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1. INTRODUCTION TO OR 

1.1 TERMINOLOGY 
The British/Europeans refer to "operational research", the Americans to "operations 

research" - but both are often shortened to just "OR" (which is the term we will use). 

Another term which is used for this field is "management science" ("MS"). The 

Americans sometimes combine the terms OR and MS together and say "OR/MS" or 

"ORMS".  

Yet other terms sometimes used are "industrial engineering" ("IE"), "decision science" 

("DS"), and “problem solving”. 

In recent years there has been a move towards a standardization upon a single term 

for the field, namely the term "OR". 

“Operations Research (Management Science) is a scientific approach to decision 

making that seeks to best design and operate a system, usually under conditions 

requiring the allocation of scarce resources.” 

A system is an organization of interdependent components that work together to 

accomplish the goal of the system. 

 

1.2 THE METHODOLOGY OF OR 
When OR is used to solve a problem of an organization, the following seven step 

procedure should be followed: 

Step 1. Formulate the Problem 

OR analyst first defines the organization's problem. Defining the problem includes 

specifying the organization's objectives and the parts of the organization (or system) 

that must be studied before the problem can be solved. 

Step 2. Observe the System 

Next, the analyst collects data to estimate the values of parameters that affect the 

organization's problem. These estimates are used to develop (in Step 3) and evaluate 

(in Step 4) a mathematical model of the organization's problem. 
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Step 3. Formulate a Mathematical Model of the Problem 

The analyst, then, develops a mathematical model (in other words an idealized 

representation) of the problem. In this class, we describe many mathematical 

techniques that can be used to model systems. 

Step 4. Verify the Model and Use the Model for Prediction 

The analyst now tries to determine if the mathematical model developed in Step 3 is 

an accurate representation of reality. To determine how well the model fits reality, one 

determines how valid the model is for the current situation. 

Step 5. Select a Suitable Alternative 

Given a model and a set of alternatives, the analyst chooses the alternative (if there is 

one) that best meets the organization's objectives.  

Sometimes the set of alternatives is subject to certain restrictions and constraints. In 

many situations, the best alternative may be impossible or too costly to determine. 

Step 6. Present the Results and Conclusions of the Study 

In this step, the analyst presents the model and the recommendations from Step 5 to 

the decision making individual or group. In some situations, one might present several 

alternatives and let the organization choose the decision maker(s) choose the one that 

best meets her/his/their needs. 

After presenting the results of the OR study to the decision maker(s), the analyst may 

find that s/he does not (or they do not) approve of the recommendations. This may 

result from incorrect definition of the problem on hand or from failure to involve decision 

maker(s) from the start of the project. In this case, the analyst should return to Step 1, 

2, or 3. 

Step 7. Implement and Evaluate Recommendation 

If the decision maker(s) has accepted the study, the analyst aids in implementing the 

recommendations. The system must be constantly monitored (and updated 

dynamically as the environment changes) to ensure that the recommendations are 

enabling decision maker(s) to meet her/his/their objectives.  

 

1.3 HISTORY OF OR 
(Prof. Beasley’s lecture notes) 

OR is a relatively new discipline. Whereas 70 years ago it would have been possible 

to study mathematics, physics or engineering (for example) at university it would not 

have been possible to study OR, indeed the term OR did not exist then. It was only 

http://www.ilkertopcu.net/


 

Y. İlker Topcu, Ph.D. (www.ilkertopcu.net) 
3 

really in the late 1930's that operational research began in a systematic fashion, and it 

started in the UK.  

Early in 1936 the British Air Ministry established Bawdsey Research Station, on the 

east coast, near Felixstowe, Suffolk, as the centre where all pre-war radar experiments 

for both the Air Force and the Army would be carried out. Experimental radar 

equipment was brought up to a high state of reliability and ranges of over 100 miles on 

aircraft were obtained. 

It was also in 1936 that Royal Air Force (RAF) Fighter Command, charged specifically 

with the air defense of Britain, was first created. It lacked however any effective fighter 

aircraft - no Hurricanes or Spitfires had come into service - and no radar data was yet 

fed into its very elementary warning and control system. 

It had become clear that radar would create a whole new series of problems in fighter 

direction and control so in late 1936 some experiments started at Biggin Hill in Kent 

into the effective use of such data. This early work, attempting to integrate radar data 

with ground based observer data for fighter interception, was the start of OR. 

The first of three major pre-war air-defense exercises was carried out in the summer 

of 1937. The experimental radar station at Bawdsey Research Station was brought 

into operation and the information derived from it was fed into the general air-defense 

warning and control system. From the early warning point of view this exercise was 

encouraging, but the tracking information obtained from radar, after filtering and 

transmission through the control and display network, was not very satisfactory. 

In July 1938 a second major air-defense exercise was carried out. Four additional radar 

stations had been installed along the coast and it was hoped that Britain now had an 

aircraft location and control system greatly improved both in coverage and 

effectiveness. Not so! The exercise revealed, rather, that a new and serious problem 

had arisen. This was the need to coordinate and correlate the additional, and often 

conflicting, information received from the additional radar stations. With the out-break 

of war apparently imminent, it was obvious that something new - drastic if necessary - 

had to be attempted. Some new approach was needed. 

Accordingly, on the termination of the exercise, the Superintendent of Bawdsey 

Research Station, A.P. Rowe, announced that although the exercise had again 

demonstrated the technical feasibility of the radar system for detecting aircraft, its 

operational achievements still fell far short of requirements. He therefore proposed that 

a crash program of research into the operational - as opposed to the technical - aspects 
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of the system should begin immediately. The term "operational research" [RESEARCH 

into (military) OPERATIONS] was coined as a suitable description of this new branch 

of applied science. The first team was selected from amongst the scientists of the radar 

research group the same day. 

In the summer of 1939 Britain held what was to be its last pre-war air defense exercise. 

