The modified
forms of the rate and slope estimates optimized for use in
the second coding iteration are introduced at the end of
this section. Section V mainly presents experimental results
with a compression system employing the proposed adaptive
spectral transform and compares them against results with
reference compression systems on a large set of color images.
Concluding remarks are presented in the final section.

II. Features of the Adaptive Transform

The decorrelating transforms such as the signal dependent
KLT or the fixed RGB-YCrCb are commonly applied to the
color planes of a color image prior to encoding so as to
compact most of the signal energy in the three color planes to
a single spectral plane (the principal eigenvector component
plane for KLT and the Y component plane for YCrCb) and
thereby realize a compression performance advantage. At the
end of decoding, a corresponding inverse spectral transform
yields the reconstructed color planes.

A single KLT basis usually does not offer adequate com-
pression performance advantage since the typical natural im-
ages are nonuniform in color content. As suggested by [10],
the use of a different KLT basis for each region of uniform
color/spectral content within the image can better exploit the
nonuniformity in color/spectral content over the entire image.
Additionally, a transform like 2-D DCT or 2-D DWT must be
spatially applied to compact the energy into a few coefficients
along the spatial directions for efficient compression.

A. Order of the Spatial and Spectral Transforms

Unlike [10] that uses the computationally efficient 2-D DCT,
the spatial transform employed in the current paper is the
performance efficient 2-D DWT that is widely adopted in the
state-of-the-art image coding. As shown in Fig. 1, the spatial
2-D DWT transform is not preceded, but followed by one or
more spectral 1-D KLT transform(s), each of which is uniquely
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Fig. 1. Block diagram of the proposed system.

Fig. 2. 2-D DWT decomposition and an example of a single quadtree
representing the spatial partitioning of the set of DWT coefficients of all
high frequency bands into subsets in a unified way. The thick lines show the
boundaries between the subbands, the thin lines show the boundaries between
subsets of coefficients. An example spatially oriented subset is shown as the
collection of shaded blocks. The second decision specifies whether or not this
subset is further partitioned into three directionally subsets with a unique basis
representing coefficients of each. If the subset is not partitioned, a single basis
is used to represent all coefficients of the subset. All blocks of a particular
directionally oriented subset are shown by the same shading texture.

determined for a subset [region(s) or block(s)] of a partition
of DWT coefficients of the image. If the spatial 2-D DWT
were to follow the 1-D spectral KLT transforms(s) of image
pixels as in [10], the subband analysis filter kernels would
have to be applied across boundaries between two subsets
of spectral coefficients obtained with different KLT bases.
Filtering across boundaries may be circumvented by mirror
extending the filtered values at the boundaries. However,
performing a mirror extension at the boundary between each
pair of subsets significantly reduces the performance efficiency
of 2-D spatial DWT. The solution proposed in [12] employs
shape adaptive DWT and shape adaptive SPIHT for coding
spectrally transformed arbitrary regions of the image.

A second reason for the order of transforms is that, in
the DWT domain, it is possible to further partition a set of
spatially oriented coefficients (corresponding to a region or a
block in the image) into smaller subsets of spatially as well
as directionally oriented coefficients. This way, the KLT bases
may be better adapted to the edge directionality.

A final reason is that, in each color plane, each set of
spatially and/or directionally oriented high frequency DWT
coefficients has near zero mean value. Such mean values do
not need to be coded as side information for the application
of the 1-D KLT across the color planes of DWT coefficients.
Had the 1-D KLT been performed directly on the input image
prior to 2-D DWT, the subtraction and subsequent coding of
the mean value for each set of image pixels in each color plane
would have been necessary.

B. Structure of the Adaptive Transform and the Coded
Decisions

A precise description of arbitrary shaped sets of coefficients
of uniform content is expensive from a compression viewpoint
even at high coding rates. The viable solution proposed in [10],
that is also employed in other contexts such as variable block
size motion estimation, is to spatially partition the image into
variable size blocks of near uniform content. In the current
paper, the layout of the subsets of coefficients is concisely
represented by a quadtree structure.

When a set of coefficients represented by its KLT basis
is partitioned into smaller subsets represented by their own
KLT bases, the energy compaction of the resultant coefficients
improves, but the R-D performance may or may not improve
due to the increase in side information for coding the increased
number of KLT bases. This suggests that one should decide to
split a quadtree node by partitioning a set or, conversely, prune
a subtree of the quadtree by merging small subsets into a large
set only if a R-D improvement is expected as a consequence.

Since the spectral 1-D KLT is applied on the 2-D DWT
coefficients, it is conceivable that, for each subband, the spatial
partition be unique and represented by a different quadtree
structure. However, such an approach necessitates a substantial
side information rate at low rates. In order to conserve this
rate, the strong statistical dependencies among the magnitudes
of coefficients of the same spatial orientation across high
frequency subbands may be exploited. All high frequency
subbands are constrained to be spatially partitioned into blocks
of coefficients in the same way. The resultant partitions of
all high frequency subbands are represented in a unified way
by a single quadtree as shown by an example illustration in
Fig. 2. The maximum depth of this quadtree is dictated by the
dimensions of the lowest frequency subband.

