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ABSTRACT 

In [1], image adaptive linear minimum mean squared error (LMMSE) filtering was proposed as an enhancement layer 

color image coding technique that exploited the statistical dependencies among the luminance/chrominance or 

Karhunen Loeve Transform (KLT) coordinate planes of a lossy compressed color image to enhance the red, blue, green 

(RGB) color coordinate planes of that image. In the current work, we propose the independent design and application of 

LMMSE filters on the subbands of a color image as a low complexity solution. Towards this end, only the coordinates 

of the neighbors of the filtered subband coefficient, that are sufficiently correlated with the corresponding coordinate of 

the filtered subband coefficient, are included in the support of the filter for each subband. Additionally, each subband 

LMMSE filter is selectively applied only on the high variance regions of the subband. Simulation results show that, at 

the expense of an insignificant increase in the overhead rate for the transmission of the coefficients of the filters and 

with about the same enhancement gain advantage, subband LMMSE filtering offers a substantial complexity advantage 

over fullband LMMSE filtering. 
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1. INTRODUCTION

In order to achieve high compression performance in color image coding, statistical dependencies among the RGB color 

coordinate planes must be exploited. These dependencies are largely, but not completely in the form of linear 

dependencies. Subjecting the RGB coordinate planes to a signal independent luminance/chrominance or a signal 

dependent KLT linear coordinate transformation  results in largely or completely decorrelated coordinate planes which 

can be efficiently compressed by bit allocation. Yet, as noted in [2], these decorrelated planes still possess statistical 

dependencies among them such as large transitions that occur at the same spatial locations. 

      In the literature, a family of algorithms relies on vector quantization of the three RGB color coordinates to exploit 

the statistical dependencies among them for the color palette design problem. In [3] and [4], the initial palette was 

designed by assigning more quantization levels to the regions of the color space with larger numbers of pixels. This 

palette was later improved by the LBG (Linde-Buzo-Gray, [5]) algorithm. The same palette design problem was 

approached in [6] by designing a tree-structured vector quantizer that split the clusters at each tree node along the 

principal vector direction.  

      Recently, vector quantization of color coordinates of wavelet coefficients has been proposed in [7] and [8] as an 

attractive way to compress color images. In [8], magnitude ordering information for vectors of color coordinates of 

wavelet coefficients is coded by linking these vectors by the Spatial Orientation Trees (SOT) of Set Partitioning in 

Hierarchical Trees (SPIHT, [9]) algorithm. Significant vectors are further refined by multistage or lattice vector 

quantization. 

      A simpler, yet, effective color image compression method based on SPIHT is proposed in [10] which decorrelates 

the color coordinate planes by a luminance/chrominance or KLT transformation, and independently codes each 

luminance/chrominance or KL plane by SPIHT. A similar idea is utilized in [11] to independently code the 4:2:0 YUV 

planes by a cousin of SPIHT that forms the basis of a low implementation complexity variant of JPEG2000. In [10] and 

[11], the rate scalable codecs efficiently allocate bits to transform coordinate planes, but the magnitude dependencies 

among the coordinate planes are not exploited.   



      The SOT of EZW (Embedded Zerotree Wavelet, [12]) is extended to link up the YUV planes in [13] to take 

advantage of the magnitude dependencies among the transform coordinate planes. While the original SOT of [12] 

describes spatial relations for each of the YUV planes, each chrominance node of the SOT of [13]  is also a child node 

of the luminance node at the same location in the wavelet pyramid. Thus, since a luminance plane wavelet transform 

coefficient usually has a larger magnitude than a chrominance plane wavelet transform coefficient at the same spatial 

location, zerotrees (see [12] for a definition) in luminance components are likely to be accompanied by zerotrees in 

chrominance components and these zerotree symbols can be efficiently jointly coded or coded as a single zerotree 

symbol. Similarly, in [14], SOT’s of SPIHT are extended to link up the LL bands of luminance and chrominance planes. 

Such an approach yields an advantage over the simple one of [10] at low bit rates where no symbols need to be 

explicitly transmitted for the chrominance zerotrees in most cases. In [15], the magnitude ordering of KLT coordinates 

is incorporated into SPIHT for a better coding performance than that in [14]. 