It involved some 33,000 men, 1,300 aircraft, 110 antiaircraft guns, 700 searchlights, 

and 100 barrage balloons. This exercise showed a great improvement in the operation 

of the air defense warning and control system. The contribution made by the OR teams 

was so apparent that the Air Officer Commander-in-Chief RAF Fighter Command (Air 

Chief Marshal Sir Hugh Dowding) requested that, on the outbreak of war, they should 

be attached to his headquarters at Stanmore. 

On May 15th 1940, with German forces advancing rapidly in France, Stanmore 

Research Section was asked to analyze a French request for ten additional fighter 

squadrons (12 aircraft a squadron) when losses were running at some three squadrons 

every two days. They prepared graphs for Winston Churchill (the British Prime Minister 

of the time), based upon a study of current daily losses and replacement rates, 

indicating how rapidly such a move would deplete fighter strength. No aircraft were 

sent and most of those currently in France were recalled. 

This is held by some to be the most strategic contribution to the course of the war made 

by OR (as the aircraft and pilots saved were consequently available for the successful 

air defense of Britain, the Battle of Britain). 

In 1941 an Operational Research Section (ORS) was established in Coastal Command 

which was to carry out some of the most well-known OR work in World War II. 

Although scientists had (plainly) been involved in the hardware side of warfare 

(designing better planes, bombs, tanks, etc) scientific analysis of the operational use 

of military resources had never taken place in a systematic fashion before the Second 

World War. Military personnel, often by no means stupid, were simply not trained to 

undertake such analysis. 

These early OR workers came from many different disciplines, one group consisted of 

a physicist, two physiologists, two mathematical physicists and a surveyor. What such 

people brought to their work were "scientifically trained" minds, used to querying 

assumptions, logic, exploring hypotheses, devising experiments, collecting data, 

analyzing numbers, etc. Many too were of high intellectual caliber (at least four wartime 
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OR personnel were later to win Nobel prizes when they returned to their peacetime 

disciplines). 

By the end of the war OR was well established in the armed services both in the UK 

and in the USA. 

OR started just before World War II in Britain with the establishment of teams of 

scientists to study the strategic and tactical problems involved in military operations. 

The objective was to find the most effective utilization of limited military resources by 

the use of quantitative techniques. 

Following the end of the war OR spread, although it spread in different ways in the UK 

and USA. 

You should be clear that the growth of OR since it began (and especially in the last 30 

years) is, to a large extent, the result of the increasing power and widespread 

availability of computers. Most (though not all) OR involves carrying out a large number 

of numeric calculations. Without computers this would simply not be possible. 
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2. BASIC OR CONCEPTS 

"OR is the representation of real-world systems by mathematical models together with 

the use of quantitative methods (algorithms) for solving such models, with a view to 

optimizing." 

We can also define a mathematical model as consisting of: 

 Decision variables, which are the unknowns to be determined by the solution to the 

model.  

 Constraints to represent the physical limitations of the system 

 An objective function  

 An optimal solution to the model is the identification of a set of variable values which 

are feasible (satisfy all the constraints) and which lead to the optimal value of the 

objective function. 

An optimization model seeks to find values of the decision variables that optimize 

(maximize or minimize) an objective function among the set of all values for the 

decision variables that satisfy the given constraints. 

Two Mines Example 

The Two Mines Company own two different mines that produce an ore which, after 

being crushed, is graded into three classes: high, medium and low-grade. The 

company has contracted to provide a smelting plant with 12 tons of high-grade, 8 tons 

of medium-grade and 24 tons of low-grade ore per week. The two mines have different 

operating characteristics as detailed below. 

Mine     Cost per day (£'000)    Production (tons/day)  

                                                High     Medium     Low 

  X                180                        6             3            4 

  Y                160                        1             1            6 

Consider that mines cannot be operated in the weekend. How many days per week 

should each mine be operated to fulfill the smelting plant contract? 

Guessing 

To explore the Two Mines problem further we might simply guess (i.e. use our 

judgment) how many days per week to work and see how they turn out. 

• work one day a week on X, one day a week on Y 
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This does not seem like a good guess as it results in only 7 tones a day of high-grade, 

insufficient to meet the contract requirement for 12 tones of high-grade a day. We say 

that such a solution is infeasible. 

• work 4 days a week on X, 3 days a week on Y 

This seems like a better guess as it results in sufficient ore to meet the contract. We 

say that such a solution is feasible. However it is quite expensive (costly). 

We would like a solution which supplies what is necessary under the contract at 

minimum cost. Logically such a minimum cost solution to this decision problem must 

exist. However even if we keep guessing we can never be sure whether we have found 

this minimum cost solution or not. Fortunately our structured approach will enable us 

to find the minimum cost solution. 

Solution 

What we have is a verbal description of the Two Mines problem. What we need to do 

is to translate that verbal description into an equivalent mathematical description. 

In dealing with problems of this kind we often do best to consider them in the order: 

• Variables 

• Constraints 

• Objective 

This process is often called formulating the problem (or more strictly formulating a 

mathematical representation of the problem). 

Variables 

These represent the "decisions that have to be made" or the "unknowns". 

We have two decision variables in this problem: 

x = number of days per week mine X is operated 

y = number of days per week mine Y is operated 

Note here that x ≥ 0 and y ≥ 0. 

Constraints 

It is best to first put each constraint into words and then express it in a mathematical 

form. 

ore production constraints - balance the amount produced with the 

quantity required under the smelting plant contract 

Ore 

High   6x + 1y ≥ 12 
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Medium  3x + 1y ≥ 8 

Low   4x + 6y ≥ 24 

days per week constraint - we cannot work more than a certain maximum 

number of days a week e.g. for a 5 day week we have 

x ≤ 5 

y ≤ 5 

Inequality constraints 
Note we have an inequality here rather than an equality. This implies that we may 

produce more of some grade of ore than we need. In fact we have the general rule: 

given a choice between an equality and an inequality choose the inequality 

For example - if we choose an equality for the ore production constraints we have the 

three equations 6x+y=12, 3x+y=8 and 4x+6y=24 and there are no values of x and y 

which satisfy all three equations (the problem is therefore said to be "over-

constrained"). For example the values of x and y which satisfy 6x+y=12 and 3x+y=8 

are x=4/3 and y=4, but these values do not satisfy 4x+6y=24. 