For each set of spatially oriented blocks of coefficients
across all high frequency subbands, a second decision is made
as to whether or not to partition it into three directionally
(vertically, horizontally, and diagonally) oriented subsets. A
unique basis for each of these three subsets can represent and
exploit the statistical dependencies among the color compo-
nents within that subset in a better way. It is favored if the
R-D cost is reduced as a consequence.

To improve the coding performance, a final decision is made
as to whether to project each subset of coefficients onto the
fixed YCrCb basis1 instead of the signal dependent KLT basis.
The fixed basis is favored over the KLT basis if the R-D cost
of the fixed basis is smaller due to excessive side information
for coding the KLT basis vectors.

While the set of coefficients of the high frequency subbands
are partitioned into subsets with each subset represented by
its own unique KLT basis, the lowest frequency subband
coefficients are not partitioned, but just represented by a single
unique basis. The side information for partitioning the lowest
frequency subband is hard to justify, since the number of
bits coded for its coefficients is typically very small. On
the contrary, the mean values of the lowest frequency DWT

1Technically, the applied transformation slightly differs from the RGB-
YCrCb transformation in that no bias and range limits are applied.
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coefficients are coded as side information for the proper
application of the 1-D KLT spectral transform since these
mean values are generally significantly nonzero.

C. Coding of the Coefficients with CSPIHT or JPEG2000

Both the spatial 2-D DWT and the spectral 1-D KLT
compact the signal energy to a small number of transform
coefficients. Superior coding performance can be achieved if
this nonuniform distribution of the signal energy is exploited
by an efficient bit allocation strategy. Toward this end, one
may employ a set partitioning-based wavelet coefficient coding
scheme for color images [4], [6] that visits (and thereby
represents) large magnitude coefficients early in the coding
process and explicitly or implicitly allocates rate to the spectral
as well as the spatial components.

The well-known grayscale image coding method SPIHT
[1] encodes and transmits wavelet coefficients in multiple
coding passes corresponding to bitplanes (in the order from
the most significant to the least significant). In each coding
pass, only the wavelet coefficients with magnitudes exceeding
a certain threshold (significant coefficients) are encoded. The
coefficients are ordered in hierarchies, called SOTs, with roots
in the lowest frequency subband, branching successively into
higher frequency subbands at the same spatial orientation. The
most significant bit of a significant coefficient is encoded by
identifying its location via recursively subdividing the spatial
orientation tree into smaller subtrees and single coefficient
sets. In subsequent passes, the refinement bits (lesser sig-
nificant bits) of a significant coefficient are also coded by
successive approximation quantization. The algorithm has high
performance due to representation of large sets of zero bits of
coefficients by a single symbol.

Since the performance of the benchmark method [4] is
generally inferior to that of CSPIHT [6] for DWT with few
levels or for very low coding rates, CSPIHT has been adopted
for jointly coding the coefficients of the three spectral planes.

A second alternative that can be employed here is the block-
based wavelet coefficient encoding strategy of JPEG-2000.
JPEG-2000 determines a sequence of R-D operating points
for the coding of each block of coefficients and the coding
process for each block is truncated at the operating point with
the minimum Lagrangian R-D cost.

III. R-D Optimized Adaptive Transform Design

Let the rate equivalent of the R-D cost estimate
at the R-D operating point (R, D) be defined as
Ĵ = D̂/ŝ + R̂, where D̂, R̂, and ŝ are estimates of the
distortion, rate, and the absolute value of the slope at
this point, respectively. This section first treats how these
estimates are obtained for wavelet-based coding in JPEG-2000
or CSPIHT.

A. Distortion, Rate, and Slope Estimates

The expected distortion of the successive approximation
quantizer with a threshold (step size) of � can be expressed

as a weighted sum of the conditional expected distortions for
the insignificant and significant coefficients as follows:

Dcoef (�) = E
[|X − X̂|2||X| < �

]
Pr{|X| < �} (1)

+ E
[|X − X̂|2||X| ≥ �

]
Pr{|X| ≥ �}

where

E
[|X − X̂|2||X| < �

]
=

∫ �

−�
|x|2fX(x||X| < �)dx

E
[|X − X̂|2||X| ≥ �

]
= 2

∑S/2
k=1

∫ (k+1)�
k�

|x − (k + 0.5)�|2
·fX(x||X| ≥ �)dx

where X and X̂ are the original and reconstructed coefficient
values, and S is the number of quantization intervals besides
the central bin. The density fX(x) is commonly modeled as
Laplacian. Let Mn be the number of significant coefficients out
of a set of n coefficients. By substituting the first integral in
(1) with the sum over the square magnitudes of insignificant
coefficients, and analytically integrating the second integral,
the distortion estimate is formed in [18] as follows:

D̂coef (Mn) =
1

n
(

n∑
i=Mn+1

|x(i)|2 +
Mn

4λ2
h(K, S)) (2)

where K = λ�, x(i) is the coefficient of ith largest magnitude,
λ is the parameter of the Laplacian distribution estimated as
the inverse of the mean magnitude of a coefficient, and

h(K, S) =
(1 − e− KS

2 )

eK − 1
(K2 − 4K + 8 − e−K(K2 + 4K + 8)).