      As an alternative to joint coding of the transform coordinate planes, [1] proposed to enhance the coordinates of a 

pixel by applying a LMMSE  filter with support extending across all coordinate planes as well as over the spatial 

neighbors of the pixel. This LMMSE filtering based enhancement layer coding technique was demonstrated to  

successfully exploit the statistical dependencies among the transform coordinate planes and thereby efficiently reduce 

the quantization noise. In traditional image processing applications, the support of the filter ([16, pg. 67]) used to 

transform the decoded luminance/chrominance (or KLT) coordinate planes to get reconstructed RGB color coordinate 

planes only covers the filtered pixel, and does not cover the sites of its neighbors. The work in [1] showed that inclusion 

of the correlated neighbors of the filtered pixel in the filter’s support is essential for the enhancement layer coding gain 

obtained by the LMMSE filter. 

      The major drawback of the design of an LMMSE filter with a large (spatial) support is the estimation of a large 

correlation matrix from the decoded image data samples with high complexity. The number of elements in the 

correlation matrix grows with the square of the size of the filter support. Secondly, since the original image data needed 

for the LMMSE filter design is available at the encoder, but not at the decoder, the method proposed in [1] requires the 

coding and transmission of each LMMSE filter coefficient to the decoder as overhead. Even though the marginal return 

(ratio of the decrease in distortion to the increase in rate) at a given rate due to the application of the method is 

significantly larger than that yielded by any color image coding method, highest marginal returns are obtained for small 

filter supports which cover only the most correlated neighbors. 

      Motivated by the theoretical basis in [17], we pursue independent application of an LMMSE filter to each subband 

of a color image in our current work. In [17], it was shown that independent (optimal) p’th order linear prediction from 

each subband of a signal yields a performance superior to p’th order (optimal) linear prediction from the fullband. On 

the other hand, since the design or application computational complexities are predominantly proportional to the 

number of data samples used for the design or application of a p’th order linear filter, (optimal) p’th order  linear 

prediction from each subband has roughly the same aggragate design or application computational complexity as 

(optimal) p’th order  linear prediction from the fullband. However, for our implementation of an enhancement layer 

coding technique, transmission of the coefficients of a p’th order linear filter for each subband requires too much 

overhead rate. A p’th order filter for each subband is deemed unnecessary since lower order filters for each subband still 

yield a performance advantage to p’th order fullband filtering (see “super-optimal” prediction error filter of [17]).  

      We judiciously select a filter support for each subband that is smaller in size than the filter support in the fullband 

and thereby aim to achieve low computational complexity at the expense of a graceful sacrifice in the enhancement 

layer coding gain. Since, as pointed out in [1], the correlations between the coordinates of the filtered pixel and the 

coordinates of the neighboring pixel is an important determinant of the LMMSE filtering gain, we include in the filter 

support of each subband only those decoded luminance/chrominance coordinates of neighboring subband coefficients 

that are sufficiently correlated with the corresponding decoded coordinates of the filtered subband coefficient. 

      Next section describes the design of the optimal linear filter from the subband coefficients of a color image. A 

mechanism for reducing complexity while gracefully lowering the enhancement gain by means of varying a correlation 

threshold is explained in Section 3. Prediction of the effect of quantization of the coefficients of the filters prior to their

design is studied in Section 4 . The simulation results of Section 5 provide a ground for comparing the proposed 



subband LMMSE filtering approach with the fullband LMMSE filtering approach of [1] on the complexity (run time) 

and performance (reconstruction PSNR) scales.   

2. LMMSE FILTERING OF YUV COORDINATES (OF SUBBAND COEFFICIENTS) FOR 

ENHANCED RECONSTRUCTION OF RGB COORDINATES  

Let the original RGB coordinate planes and the decoded YUV luminance and chrominance coordinate planes of an 

image subband be given. Without loss of generality to other coordinate systems such as YCrCb, YIQ or KLT, we shall 

be using the YUV coordinate system throughout the remainder of this paper. The original value of the RGB coordinate 

BGR ,, , and the decoded value of the  YUV coordinate VUY ,,  of the filtered subband coefficient at spatial 

location ji, , are denoted by ),( jix  and jir , , respectively. The optimal linear filter *g , used to enhance 

coordinate plane , satisfies 
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      For each  RGB coordinate , the minimization in Eqn. (1) is achieved by requiring the error ),(, jiugjix T  to 

be orthogonal to ),( jiu  in the statistical sense. This yields K  regression equations in K  unknowns expressed 

succinctly as 
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is the K  dimensional cross-correlation vector estimate.  