The reason for this general rule is that choosing an inequality rather than an equality 

gives us more flexibility in optimizing (maximizing or minimizing) the objective (deciding 

values for the decision variables that optimize the objective). 

Implicit constraints 

Constraints such as days per week constraint are often called implicit constraints 

because they are implicit in the definition of the variables. 

Objective 

Again in words our objective is (presumably) to minimize cost which is given by  

180x + 160y 

Hence we have the complete mathematical representation of the problem: 

minimize 
        180x + 160y 
subject to 
        6x + y ≥ 12 
        3x + y ≥ 8 
        4x + 6y ≥ 24 
        x ≤ 5 
        y ≤ 5 
        x, y ≥ 0 

Some notes 

The mathematical problem given above has the form 

• all variables continuous (i.e. can take fractional values) 
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• a single objective (maximize or minimize) 

• the objective and constraints are linear i.e. any term is either a constant or a 

constant multiplied by an unknown (e.g. 24, 4x, 6y are linear terms but xy or x2 

is a non-linear term) 

Any formulation which satisfies these three conditions is called a linear program (LP).  

We have (implicitly) assumed that it is permissible to work in fractions of days - 

problems where this is not permissible and variables must take integer values will be 

dealt with under Integer Programming (IP). 

Discussion 

This problem was a decision problem. 

We have taken a real-world situation and constructed an equivalent mathematical 

representation - such a representation is often called a mathematical model of the real-

world situation (and the process by which the model is obtained is called formulating 

the model).  

Just to confuse things the mathematical model of the problem is sometimes called the 

formulation of the problem. 

Having obtained our mathematical model we (hopefully) have some quantitative 

method which will enable us to numerically solve the model (i.e. obtain a numerical 

solution) - such a quantitative method is often called an algorithm for solving the model. 

Essentially an algorithm (for a particular model) is a set of instructions which, when 

followed in a step-by-step fashion, will produce a numerical solution to that model.  

Our model has an objective, that is something which we are trying to optimize. 

Having obtained the numerical solution of our model we have to translate that solution 

back into the real-world situation. 

"OR is the representation of real-world systems by mathematical models 
together with the use of quantitative methods (algorithms) for solving such 
models, with a view to optimizing." 
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3. LINEAR PROGRAMMING 

It can be recalled from the Two Mines example that the conditions for a mathematical 

model to be a linear program (LP) were: 

• all variables continuous (i.e. can take fractional values) 

• a single objective (minimize or maximize) 

• the objective and constraints are linear i.e. any term is either a constant or a 

constant multiplied by an unknown. 

LP's are important - this is because: 

• many practical problems can be formulated as LP's 

• there exists an algorithm (called the simplex algorithm) which enables us to 

solve LP's numerically relatively easily 

We will return later to the simplex algorithm for solving LP's but for the moment we will 

concentrate upon formulating LP's. 

Some of the major application areas to which LP can be applied are: 

• Work scheduling 

• Production planning & Production process 

• Capital budgeting 

• Financial planning 

• Blending (e.g. Oil refinery management) 

• Farm planning 

• Distribution 

• Multi-period decision problems 

o Inventory model 

o Financial models 

o Work scheduling 

Note that the key to formulating LP's is practice. However a useful hint is that common 

objectives for LP's are maximize profit/minimize cost. 
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There are four basic assumptions in LP: 

• Proportionality 

o The contribution to the objective function from each decision variable is 

proportional to the value of the decision variable (The contribution to the 

objective function from making four soldiers (4×$3=$12) is exactly four 

times the contribution to the objective function from making one soldier 

($3)) 

o The contribution of each decision variable to the LHS of each constraint 

is proportional to the value of the decision variable (It takes exactly three 

times as many finishing hours (2hrs×3=6hrs) to manufacture three 

soldiers as it takes to manufacture one soldier (2 hrs)) 

• Additivity 

o The contribution to the objective function for any decision variable is 

independent of the values of the other decision variables (No matter what 

the value of train (x2), the manufacture of soldier (x1) will always 

contribute 3x1 dollars to the objective function) 

o The contribution of a decision variable to LHS of each constraint is 

independent of the values of other decision variables (No matter what 

the value of x1, the manufacture of x2 uses x2 finishing hours and x2 

carpentry hours) 

 1st implication: The value of objective function is the sum of the 

contributions from each decision variables. 

 2nd implication: LHS of each constraint is the sum of the 

contributions from each decision variables. 

• Divisibility 

o Each decision variable is allowed to assume fractional values. If we 

actually can not produce a fractional number of decision variables, we 

use IP (It is acceptable to produce 1.69 trains) 

• Certainty 

o Each parameter is known with certainty 
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3.1 FORMULATING LP 

3.1.1 Giapetto Example 
(Winston 3.1, p. 49) 

Giapetto's wooden soldiers and trains. Each soldier sells for $27, uses $10 of raw 

materials and takes $14 of labor & overhead costs. Each train sells for $21, uses $9 of 

raw materials, and takes $10 of overhead costs. Each soldier needs 2 hours finishing 

and 1 hour carpentry; each train needs 1 hour finishing and 1 hour carpentry. Raw 

materials are unlimited, but only 100 hours of finishing and 80 hours of carpentry are 

available each week. Demand for trains is unlimited; but at most 40 soldiers can be 

sold each week. How many of each toy should be made each week to maximize 

profits? 