Although not stated in [18], the estimate in (2) is valid
at operating points on the boundary Mn = Mn,� between
two coding passes due to all significant coefficients having
the same expected distortion of h(K, S)/(4λ2). If not all of
n coefficients were coded at threshold value �, but say n2�

were coded at threshold value 2�, and n� = n − n2� were
coded at threshold value �, (2) could be modified accordingly
if Mn�

and Mn2�
were also known. The difficulty here is that

the scan order of the coefficients depends on the significant
coefficients in previous passes and even the distribution of n

to n� and n2� for each set at any operating point is hard to
predict before actual coding. Therefore, throughout this paper,
(2) is employed only at the coding pass boundaries.

Prior to the actual encoding, the distortion may also be
determined at the coding pass boundaries by a computationally
more expensive, but also more exact alternative to the estimate
provided by (2). Specifically, the quantization strategy of
the specific wavelet coefficient coding scheme (SPIHT or
JPEG2000) is simulated. On the contrary, the estimate for the
rate of the DWT coefficients prior to their coding, given in
[19] (or [18]) is as

R̂coef (Mn) =
C

n
Mn (3)

is only approximate. Even though the assumption of linearity
of the dependence of rate on Mn is valid for most images, the
linearity constant C is in a wide range of 3–7. In [18] and
[19], the values employed for C are 6.6 and 5.5, respectively.

The total rate estimate for coding a total of N coefficients
in the entire image can be expressed as

R̂tot = R̂coef (MN ) + Rsideinfo.
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Fig. 3. Distortion-rate characteristic between two adjacent coding pass
boundaries (black dots) is shown by the solid thin curve. Symmetric form
of the slope estimate at the boundary given in (8) is suggested by the solid
thick lines. It is more appropriate for interpolation between two boundaries
than the asymmetric form in (4) suggested by the dotted lines above each
boundary.

Side information rate, Rsideinfo, consists of the number of
bits necessary to convey to the decoder the quadtree structure
(1 bit for each internal node of the quadtree), one flag bit for
each subset of the final partition that signals whether a fixed or
a signal dependent KLT basis is used, and the bits representing
the components of the KLT basis vectors.

For each KLT basis, only two components of two of the
basis vectors are coded by representing them in a polar
coordinate system. The radial component is coded with 12 bits
precision and the angular component is coded with a precision
that increases linearly from 6 to 8 bits with radius. The third
component of these vectors is derived by applying the unit
norm property. The third vector is derived as the cross product
of the other two vectors.

The absolute value of slope s =
∣∣dDcoef /dRcoef

∣∣ is estimated
as

ŝ(Mn) =
D̂coef (Mn) − D̂coef (Mn − 1)

R̂coef (Mn − 1) − R̂coef (Mn)
(4)

= C−1[|x(Mn)|2 − h(K, S)/4λ2]

≈ C−1[(E [|X| |� ≤ |X| < 2�])2 − h(K, S)/4λ2].

Unlike (2), the above estimate is valid for any oper-
ating point Mn belonging to coding pass with threshold
value �. Note that the substitution of the magnitude of
the coefficient with the conditional expectation is legiti-
mate since the coefficients becoming significant within a
pass are not ordered by magnitude. It can be shown that
E [|X|| � ≤ |X| < 2�] = �

(
1
K

+ 1−2e−K

1−e−K

)
. Typically, for even

the highest threshold values employed to attain high rates,
average coefficient magnitudes are such that K ≤ 1, which
confines the conditional expectation to the range [1.4�, 1.5�].
Despite this finding, the conditional expectation is well ap-
proximated by � in [18] and [20] for operating points at (or
near) the coding pass boundary. This is due to the fractional
bitplane coding feature of JPEG2000 and SPIHT that yields
a smaller actual slope than that predicted by (4) for operating
points at the coding pass boundary (the solid line through the
point Mn,� in Fig. 3 has smaller slope than the dotted line).

B. Iterative Cost Minimization Procedure

The proposed transform is the collection of representations
at the leaf nodes of a quadtree. Each quadtree leaf node corre-
sponds to a subset of spatially oriented coefficients across all
high frequency subbands. For each such subset at a leaf node
indexed with letter t, let Ĵt,i be the rate equivalent of the R-D

Fig. 4. Illustration of the R-D cost changes as a result of pruning candidate
subtrees. Among all candidate subtrees, the best subtree for pruning yields an
operating point that falls on the lowest dashed line with slope ŝ.

cost estimate for employing the ith candidate representation.
The best candidate representation that is actually employed for
leaf node t satisfies i∗(t) = arg min

i
Ĵt,i.

In this paper, two candidate representations are obtained
by employing a fixed or signal dependent basis for the entire
set of coefficients. Seven other candidates are obtained by
partitioning this set into three directionally oriented subsets
and representing each subset by a fixed or a signal dependent
basis. Note that the combination of representing all three
directionally oriented subsets with the fixed basis is equivalent
to representing the partitioned set with the fixed basis.