      The optimal filter 
*g can be determined by computing the matrix inverse 1

uuR  or by transforming the matrix 

uxuu rR |  to gI |  by Gaussian elimination. This operation takes place at the encoding end since uxr  can only be 

estimated at the encoding end from the original color image (subband) data. 

     As suggested in Figure 1, the computed coefficients of the subband LMMSE filter of plane   (components of 

vector *g ) are conveyed to the decoding end, where the filter is applied to get the enhanced reconstruction of the 

subband of plane . The design and application of the subband LMMSE filters are not coupled, and can be carried out 

fully in parallel. From Figure 1, we also note that the proposed subband LMMSE filtering approach does not require 

additional DWT or IDWT filtering operations, if it is to be applied at the rear end of a wavelet based image codec. 



     The above procedure was originally used in [1] to design an LLMSE filter on the fullband image where ),( jiu  was 

the K dimensional vector of decoded YUV coordinates of pixels in a square region centered at the filtered coefficient. 

In designing and applying LMMSE filters on image subbands, we employ only a subset of the decoded YUV 

coordinates of the neighboring coefficients in the square region. We discuss this next. 

3. DETERMINATION OF SUBBAND FILTER SUPPORTS  

Usually, edges that are not parallel to the direction of application of the high-pass filter used to obtain a subband can be 

captured in that subband. Therefore, one would expect very little correlation to exist between the decoded YUV 

coordinate of the filtered subband coefficient and the corresponding decoded YUV coordinate of the neighboring  

subband coefficient along the direction of application of the high-pass filter. Hence, the inclusion of the decoded YUV 

coordinates of such neighboring coefficients can be expected to contribute very little to the enhancement gain of the 

LMMSE filter. However, decoded YUV coordinates of neighboring coefficients along other directions may also be 

excluded from the filter support if edges along those directions do not exist in the image (or are not captured in the 

image subband). We employ an adaptive filter support determination strategy by including the decoded coordinate 0

of the neighboring coefficient at location ),( 00 jjii  in a square region centered at the subband coefficient at 

location ),( ji if its covariance 
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with the corresponding coordinate  of the coefficient exceeds a threshold. Increasing this threshold serves to trade-off 

linear filtering gain for lower computational complexity. 

       In Figures 2 and 3, we display two instances of 3x3 spatial masks determined for the LMMSE filters of each of the 

7 subbands of a two-level decomposition of color Lenna image for two different threshold values. Since the correlations 

between the YUV coordinates of a filtered coefficient and either of its two neighbors on its opposite sides are equal, 

neighboring coefficient coordinates are included in pairs in the filter supports. Typically, all coordinates of all neighbors 

in the lowest frequency subbands are retained in the filter supports even at very high thresholds. The decoded YUV 

coordinates of the filtered coefficient in each subband are not subjected to correlation thresholding and are 

unconditionally retained in the filter support.  

      High frequency subbands typically exhibit vast regions of low data variance which correspond to the smooth regions 

of the image, and small regions of high data variance which corresponds to the edges and textured regions in the image. 

As noted in [18], the LMMSE filter yields very little enhancement gain in the low variance regions of a subband. 

Therefore, to save modest complexity at the expense of very little sacrifice from enhancement gain, the LMMSE filter is 

designed only on data collected from the high variance regions and is applied to the same data in return. 

4. EFFECT OF FILTER COEFFICIENT QUANTIZATION ON THE ENHANCEMENT GAIN 

Once the coefficients of filters are determined by solving sets of regression equations, these coefficients need to be 

conveyed to the decoder as side information. It is of interest to know at what precision these coefficients need to be 

represented. In this section, we analyse the sacrifice from the enhancement gain due to the quantization of the 

coefficients of the LMMSE filters. For simplicity of analysis, we would like to relate the mean squared distortion of the 

enhanced subband to the mean squared distortion of the filter coefficients.  