Answer 
Decision variables completely describe the decisions to be made (in this case, by 

Giapetto). Giapetto must decide how many soldiers and trains should be manufactured 

each week. With this in mind, we define: 

 x1 = the number of soldiers produced per week 

 x2 = the number of trains produced per week 

Objective function is the function of the decision variables that the decision maker 

wants to maximize (revenue or profit) or minimize (costs). Giapetto can concentrate on 

maximizing the total weekly profit (z). 

Here profit equals to (weekly revenues) – (raw material purchase cost) – (other variable 

costs). Hence Giapetto’s objective function is: 

 Maximize z = 3x1 + 2x2 

Constraints show the restrictions on the values of the decision variables. Without  

constraints Giapetto could make a large profit by choosing decision variables to be 

very large. Here there are three constraints:  

Finishing time per week 

Carpentry time per week 

Weekly demand for soldiers 

Sign restrictions are added if the decision variables can only assume nonnegative 

values (Giapetto can not manufacture negative number of soldiers or trains!) 
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All these characteristics explored above give the following Linear Programming (LP) 

model 

 max z = 3x1 + 2x2   (The Objective function) 

 s.t. 2x1 + x2 ≤ 100 (Finishing constraint) 

x1 +  x2 ≤ 80  (Carpentry constraint)  

x1   ≤ 40   (Constraint on demand for soldiers) 

x1, x2 > 0  (Sign restrictions) 

A value of (x1, x2) is in the feasible region if it satisfies all the constraints and sign 

restrictions.  

Graphically and computationally we see the solution is (x1, x2) = (20, 60) at which z = 

180. (Optimal solution) 

Report 
The maximum profit is $180 by making 20 soldiers and 60 trains each week. Profit is 

limited by the carpentry and finishing labor available. Profit could be increased by 

buying more labor.  

3.1.2 Advertisement Example 
(Winston 3.2, p.61)  

Dorian makes luxury cars and jeeps for high-income men and women. It wishes to 

advertise with 1 minute spots in comedy shows and football games. Each comedy spot 

costs $50K and is seen by 7M high-income women and 2M high-income men. Each 

football spot costs $100K and is seen by 2M high-income women and 12M high-income 

men. How can Dorian reach 28M high-income women and 24M high-income men at 

the least cost? 

Answer 
The decision variables are 

x1 = the number of comedy spots 

x2 = the number of football spots 

The model of the problem: 

min z = 50x1 + 100x2 
st    7x1  +     2x2  ≥ 28 

   2x1  +   12x2  ≥ 24 
     x1, x2≥0 

The graphical solution is z = 320 when (x1, x2) = (3.6, 1.4). From the graph, in this 

problem rounding up to (x1, x2) = (4, 2) gives the best integer solution. 
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Report 
The minimum cost of reaching the target audience is $400K, with 4 comedy spots and 

2 football slots. The model is dubious as it does not allow for saturation after repeated 

viewings. 

3.1.3 Diet Example 
(Winston 3.4., p. 70) 

Ms. Fidan’s diet requires that all the food she eats come from one of the four “basic 

food groups“. At present, the following four foods are available for consumption: 

brownies, chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 

0.5$, each scoop of chocolate ice cream costs 0.2$, each bottle of cola costs 0.3$, and 

each pineapple cheesecake costs 0.8$.  Each day, she must ingest at least 500 

calories, 6 oz of chocolate, 10 oz of sugar, and 8 oz of fat. The nutritional content per 

unit of each food is shown in Table. Formulate an LP model that can be used to satisfy 

her daily nutritional requirements at minimum cost.  

 Calories Chocolate 
(ounces) 

Sugar 
(ounces) 

Fat 
(ounces) 

Brownie 400 3 2 2 
Choc. ice cream (1 scoop) 200 2 2 4 
Cola (1 bottle) 150 0 4 1 
Pineapple cheesecake (1 piece) 500 0 4 5 

Answer 
The decision variables: 

 x1: number of brownies eaten daily 

x2: number of scoops of chocolate ice cream eaten daily 

x3: bottles of cola drunk daily 

x4: pieces of pineapple cheesecake eaten daily 

The objective function (the total cost of the diet in cents): 

 min w = 50x1 + 20x2 + 30x3 + 80x4  

Constraints: 

400x1 + 200x2 + 150x3 + 500x4 > 500  (daily calorie intake) 

    3x1 +     2x2                             >     6  (daily chocolate intake) 

    2x1 +     2x2 +      4x3 +     4x4 >   10  (daily sugar intake) 

    2x1 +     4x2 +        x3 +     5x4 >     8  (daily fat intake) 

xi  ≥  0,  i = 1, 2, 3, 4   (Sign restrictions!) 
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Report 
The minimum cost diet incurs a daily cost of 90 cents by eating 3 scoops of chocolate 

and drinking 1 bottle of cola (w = 90, x2 = 3, x3 = 1) 

3.1.4 Post Office Example 
(Winston 3.5, p.74)  

A PO requires different numbers of employees on different days of the week. Union 

rules state each employee must work 5 consecutive days and then receive two days 

off. Find the minimum number of employees needed. 

  Mon Tue Wed Thur Fri Sat Sun 
Staff Needed 17 13 15 19 14 16 11 

Answer 
The decision variables are  xi (# of employees starting on day i) 

Mathematically we must 

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7   
s.t. x1   + x4 + x5 + x6 + x7 ≥ 17 

 x1 + x2   + x5 + x6 + x7 ≥ 13 
 x1 + x2 + x3   + x6 + x7 ≥ 15 
 x1 + x2 + x3 + x4   + x7 ≥ 19 
 x1 + x2 + x3 + x4 + x5   ≥ 14 
  + x2 + x3 + x4 + x5 + x6  ≥ 16 
   + x3 + x4 + x5 + x6 + x7 ≥ 11 

      xt ≥ 0, ∀t 

The solution is (xi) = (4/3, 10/3, 2, 22/3, 0, 10/3, 5) giving z = 67/3.  