A subtree of the quadtree is pruned off by merging the
subsets at the leaf nodes of the subtree into a larger set
and employing the best of nine candidate representations for
this set. In Fig. 4, the thick curve is a distortion versus rate
characteristic associated with a transform before pruning the
quadtree. The operating point at the target rate is indicated
by a black dot. Each thin curve is the distortion versus rate
characteristics associated with a candidate transform after
pruning off a subtree from the quadtree. Let us assume that
ŝ, the absolute value of the distortion-rate slope estimate at
the operating point, does not change with a pruning. Each
dashed line is a set of points of equal R-D cost. Pruning of
the best candidate subtree by the proposed adaptive transform
method yields a new operating point a with the smallest
R-D cost. Note that, as suggested by the slopes of dotted
light arrows in opposite directions ending at two candidate
operating points a and b in Fig. 4, δD̂coef /δR̂tot for two
candidate prunings might be equal despite a large difference
in cost change between the two. An acceptable pruning must
satisfy δĴ = Ĵpost − Ĵprev = δD̂coef /ŝ + δR̂tot < 0 where
Ĵprev and Ĵpost are the cost estimates before and after the
pruning. This requirement is equivalent to the requirements
δD̂coef /δR̂tot < −ŝ if δR̂tot > 0, and δD̂coef /δR̂tot > −ŝ if
δR̂tot < 0 which are satisfied by a transition to a, but not
b in Fig. 4. On the contrary, if ŝ changes with a pruning,
δD̂coef /δR̂tot cannot be reliably used as a pruning criterion.

For each merge (pruning), a substantial complexity re-
duction is made possible by approximating δR̂coef (MN,�),
the change in the rate estimate for the entire image with
δR̂coef (Mn,�), the change in the rate estimate for only the
merged sets containing n coefficients. Note that, the coding of
disjoint sets of a partition are loosely coupled in the sense that
altering the basis inside a set changes the probability models
for the coded symbols which may affect the coding process
of other sets. In practice, the basis and partitioning decisions
made by using δR̂coef (Mn,�) yield coding gains that are nearly
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as good as those made by using δR̂coef (MN,�). On the contrary,
for each merge, the change in the mean square error distortion
for the entire image is exactly equal to the change in the the
mean square error distortion for only the merged sets, i.e.,
δDcoef (Mn,�) = δDcoef (MN,�), even though it may be that
δD̂coef (Mn,�) �= δD̂coef (MN,�).

A simple design procedure for the adaptive transform can
now be prescribed; at the initial step, the entire set of high
frequency coefficients are partitioned into the smallest sub-
sets where each subset is a collection of spatially oriented
blocks of coefficients. The best of nine representations is
employed for each subset. At each following iterative step,
the cost change δĴ(v) = Ĵpost(v) − Ĵprev(v) for each possible
candidate merge (subtree pruning) is evaluated by letting
Ĵprev(v) =

∑
w∈L(v) Ĵw,i∗(w), Ĵpost(v) = Ĵv,i∗(v) where L(v) is the

set of leaf nodes of the subtree rooted at node v. The merge
at internal node v∗ = arg min

v
δĴ(v) is performed. Iterations

continue until the minimum cost change is positive.

IV. Proposed Coding Method that Just Achieves

the Target Rate in Two Iterations

One drawback of the method discussed in Sections II and III
is that before encoding the coefficient values for a given target
coding rate, it is not possible to determine the final threshold
value � that just achieves this rate. Within the context of the
successive approximation quantizers of CSPIHT and JPEG-
2000, the threshold value � is said to just achieve a target
coding rate if the maximum coding rate for a quantizer with
step size � exceeds the target coding rate, but the maximum
coding rate for a quantizer with step size 2� comes short
of the target coding rate. Let the final threshold value that
just achieves the target coding rate be designated as �p. The
adaptive transform should be designed by taking � = �p in the
distortion, rate, and slope models of (2)–(4). Using smaller �

values such as �p2−1, �p2−2, . . . yields adaptive transforms
that are inferior to that for � = �p.

In general, to just achieve a given target coding rate,
more than one coding iteration is needed. In a preliminary
publication [20] of the method discussed in Sections II and
III, a trivial exhaustive search scheme for �p is implemented
that exponentially decreases final � with each iteration as
� = �02−i until � = �p just achieves the target rate. The
number of iterations to attain �p like this could be infeasible
for low complexity encoder operation at high coding rates.

A new scheme, that limits the complexity to two coding
iterations, is proposed in this paper for CSPIHT-based encod-
ing. For each i = 0, 1, 2, . . . , I let �i = �02−i. The steps of
the proposed scheme are as follows.

1) Initial step.

a) The target rate Rtar is specified by the user.
b) All 2-D DWT coefficients of the color planes are

spectrally transformed by a single KLT basis. Let
Rtar

coef = Rtar − Rsideinfo.
c) For each i = 0, 1, 2, . . . , I: MN,�i

, number of
significant coefficients that exceed �i, are deter-
mined to yield the rate estimate R̂coef (MN,�i

) by
using (3).

d) �̂p is initialized: �̂p = max
{i:R̂coef (MN,�i

)≥Rtar
coef

}
�i.