      Let the vector of quantized coefficients of the filter for enhancing coordinate  be denoted as ĝ  so that  

egĝ

where e  is the vector of quantization error values in the coefficients of the filter. The enhanced coordinate  of pixel 

at location ji,  is given by 

),(),(~ jiugjix T



when the filter coefficients are at full (32 bit floating) precision. The enhanced coordinate  of pixel at location ji,  is 

given by 
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when the filter coefficients are quantized for a low precision representation. By linearity of the filters, the difference 

may be written as 
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By taking squares and expectation of both sides  
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where the inner expectation is over the realizations of the random vector e  given ),( jiu , the vector of decoded values 

of luminance and chrominance coordinates of the pixels in the filter’s support region, and the outer expectation is over 

),( jiu . We can assume that e  is independent of ),( jiu  and is zero mean. If we further assume that the quantization 

error in each filter coefficient is independent of the quantization errors in others and let the quantization errors for all 

coefficients have the same variance, we get 
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      In the above expression, the quantity, ),(),( jiujiuE T  is the expected energy of the coefficients of the subband in 

the support region of the filter for the enhancement of coordinate plane . If the filter coefficients are uniformly 

quantized with a quantization bin interval of length , then the loss in enhancement gain can be approximately 

expressed as 
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      Eqn. (2) can be used to obtain an estimate of the loss in enhancement gain due to fixed precision representation of 

the filter coefficients. This might be useful since computing the second order moment of Eqn. (2) has considerably less 

complexity than linear filtering the frames at full-precision to get an exact figure for what the enhancement gain would 

have been without any loss. Coefficients of different coordinate planes and/or subbands might need to be represented at 

different precisions if the goal is to jointly minimize the overhead rate expenditure and the loss in enhancement gain. 

However, in general, such a joint optimization and variable precision representation of the coefficients yields very little 

rate-distortion advantage when compared to fixed precision representation, since the overhead rates of interest are 

negligible. Therefore, joint minimization of  overhead rate expenditure and the loss in enhancement gain by variable 

precision representation of filter coefficients is not pursued in this work. 

5. EXPERIMENTAL RESULTS

For the simulations, the YUV planes of the 512x512 color image Lenna, and 1600x960 color image MIT000 (first 

frame of MIT color sequence) have been coded by the SPIHT algorithm of [9] as mentioned in [1]. The decoded YUV 

coordinate planes of these images are transformed by means of the simple standard YUV-RGB transformation  filter of 

[16, pg. 67] to get the reconstructed RGB planes, and the fullband LMMSE filter of [1] and the subband LMMSE filter 

proposed in this paper to get the enhanced RGB coordinate planes. The subband LMMSE filters are designed and 

applied only on the high variance regions of the subbands of a two-level wavelet decomposition of the decoded YUV 

planes. A subband coefficient is deemed to belong to a high variance region if the energy of the coordinates in a 3x3 

square region centered at the coefficient exceeds the experimentally determined threshold value of 270.  

      The results reported in Table 1 were obtained on Lenna coded at a rate of 0.2345bpp. When compared to the 

standard filtering, the fullband LMMSE filtering yields 0.1-0.4 dB improvements in the RGB planes at the expense of 

0.0034bpp overhead rate for the transmission of the coefficients. The 7 subband LMMSE filtering with the correlation 



threshold of Section 3 set at 0.2 yields gains in a similar range at the expense of 0.0073bpp overhead rate. The aggregate 

marginal returns (the ratio of the total distortion reduction to the total overhead rate) for fullband filtering and subband 

filtering are  3200. and 2054., respectively. The marginal return of the SPIHT codec is approximately  only 366. at this 

rate.

      In Table 1, the reported design and application run times represent the average time required to determine the 

LMMSE filters for all subbands of RGB planes, and the average time required to filter all coded subbands of RGB 

planes using these filters, respectively. These averages were obtained over 3 runs on a P4 3.0Ghz processor system with 

1Gb RAM and exclude the time for DWT and IDWT that are part of the SPIHT codec. The source code for subband 

LMMSE filtering makes multiple calls to the same function called once for each  by the source code for fullband 

LMMSE filtering. Therefore, it is legitimate to compare complexities based on run times. The number of elements in 

the correlation matrix being proportional to the square of the size of the filter support gains the subband LMMSE 

filtering approach a distinct advantage in design complexity due to few coordinates of neighboring coefficients 

exceeding the correlation threshold in high frequency subbands. 