We could round this up to (xi) = (2, 4, 2, 8, 0, 4, 5) giving z = 25 (may be wrong!).  

However restricting the decision var.s to be integers and using Lindo again gives 

(xi) = (4, 4, 2, 6, 0, 4, 3) giving z = 23. 

3.1.5 Sailco Example 
(Winston 3.10, p. 99)  

Sailco must determine how many sailboats to produce in the next 4 quarters. The 

demand is known to be 40, 60, 75, and 25 boats. Sailco must meet its demands. At 

the beginning of the 1st quarter Sailco starts with 10 boats in inventory. Sailco can 

produce up to 40 boats with regular time labor at $400 per boat, or additional boats at 

$450 with overtime labor. Boats made in a quarter can be used to meet that quarter's 

demand or held in inventory for the next quarter at an extra cost of $20.00 per boat. 
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Answer 
The decision variables are for t = 1,2,3,4 

 xt = # of boats in quarter t built in regular time 

 yt = # of boats in quarter t built in overtime 

For convenience, introduce variables: 

 it = # of boats in inventory at the end quarter t 

 dt = demand in quarter t 

We are given that  d1 = 40, d2 = 60, d3 = 75, d4 = 25, i0 =10  

    xt ≤ 40, ∀t 

By logic   it = it-1+ xt + yt - dt, ∀t. 

Demand is met iff  it ≥ 0, ∀t 

(Sign restrictions  xt, yt ≥ 0, ∀t) 

We need to minimize total cost z subject to these three sets of conditions where 

  z = 400 (x1 + x2 + x3 + x4) + 450 (y1 + y2 + y3 + y4) + 20 (i1 + i2 + i3 + i4) 

Report: 
Lindo reveals the solution to be (x1, x2, x3, x4) = (40, 40, 40, 25) and (y1, y2, y3, y4) = (0, 

10, 35, 0) and the minimum cost of $78450.00 is achieved by the schedule 

   Q1 Q2 Q3 Q4 
Regular time (xt)  40 40 40 25 
Overtime (yt)  0 10 35 0 
Inventory (it) 10 10 0 0 0 
Demand (dt)  40 60 75 25 

 

3.1.6 Customer Service Level Example 
(Winston 3.12, p. 108)  

CSL services computers. Its demand (hours) for the time of skilled technicians in the 

next 5 months is  

t Jan Feb Mar Apr May 
dt 6000 7000 8000 9500 11000 

It starts with 50 skilled technicians at the beginning of January. Each technician can 

work 160 hrs/month. To train a new technician they must be supervised for 50 hrs by 

an experienced technician for a period of one month time. Each experienced technician 

is paid $2K/mth and a trainee is paid $1K/mth. Each month 5% of the skilled 

technicians leave. CSL needs to meet demand and minimize costs.  
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Answer 
The decision variable is  

xt = # to be trained in month t 

We must minimize the total cost. For convenience let 

yt = # experienced tech. at start of tth month 

dt = demand during month t 

Then we must  

min z = 2000 (y1+...+ y5) + 1000 (x1 +...+ x5) 

subject to 

  160yt - 50xt ≥ dt  for t = 1,..., 5 

  y1 = 50, d1 = 6000, d2 = 7000, d3 = 8000, d4 = 9500, d5 = 11000 

yt = .95yt-1 + xt-1  for t = 2,3,4,5 

           xt, yt ≥0 
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3.2 SOLVING LP 
 

3.2.1 LP Solutions: Four Cases 
When an LP is solved, one of the following four cases will occur: 

1. The LP has a unique optimal solution. 

2. The LP has alternative (multiple) optimal solutions. It has more than one 

(actually an infinite number of) optimal solutions 

3. The LP is infeasible. It has no feasible solutions (The feasible region contains 

no points). 

4. The LP is unbounded. In the feasible region there are points with arbitrarily 

large (in a max problem) objective function values. 

 

3.2.2 The Graphical Solution  
Any LP with only two variables can be solved graphically 

Example 1. Giapetto 
(Winston 3.1, p. 49)  

Since the Giapetto LP has two variables, it may be solved graphically.   

Answer 
The feasible region is the set of all points satisfying the constraints. 

 max z = 3x1 + 2x2    

 s.t.     2x1 + x2 ≤ 100  (Finishing constraint) 

        x1 + x2 ≤  80  (Carpentry constraint) 

        x1        ≤  40   (Demand constraint)  

        x1, x2   ≥ 0  (Sign restrictions) 

The set of points satisfying the LP is bounded by the five sided polygon DGFEH. Any 

point on or in the interior of this polygon (the shade area) is in the feasible region. 

Having identified the feasible region for the LP, a search can begin for the optimal 
solution which will be the point in the feasible region with the largest z-value 

(maximization problem). 

To find the optimal solution, a line on which the points have the same z-value is 

graphed.  In a max problem, such a line is called an isoprofit line while in a min 

problem, this is called the isocost line. (The figure shows the isoprofit lines for z = 60, 

z = 100, and z = 180). 
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In the unique optimal solution case, isoprofit line last hits a point (vertex - corner) before 

leaving the feasible region.  

The optimal solution of this LP is point G where (x1, x2) = (20, 60) giving z = 180.  

A constraint is binding (active, tight) if the left-hand and right-hand side of the 

constraint are equal when the optimal values of the decision variables are substituted 

into the constraint.  

A constraint is nonbinding (inactive) if the left-hand side and the right-hand side of the 

constraint are unequal when the optimal values of the decision variables are 

substituted into the constraint.  

In Giapetto LP, the finishing and carpentry constraints are binding. On the other hand 

the demand constraint for wooden soldiers is nonbinding since at the optimal solution 

x1 < 40 (x1 = 20). 