2) For each of two coding iterations.

a) The adaptive transform is designed by employing
rate and slope estimates based on the previously
determined �̂p and applied to spectrally transform
the 2-D DWT coefficients.
Rtar is updated: Rtar

coef = Rtar − Rsideinfo.
b) The coefficients are CSPIHT encoded at rate

Rcoef (�I) in the first and Rtar
coef in the second

iteration.
c) For each i = 0, 1, 2, . . . , I, the rate Rcoef (�i) at the

end of the pass for threshold �i is determined.
d) �̂p is updated: �̂p = max

i:Rcoef (�i)≥Rtar
coef

�i.

The bitstream generated in the second CSPIHT encoding of the
coefficients is the actual transmitted bitstream. Experiments on
all the test images at all the rates tested have shown that �̂p

convergences in two coding iterations to the �p value given
by the trivial exhaustive search scheme.

In the first coding iteration of the proposed scheme, the
estimates are obtained with (3) and (4) as before. In the second
iteration, the estimates are optimized by using data collected
in the first iteration. Let p� and 1−p� be the probabilities of
coding and not coding, respectively, a coefficient in the final
coding pass at rate Rtar

coef . The value of p� is estimated as
the fraction of the number of coefficients coded in the final
coding pass of the first coding iteration. For this purpose, each
coefficient coded in this pass is tagged to be counted later on.

In the second coding iteration, the proportionality constant,
chosen in an ad hoc manner in [18] and [19] (as 6.6 or 5.5),
is adjusted adaptively as follows:

C =
R1 − R1

sideinfo

(p�M1
N,� + (1 − p�)M1

N,2�)/N
.

In this equation, R1 and R1
sideinfo are the rate and side informa-

tion rate, respectively, and M1
N,� and M1

N,2� are the number
of significant coefficients in the entire image at the end of the
final pass and at the end of the pass before the final pass,
respectively, in the first coding iteration.

The estimates in (2)–(4), that were employed in [20],
are inaccurate especially when p� is small. More accurate
estimates are obtained by interpolating between the estimates
for the final pass and the estimates for the pass before the final
one in the second coding iteration. Specifically, let M2

n,� and
M2

n,2� be the number of significant coefficients out of a set of
n coefficients at the end of the final pass (designated by �)
and at the end of the pass before the final pass (designated by
2�), respectively, in the second coding iteration (designated
by superscript 2). The modified estimates used in the design
of the adaptive transform in the second coding iteration are

D̂2
coef (M2

n,�, M2
n,2�) = p�D̂coef (M2

n,�) (5)

+ (1 − p�)D̂coef (M2
n,2�))

R̂2
coef (M2

n,�, M2
n,2�) = p�R̂coef (M2

n,�) (6)

+ (1 − p�)R̂coef (M2
n,2�)
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ŝ2(M2
n,�, M2

n,2�) = p�ŝ(M2
n,�) + (1 − p�)ŝ(M2

n,2�) (7)

where the distortion versus rate tradeoff at the end of the
coding pass for the threshold value � is defined as

ŝ(M2
n,�) ≈ 1

2

[
D̂coef (M2

n,�) − D̂coef (M2
n,� − 1)

R̂coef (M2
n,� − 1) − R̂coef (M2

n,�)
(8)

+
D̂coef (M2

n,� + 1) − D̂coef (M2
n,�)

R̂coef (M2
n,�) − R̂coef (M2

n,� + 1)

]

= C−1
(

(
∣∣x(M2

n,�)
∣∣2

+
∣∣x(M2

n,� + 1)
∣∣2

)/2

− (h(K, S) + h(K/2, 2S + 1))/8λ2
)

≈ C−1
(
((E [|X| |� ≤ |X| < 2�])2

+ (E
[|X| |�/2 ≤ |X| < �

]
)2)/2

− (h(K, S) + h(K/2, 2S + 1))/8λ2
)
.

Fractional bitplane encoding feature of SPIHT yields a
distortion-rate characteristic that falls below the straight line
connecting two adjacent coding pass boundaries. As shown in
Fig. 3, a two-sided symmetric form of the slope in (8) better
interpolates the slope at intermediate operating points between
these boundaries than the asymmetric form in (4).

It must be noted that the p� value used in the interpolations
of the rate and slope estimates of each set is common to all
the sets rather than uniquely estimated for each set. A set
conditional estimate of the probability of a coefficient coded
at the final coding pass can also be obtained during the first
coding iteration in a manner similar to the one described
above, but is not robust enough for reliably predicting the
fraction of coded coefficients in a set in the second iteration.

V. Experimental Results and Discussion

In this section, we report and discuss results of simulations
conducted to compare the compression performance of com-
pression systems that integrate the adaptive transform and the
coefficient coding schemes of CSPIHT or JPEG2000 against
the performances of several reference compression systems.