      Table 2 shows similar results for MIT000. Here, the aggregate marginal return is significantly larger for LMMSE 

filtering approaches, since the number of image pixels is considerably larger whereas the number of overhead bits is 

approximately the same. 

      In Figures 4 and 5, we display the enhancement gain and the number of overhead bits for the two images as we vary 

the correlation threshold from  to 0 . In general, high aggregate marginal returns are observed when coefficients with 

high correlations are retained in the filter support and the aggregate marginal returns gracefully decline with the 

overhead rate. The highest aggregate marginal returns are not observed for the lowest overhead rates since the fixed rate 

transmission of a mask, that indicates which coordinates are retained in the supports of the filters, consumes a large part 

of the low overhead rates. Nevertheless, the curves staying well below the dotted lines drawn as references shows the 

advantage of selecting coefficients based on correlations. 

     In Table 3, the mean squared error values of reconstructed RGB planes, after enhancement with subband LMMSE 

filtering, are tabulated  for the two cases in which the filter coefficients are lossy compressed at the precision reported, 

and not compressed (represented at full  32 bits precision). The small difference is well predicted by Eqn. (2), but is a 

little larger probably because the scalar quantizer used to compress the coefficients has a dead zone of size 2 whereas 

the other bins are of size .

     In Figure 6, the luminance planes of the middle part of the original color image Lenna, its reconstruction after coding 

and decoding at 0.2345bpp, and its enhanced reconstruction with the subband filtering method are displayed for visual 

comparison. The subband filters attenuate ringing and serrations due to the loss or incorrect reproduction of the high 

frequency content with the SPIHT based codec. 
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Decoded image  Subband  

LMMSE filtering

Fullband

LMMSE filtering

Total Rate (bpp) 0.2345 0.2418 0.2379 

Blue 29.31 29.88 29.68 

Green 30.72 30.94 30.84 

PSNR

(dB)

Red 32.07 32.39 32.41 

Design  1240 12375 Run time 

(msec.) Application  406 609 

Table 1: Enhancement results - Lenna(512x512). 

Decoded image  Subband  

LMMSE filtering

Fullband

LMMSE filtering

Total Rate (bpp) 0.7918 0.7931 0.7923 

Blue 31.90 32.29 32.23 

Green 34.32 34.61 34.40 

PSNR

(dB)

Red 33.26 33.46 33.32 

Design  10917 73067 Run time 

(msec.) Application  2771 3583 

Table 2: Enhancement results - MIT000(1600x960). 

 Lossy comp. 

( 0005.0 )

32 bit  

full precision 

Predicted mse 

increase (Eqn. 2) 

Blue 38.6928 38.6838 0.006778 

Green 22.7419 22.7357 0.006814 MSE

Red 29.5756 29.5562 0.006804 

Table 3: Comparison of lossy and lossless compression of filter coefficients for enhancement of MIT000 (1600x960) where 

correlation threshold was set at 0.2. 
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Figure 1: The low level subband filters are designed at the encoder (left) and transmitted to the decoder (right) for enhanced 

reconstruction. 

Figure 2: Spatial masks that indicate which coordinates (YUV) of which neighbors are included in the spatial support of each 

subband filter of each output color component (RGB) plane.   (Lenna, correlation threshold=0.3)   



Figure 3: Spatial masks that indicate which coordinates (YUV) of which neighbors are included in the spatial support of each 

subband filter of each output color component (RGB) plane.   (Lenna, correlation threshold=0.1) 
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Figure 4: Enhanced reconstruction distortion vs. overhead rate parameterized by correlation threshold (low overhead rates correspond

to high thresholds) 
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Figure 5: Enhanced reconstruction distortion vs. overhead rate parameterized by correlation threshold (low overhead rates correspond

to high thresholds) 



        

Figure 6: When compared to the original Lenna image shown at the top, the artifacts are more pronounced in the circled regions of 

the decoded Lenna image (total coding rate 0.2345bpp) shown on the bottom left than the corresponding regions of the Lenna image

enhanced by subband linear filtering (total coding rate 0.2418bpp) shown on the bottom right. (Only the luminance component is 

shown).
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