Example 2. Advertisement 
(Winston 3.2, p. 61)  

Since the Advertisement LP has two variables, it may be solved graphically.  

Answer 
The feasible region is the set of all points satisfying the constraints. 
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 min z = 50x1 + 100x2 

 s.t.        7x1 +     2x2 ≥ 28  (high income women) 

    2x1 +   12x2 ≥ 24  (high income men) 

      x1, x2 ≥ 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Since Dorian wants to minimize total advertising costs, the optimal solution to the 

problem is the point in the feasible region with the smallest z value. 

An isocost line with the smallest z value passes through point E and is the optimal 

solution at x1 = 3.6 and x2 = 1.4 giving z = 320.  

Both the high-income women and high-income men constraints are satisfied, both 

constraints are binding. 

Example 3. Two Mines 
min 180x1 + 160x2 

st   6x1 + x2 ≥ 12 
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      3x1 + x2 ≥ 8 

      4x1 + 6x2 ≥ 24 

      x1 ≤ 5 

      x2 ≤ 5 

      x1, x2 ≥ 0 

Answer 

 
Opt. sol’n: Total cost is 765.71. 1.71 days mine X and 2.86 days mine Y are operated. 

 

Example 4. Modified Giapetto 
 max z = 4x1 + 2x2    

 s.t.     2x1 + x2 ≤ 100  (Finishing constraint) 

        x1 + x2 ≤  80  (Carpentry constraint) 

        x1        ≤  40   (Demand constraint)  

      x1, x2 ≥ 0   (Sign restrictions) 

Answer 
Points on the line between points G (20, 60) and F (40, 20) are the alternative optimal 
solutions (see figure below). 
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Thus, for 0 ≤ c ≤ 1, 

c  [20 60] + (1 - c) [40 20]  =  [40 - 20c, 20 + 40c] 
will be optimal 

For all optimal solutions, the optimal objective function value is 200.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Example 5. Modified Giapetto (v. 2) 
Add constraint x2 ≥ 90 (Constraint on demand for trains). 

Answer 
No feasible region: Infeasible LP 

Example 6. Modified Giapetto (v. 3) 
Only use constraint x2 ≥ 90 

Answer 
Isoprofit line never lose contact with the feasible region: Unbounded LP 
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3.2.3 The Simplex Algorithm 
Note that in the examples considered at the graphical solution, the unique optimal 

solution to the LP occurred at a vertex (corner) of the feasible region. In fact it is true 

that for any LP the optimal solution occurs at a vertex of the feasible region. This fact 

is the key to the simplex algorithm for solving LP's. 

Essentially the simplex algorithm starts at one vertex of the feasible region and moves 

(at each iteration) to another (adjacent) vertex, improving (or leaving unchanged) the 

objective function as it does so, until it reaches the vertex corresponding to the optimal 

LP solution. 

The simplex algorithm for solving linear programs (LP's) was developed by Dantzig in 

the late 1940's and since then a number of different versions of the algorithm have 

been developed. One of these later versions, called the revised simplex algorithm 

(sometimes known as the "product form of the inverse" simplex algorithm) forms the 

basis of most modern computer packages for solving LP's. 

Steps 
1. Convert the LP to standard form 

2. Obtain a basic feasible solution (bfs) from the standard form 

3. Determine whether the current bfs is optimal. If it is optimal, stop. 

4. If the current bfs is not optimal, determine which nonbasic variable should 

become a basic variable and which basic variable should become a nonbasic 

variable to find a new bfs with a better objective function value 

5. Go back to Step 3. 

Related concepts: 

• Standard form: all constraints are equations and all variables are nonnegative 

• bfs: any basic solution where all variables are nonnegative 

• Nonbasic variable: a chosen set of variables where variables equal to 0 

• Basic variable: the remaining variables that satisfy the system of equations at 

the standard form 
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Example 1. Dakota Furniture 
(Winston 4.3, p. 134) 

Dakota Furniture makes desks, tables, and chairs. Each product needs the limited 

resources of lumber, carpentry and finishing; as described in the table. At most 5 tables 

can be sold per week. Maximize weekly revenue. 

Resource Desk Table Chair Max Avail. 
Lumber (board ft.) 8 6 1 48 
Finishing hours 4 2 1.5 20 
Carpentry hours 2 1.5 .5 8 
Max Demand unlimited 5 unlimited   
Price ($) 60 30 20   

LP Model: 
Let x1, x2, x3 be the number of desks, tables and chairs produced.  

Let the weekly profit be $z. Then, we must 

 max z = 60x1 +  30x2 +    20x3 

 s.t.      8x1 +    6x2   +      x3 ≤ 48 

     4x1 +    2x2 + 1.5 x3 ≤ 20 

     2x1 + 1.5x2 +   .5 x3 ≤  8  

       x2               ≤  5 

x1, x2, x3 ≥ 0 

Solution with Simplex Algorithm 
First introduce slack variables and convert the LP to the standard form and write a 

canonical form 

R0 z -60x1 -30x2 -20x3     = 0 
R1  8x1 + 6x2 +    x3 + s1    = 48 
R2  4x1 + 2x2 +1.5x3  + s2   = 20 
R3  2x1 + 1.5x2 +  .5x3   + s3  = 8 
R4   x2     + s4 = 5 
x1, x2, x3, s1, s2, s3, s4 ≥ 0 

Obtain a starting bfs.  

As (x1, x2, x3) = 0 is feasible for the original problem, the below given point where three 

of the variables equal 0 (the non-basic variables) and the four other variables (the 

basic variables) are determined by the four equalities is an obvious bfs: 

 x1 = x2 = x3 = 0, s1 = 48, s2 = 20, s3 = 8, s4 = 5. 
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. 

Determine whether the current bfs is optimal. 

Determine whether there is any way that z can be increased by increasing some 

nonbasic variable. 

If each nonbasic variable has a nonnegative coefficient in the objective function row 

(row 0), current bfs is optimal.  