A large set of 32 color images has been used to evaluate
the compression performances. Twenty-four of the images are
the 768×512 or 512×768 Kodak true color 24 bit images,
six of them are the 512×512 24 bit images, Lena, Baboon,
Tiffany, Sailboat, Airplane, and Pepper, and the other two are
the high resolution 2048×3072 24 bit images artificial and
hdr. Throughout the simulations, the DWT filters used are the
CDF 9/7 biorthogonal filters.

Let dγ be the mean squared error of the color or spectral
plane γ . By letting d̄ = dY , d̄ = (dU + dV )/2, and d̄ = (dR +
dG + dB)/3, the peak signal-to-noise ratios (PSNRs) of the Y
component plane, UV component planes, and the color image
are evaluated as

PSNRdB = 10log10
(
(255)2/d̄

)
. (9)

Fig. 5 presents results obtained on several images with an
implementation employing 2-D DWT, the adaptive transform
introduced in Sections II and III and the JPEG 2000 codec

Kakadu [21] for coding the resulting transform coefficients.
Since the order of the transform operations proposed here
does not agree with the order of the transform operations in-
side Kakadu (multi-component transform followed by DWT),
these operations are performed separately outside of Kakadu
and disabled inside Kakadu by defining the multi-component
transform as an identity matrix and setting Clevels=0 for DWT.
The ith distortion-rate point is attained by setting the Qstep
value as Q02−i. A single coding iteration is run to attain
the maximum coding rate for the choice of the quantization
step size used. For comparison, corresponding results are also
presented for the JPEG 2000 Kakadu implementation with the
multi-component transform and DWT enabled inside Kakadu
by defining the multi-component transform as the single KLT
transform matrix derived from the entire image. The Qderived
option that relates the quantization step sizes to the LL
subband’s step sizes was enabled in both implementations. On
certain images, the coding gain with the use of the adaptive
transform in place of the single KLT transform is observed to
increase progressively with rate upto as much as 2 dB.

The next set of results have been collected with the
proposed method (system) described in Sections II–IV that
achieves precise rate control in two coding iterations and
several other methods for comparison. All methods employ
CSPIHT for coding the transform coefficients. “Single spatial
domain KLT basis” refers to the application of a single
spectral KLT transform before the spatial DWT and is
commonly employed in other papers such as [4] and [6]. In
“single DWT domain KLT basis,” the spatial DWT precedes
the spectral KLT transform. The “two DWT domain KLT
bases” applies a basis each to the low and high frequency
subbands and is equivalent to a simplified version of the
proposed method with a quadtree depth of zero. The proposed
method, which is termed as “adaptive transform,” applies
more than one bases to the high frequency coefficients by
spatially and directionally partitioning them, and allows fixed
basis as well as KLT basis use. The performances at various
rates ranging from 0.05 b/p to 2.5 b/p are reported in Table
I as the average of the PSNRs of Y and UV components of
the 32 images. In Table II, the number of times the proposed
method yields a performance higher than each of the other
methods is reported for the same set of rates considered.

The performance gain of the “two DWT domain KLT bases”
over the “single spatial domain KLT basis” increases with
rate upto as much as an average of 0.65 dB in Y and an
average of 0.95 dB in U and V components at 2.5 b/p. Most
natural images contain significant high frequency content that
is distributed across the color planes differently than the low
frequency content. Therefore, it is important to capture the
different spectral dependencies among the color components
of the coefficients of the low and high frequency subbands
with different bases.

The performance gain of the “adaptive transform” over the
“single spatial domain KLT basis” increases with rate upto as
much as an average of 0.9 dB in the Y component and an av-
erage of 1.35 dB in the U and V components at 2.5 b/p. In this
case, the large side information rate due to the transmission
of a large number of bases vectors for a complex partition is
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TABLE I

Performances (average over 32 images) of the proposed and

reference methods at various rates.

Average PSNR(dB) of Y Plane, UV Planes
Rate
(b/p)

Single Spa-
tial Domain
KLT Basis +
CSPIHT[6]

Single DWT
Domain
KLT Basis +
CSPIHT

Single Spa-
tial Domain
KLT Basis +
JPEG2000

Two DWT
Domain
KLT Basis +
CSPIHT

Adaptive Transform
+ CSPIHT

Sim. of Qua-
ntization

Distortion
Estimate (2)

0.05 27.03, 37.19 27.02, 37.20 26.96, 37.19 27.01, 37.22 27.03, 37.31 27.01, 37.32
0.10 28.93, 38.67 28.92, 38.67 28.87, 38.79 28.93, 38.76 28.96, 38.91 28.94, 38.87
0.25 32.01, 40.76 32.01, 40.79 31.98, 40.93 32.04, 41.01 32.09, 41.26 32.08, 41.23
0.50 35.02, 42.66 35.02, 42.70 34.99, 42.82 35.09, 43.08 35.17, 43.35 35.14, 43.36
0.75 37.11, 43.93 37.13, 44.00 37.14, 44.06 37.23, 44.45 37.32, 44.73 37.26, 44.77
1.00 38.79, 44.89 38.82, 44.99 38.84, 45.03 38.96, 45.48 39.08, 45.77 39.01, 45.87
1.50 41.42, 46.39 41.51, 46.56 41.56, 46.50 41.70, 47.11 41.83, 47.42 41.78, 47.58
2.00 43.45, 47.58 43.63, 47.85 43.70, 47.75 43.89, 48.40 44.04, 48.77 43.99, 48.96
2.50 45.21, 48.53 45.53, 48.91 45.60, 48.76 45.86, 49.48 46.10, 49.87 46.05, 50.17

more easily afforded at high rates. On the contrary, the average
gain of the “adaptive transform” over the “two DWT domain
KLT bases” is limited to 0.25 dB in Y component and 0.4 dB
in U and V components at medium to high rates since not
all images have local regions of distinct color transitions that
can be exploited with the allocation of unique bases to these
regions. For example, in Kodak color images number 5 and
number 8, the sharp color transitions of contours of motobikes
and roofs occur in close proximity and similar high frequency
content occurs over most of these images which cannot be
isolated distinctively in local regions. Moreover, even when
such an isolated local region of distinct color transition does
exist in an image, it need not coincide with a block structured
subset of the finest quadtree partition. The highest gains
with the “adaptive transform” have been observed for the
artificial image which has sharp color transitions along edges
of artificial objects that can be isolated in local regions.

The last two columns of Table I show that the distortion
estimate of (2) compromises average PSNR of Y component
only slightly if it is used in place of the simulation of the
quantization strategy that exactly determines distortion. On the
contrary, the slope estimates in (4) or (7) and (8) are even less
sensitive to the error in the distortion model of (2) and the use
of exact distortion values in forming the slope estimate does
not yield an added benefit.

Fig. 6 shows the unified spatial partitioning of the high
frequency subband coefficients for a coding rate of 0.5 b/p
overlayed on top of the original Lena image. A perceptible
visual quality advantage is observed in the reconstruction of
the Lena image obtained with the “adaptive transform” over
the reconstruction obtained with the “single spatial domain
KLT basis.” The advantage is more conspicuous at the fine
texture areas on the hat. It is also observed that the texture
is slightly better reconstructed with the “adaptive transform”
than “two DWT domain KLT bases.”

In Fig. 7, the reconstruction of a section of the high
resolution image artificial coded at 0.1 b/p with the “adaptive
transform” displays a marked quality advantage when com-
pared to the reconstructions with the “two DWT domain KLT
bases” and especially the “single spatial domain KLT basis.”
CSPIHT coding of transform coefficients does not appear to
perform worse than JPEG2000 coding for this image either.

Fig. 5. PSNR (dB) versus rate (b/p) curves for several of the tested images
obtained with the adaptive transform introduced in Sections II and III (square)
and the single KLT transform derived from the entire image (diamond). The
transform coefficients were coded with JPEG-2000 Kakadu implementation
in both cases.

Fig. 6. Top: (a) Spatial partitioning (at 0.5 b/p) of high frequency subband
coefficients overlayed on the original Lena image. (b) Enlarged part of Lena’s
hat. Bottom: Corresponding reconstructions at 0.5 b/p. (c) “Single spatial
domain KLT basis” [6] (overall image Y-PSNR = 37.13 dB, UV-PSNR =
39.66 dB). (d) Single spatial domain KLT followed by JPEG-2000 coding
of coefficients (overall image Y-PSNR = 36.16 dB, UV-PSNR = 39.54 dB).
(e) “Two DWT domain KLT bases” (overall image Y-PSNR = 37.26 dB, UV-
PSNR = 39.80 dB). (f) Proposed “adaptive transform” (overall image Y-PSNR
= 37.31 dB, UV-PSNR = 39.95 dB).

The rationale for the nonuniform partitioning of the coeffi-
cients in the “adaptive transform” is seen in Fig. 8. The perfor-
mances with various number of levels of uniform partitioning
fall short of the performance of nonuniform spatial partitioning
at either the low or the high rates. Additionally, the number of
levels giving the best R-D characteristic depends on the coded
image.

Let the fractional error in estimating the rate of the co-
efficients, Rcoef = Rtot − Rsideinfo, as R̂coef be denoted as
ε = (Rcoef − R̂coef )/Rcoef . The average εs obtained with
the rate estimation equations of (3) and (6) over the set of
32 images at the nine rates reported in Table I are 0.480 and
0.007, respectively. The modified rate estimate of (6) brings a
major improvement over the originally proposed rate estimate.

Fig. 9 illustrates the tradeoff between the performance gain
and the encoding complexity. The average runtime figures
have been obtained on the six 512×512 resolution images
on an Intel Core2 T7700 system with 2 GB memory running
Windows Vista. The “two DWT domain KLT bases” yields
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Fig. 7. Top: (a) Original 2048 × 3072 high resolution image artificial.
(b) 217 × 532 section of the image. Middle and bottom: Corresponding
reconstructions of the section at 0.1 b/p. (c) “Single spatial domain KLT basis”
[6] (overall image Y-PSNR = 36.47 dB, UV-PSNR = 41.04 dB). (d) “Two
DWT domain KLT bases” (overall image Y-PSNR = 36.57 dB, UV-PSNR
= 41.12 dB). (e) Single spatial domain KLT followed by JPEG-2000 coding
of coefficients (overall image Y-PSNR = 35.72 dB, UV-PSNR = 40.92 dB
at 0.1 b/p). (f) Proposed “adaptive transform” (overall image Y-PSNR =
36.92 dB, UV-PSNR = 42.50 dB).