However, here all nonbasic variables have negative coefficients: It is not optimal. 

Find a new bfs 

• z increases most rapidly when x1 is made non-zero; i.e. x1 is the entering 
variable.  

• Examining R1, x1 can be increased only to 6. More than 6 makes s1 < 0. Similarly 

R2, R3, and R4, give limits of 5, 4, and no limit for x1 (ratio test). The smallest 

ratio is the largest value of the entering variable that will keep all the current 

basic variables nonnegative. Thus by R3, x1 can only increase to x1 = 4 when s3 

becomes 0. We say s3 is the leaving variable and R3 is the pivot equation.  

• Now we must rewrite the system so the values of the basic variables can be 

read off. 

The new pivot equation (R3/2) is 

R3’: x1+.75x2+.25x3+         .5s3      = 4 

Then use R3’ to eliminate x1 in all the other rows. 

R0’=R0+60R3’,   R1’=R1-8R3’,   R2’=R2-4R3’,   R4’=R4 

R0’ z  + 15x2 - 5x3   + 30s3  = 240 z = 240 
R1’    - x3 + s1 - 4s3  = 16 s1 = 16 
R2’   - x2 + .5x3  + s2 - 2s3  =  4 s2 =   4 
R3’  x1 + .75x2 + .25x3  + .5s3 =  4 x1 =   4 
R4’   x2     + s4 =  5 s4 =   5 

The new bfs is x2 = x3 = s3 = 0, x1 = 4, s1 = 16, s2 = 4, s4 = 5 making z = 240. 
Check optimality of current bfs. Repeat steps until an optimal solution is reached 

• We increase z fastest by making x3 non-zero (i.e. x3 enters).  
• x3 can be increased to at most x3 = 8, when s2 = 0 ( i.e. s2 leaves.)  

Rearranging the pivot equation gives 

R2’’      - 2x2 + x3 + 2s2 - 4s3 = 8   (R2’× 2). 

Row operations with R2’’ eliminate x3 to give the new system 
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R0’’= R0’ + 5R2’’,   R1’’ = R1’ + R2’’,   R3’’ = R3’ - .5R2’’,  R4’’ = R4’ 

The bfs is now x2 = s2 = s3 = 0, x1 = 2, x3 = 8, s1 = 24, s4 = 5 making z = 280.  

Each nonbasic variable has a nonnegative coefficient in row 0 (5x2, 10s2, 10s3). 

THE CURRENT SOLUTION IS OPTIMAL 

Report: Dakota furniture’s optimum weekly profit would be 280$ if they produce 2 

desks and 8 chairs. 

This was once written as a tableau.  
(Use tableau format for each operation in all HW and exams!!!) 
 max z = 60x1 +   30x2 + 20x3 

 s.t.      8x1 +    6x2 +     x3  ≤ 48 

     4x1 +    2x2 + 1.5x3 ≤ 20 

     2x1 + 1.5x2 +   .5x3 ≤  8  

       x2          ≤ 5 

x1, x2, x3 > 0 

Initial tableau: 

 
First tableau: 

 
 
Second and optimal tableau: 

 
 
 

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio
1 -60 -30 -20 0 0 0 0 0 z = 0
0 8 6 1 1 0 0 0 48 s1 = 48 6
0 4 2 1.5 0 1 0 0 20 s2 = 20 5
0 2 1.5 0.5 0 0 1 0 8 s3 = 8 4
0 0 1 0 0 0 0 1 5 s4 = 5 -

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio
1 0 15 -5 0 0 30 0 240 z = 240
0 0 0 -1 1 0 -4 0 16 s1 = 16 -
0 0 -1 0.5 0 1 -2 0 4 s2 = 4 8
0 1 0.75 0.25 0 0 0.5 0 4 x1 = 4 16
0 0 1 0 0 0 0 1 5 s4 = 5 -

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio
1 0 5 0 0 10 10 0 280 z = 280
0 0 -2 0 1 2 -8 0 24 s1 = 24
0 0 -2 1 0 2 -4 0 8 x3 = 8
0 1 1.25 0 0 -0.5 1.5 0 2 x1 = 2
0 0 1 0 0 0 0 1 5 s4 = 5
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Example 2. Modified Dakota Furniture 
Dakota example is modified: $35/table 

 new z = 60 x1 + 35 x2 + 20 x3 

Second and optimal tableau for the modified problem: 

  ⇓          
z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio  
1 0 0 0 0 10 10 0 280 z=280   
0 0 -2 0 1 2 -8 0 24 s1=24 -  
0 0 -2 1 0 2 -4 0 8 x3=8 -  
0 1 1.25 0 0 -0.5 1.5 0 2 x1=2 2/1.25 ⇒ 
0 0 1 0 0 0 0 1 5 s4=5 5/1  

Another optimal tableau for the modified problem: 

z x1 x2 x3 s1 s2 s3 s4 RHS BV 
1 0 0 0 0 10 10 0 280 z=280 
0 1.6 0 0 1 1.2 -5.6 0 27.2 s1=27.2 
0 1.6 0 1 0 1.2 -1.6 0 11.2 x3=11.2 
0 0.8 1 0 0 -0.4 1.2 0 1.6 x2=1.6 
0 -0.8 0 0 0 0.4 -1.2 1 3.4 s4=3.4 

Therefore the optimal solution is as follows: 

z = 280 and for 0 ≤ c ≤ 1 

x1  2  0  2c 
x2 =  c 0 +   (1 – c) 1.6 = 1.6 – 1.6c  
x3  8  11.2  11.2 – 3.2c 

 

Example 3. Unbounded LPs 
   ⇓       
z x1 x2 x3 s1 s2 z RHS BV Ratio 
1 0 2 -9 0 12 4 100 z=100  
0 0 1 -6 1 6 -1 20 x4=20 None 
0 1 1 -1 0 1 0 5 x1=5 None 

 

Since ratio test fails, the LP under consideration is an unbounded LP. 
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3.2.4 The Big M Method 
If an LP has any ≥ or = constraints, a starting bfs may not be readily apparent. 