Fig. 8. Comparison of the performances of nonuniform and uniform spatial
partitioning. In all cases, each subset is represented by a unique KLT basis
and the transform coefficients are coded by CSPIHT.

Fig. 9. Performance versus complexity for the “single spatial domain KLT
basis,” the “two DWT domain KLT bases,” and the “adaptive transform” at
various maximum quadtree depths.

more than half the gain of the “adaptive transform” over the
“single spatial domain KLT basis” with only a slight increase
in complexity. With substantially more increase in complexity,
“adaptive transform” provides some more performance gain
over the “two DWT domain KLT bases.” On the contrary,
imposing limits on the maximum quadtree depth, and thereby

Fig. 10. Impact of the chrominance gain on subjective quality. (a) 225 × 70
section of Kodak true color image number 18. (b) Corresponding reconstruc-
tion with the proposed method (overall image Y-PSNR = 28.117 dB, UV-
PSNR = 38.60 dB). (c) Corresponding reconstruction with the “single spatial
domain KLT basis” [6] (overall image Y-PSNR = 28.094 dB, UV-PSNR =
37.91 dB).

on the number of precomputed KLT bases, allows one to
employ the “adaptive transform” in a complexity scalable way.
The average decoder runtime was measured as 0.15 s for all
the 512×512 images and methods considered.

Finally, the relatively large gains in chroma components
with respect to the luminance component in Table I should
not be understated despite the general belief that human visual
system is less sensitive to the luma than the chroma. Kodak
true color number 18 reconstructions by the “single spatial
domain KLT basis” and the proposed method in Fig. 10
illustrate this point. The extra distortion in the UV components
with “single spatial domain KLT basis” manifests itself as
discolorations of the bright necklace and its ringing artifacts.

Similar coding gains with the “adaptive transform” over
the “single spatial domain KLT basis” are noted when 2-D
DWT is substituted with a hierarchically applied 2-D 8×8
fast DCT (second level is 8×8 DCT of DC coefficients of the
first level). The rate, distortion, and slope models proposed
in the previous sections serve the DCT coefficients equally
well. However, DCT domain coding is inferior to DWT
domain coding in average PSNR by about 1 dB–1.5 dB and
insignificantly reduces the overall computational complexity
which is largely due to the multitude of KLT transforms in
the proposed method.

Binary executable encoder and decoder files for the
proposed coding system as well as a demo batch file that
encodes an original portable pixel map (.ppm) color image
file, decodes back into a reconstructed .ppm image file
by appropriate file format conversions, and reports rate
and distortion figures may be downloaded from the URL
http://web.itu.edu.tr/ulugbayazit/adaptive transform demo.rar.
The software codec has been successfully tested on images
with dimensions that are multiples of 256.
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TABLE II

Frequency of the Average PSNR of the Image Reconstructed

with the Proposed ‘‘Adaptive Transform’’ Exceeding the

Average PSNR of the Image Reconstructed with Each of the

Other Methods at Various Rates

Out of 32 Images, No. of Images with Positive Gain Over
Rate
(b/p)

Single Spatial
Domain
KLT Basis +
CSPIHT [6]

Single DWT
Domain
KLT Basis +
CSPIHT

Two DWT
Domain KLT
Bases +
CSPIHT

Single Spatial
Domain
KLT Basis +
JPEG2000

0.05 12 13 28 20
0.10 20 20 26 21
0.25 27 26 25 23
0.50 30 30 23 26
0.75 32 31 25 25
1.00 32 31 25 28
1.50 32 32 27 26
2.00 32 32 28 28
2.50 32 32 28 30

VI. Conclusion

This paper has demonstrated that a locally adaptive color
spectral transform applied in the DWT domain across the color
planes of an image yielded a compression performance ad-
vantage that increases progressively with rate upto an average
of 0.9 dB in the Y and 1.35 dB in the U and V components
over a single global transform applied in the spatial domain.
This advantage is largely due to the application of separate
bases to the low and high frequency DWT coefficients. This
subset of the proposed method increased complexity only
slightly. The proposed method also employed quadtree-based
partitioning of high frequency coefficients into spatially and/or
directionally oriented subsets where the decisions to form the
partition as well as to employ fixed or signal dependent basis
within each subset are R-D optimized by the distortion and
rate models of [18] and a slope model derived from these
models. The application of a separate basis to each subset is
a fine-tuning for further enhancing the performance in return
for a considerable increase in computational complexity. The
complexity of the encoder that precisely achieved a given
target rate can be limited with two iterations of adaptive
transform design and subsequent CSPIHT coefficient coding.

The proposed method yielded limited improvement when
extended to be applied to multispectral/hyperspectral image
data, primarily due to the linear increase of side information
rate with the number of coded bands. In the future work, a
hierarchical application of the KLT transform for lowering the
side information rate for this kind of data will be investigated.
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