When a bfs is not readily apparent, the Big M method or the two-phase simplex method 

may be used to solve the problem. 

The Big M method is a version of the Simplex Algorithm that first finds a bfs by adding 

"artificial" variables to the problem. The objective function of the original LP must, of 

course, be modified to ensure that the artificial variables are all equal to 0 at the 

conclusion of the simplex algorithm. 

Steps 
1. Modify the constraints so that the RHS of each constraint is nonnegative (This 

requires that each constraint with a negative RHS be multiplied by -1. Remember 

that if you multiply an inequality by any negative number, the direction of the 

inequality is reversed!). After modification, identify each constraint as a ≤, ≥ or = 

constraint. 

2. Convert each inequality constraint to standard form (If constraint i is a ≤ constraint, 

we add a slack variable si; and if constraint i is a ≥ constraint, we subtract an excess 

variable ei). 

3. Add an artificial variable ai to the constraints identified as  ≥ or = constraints at the 

end of Step 1. Also add the sign restriction ai ≥ 0. 

4. Let M denote a very large positive number. If the LP is a min problem, add (for each 

artificial variable) Mai to the objective function. If the LP is a max problem, add (for 

each artificial variable) -Mai to the objective function. 

5. Since each artificial variable will be in the starting basis, all artificial variables must 

be eliminated from row 0 before beginning the simplex. Now solve the transformed 

problem by the simplex (In choosing the entering variable, remember that M is a 

very large positive number!). 

If all artificial variables are equal to zero in the optimal solution, we have found the 

optimal solution to the original problem. 

If any artificial variables are positive in the optimal solution, the original problem is 

infeasible!!!  
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Example 1. Oranj Juice 
(Winston 4.10, p. 164) 

Bevco manufactures an orange flavored soft drink called Oranj by combining orange 

soda and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg 

of vitamin C. Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin 

C. It costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce an ounce 

of orange juice. Marketing department has decided that each 10 oz bottle of Oranj must 

contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use LP to determine 

how Bevco can meet marketing dept.’s requirements at minimum cost. 

LP Model: 
Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) 

in a bottle of Oranj. 

 min z = 2x1 + 3x2 

 s.t.      0.5 x1 + 0.25 x2  ≤   4  (sugar const.) 

           x1+       3 x2 ≥ 20  (vit. C const.) 

           x1+          x2 = 10  (10 oz in bottle)  

x1, x2  ≥ 0 

Solving Oranj Example with Big M Method 
1. Modify the constraints so that the RHS of each constraint is nonnegative  

The RHS of each constraint is nonnegative 

2. Convert each inequality constraint to standard form 

z –    2x1 –      3x2    =   0 

      0.5x1 + 0.25x2 + s1   =   4 

           x1 +      3x2         - e2 = 20 

           x1 +        x2    = 10 

all variables nonnegative 

3. Add ai to the constraints identified as  > or = const.s 

z –    2x1 –     3x2     =   0  Row 0 

      0.5x1 + 0.25x2 + s1    =   4  Row 1 

           x1 +      3x2         - e2 + a2   = 20  Row 2 

           x1 +        x2    + a3 = 10  Row 3 

all variables nonnegative 

4. Add Mai to the objective function (min problem) 

 min z = 2x1 + 3x2 + Ma2 + Ma3 

http://www.ilkertopcu.net/


 

Y. İlker Topcu, Ph.D. (www.ilkertopcu.net) 
30 

Row 0 will change to 

z –    2x1 –     3x2 – Ma2 – Ma3 =  0 

5. Since each artificial variable are in our starting bfs, they must be eliminated from 

row 0 

 New Row 0 = Row 0 + M * Row 2 + M * Row 3  ⇒ 

z + (2M–2) x1 + (4M–3) x2 – M e2   =  30M New Row 0 

 

Initial tableau: 

  ⇓        
z x1 x2 s1 e2 a2 a3 RHS BV Ratio 
1 2M-2 4M-3 0 -M 0 0 30M z=30M  
0 0.5 0.25 1 0 0 0 4 s1=4 16 
0 1 3 0 -1 1 0 20 a2=20 20/3* 
0 1 1 0 0 0 1 10 a3=10 10 

In a min problem, entering variable is the variable that has the “most positive” 
coefficient in row 0! 
First tableau: 

 ⇓         
z x1 x2 s1 e2 a2 a3 RHS BV Ratio 
1 (2M-3)/3 0 0 (M-3)/3 (3-4M)/3 0 20+3.3M z  
0 5/12 0 1 1/12 -1/12 0 7/3 s1 28/5 
0 1/3 1 0 -1/3 1/3 0 20/3 x2 20 
0 2/3 0 0 1/3 -1/3 1 10/3 a3 5* 

Optimal tableau: 

z x1 x2 s1 e2 a2 a3 RHS BV 
1 0 0 0 -1/2 (1-2M)/2 (3-2M)/2 25 z=25 
0 0 0 1 -1/8 1/8 -5/8 1/4 s1=1/4 
0 0 1 0 -1/2 1/2 -1/2 5 x2=5 
0 1 0 0 1/2 -1/2 3/2 5 x1=5 

Report: 
In a bottle of Oranj, there should be 5 oz orange soda and 5 oz orange juice.  

In this case the cost would be 25¢. 

 

Example 2. Modified Oranj Juice 
Consider Bevco’s problem. It is modified so that 36 mg of vitamin C are required. 

Related LP model is given as follows: 
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Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) 

in a bottle of Oranj. 

 min z = 2x1 + 3x2 
 s.t.      0.5 x1 + 0.25 x2  ≤   4  (sugar const.) 

           x1+       3 x2 ≥ 36  (vit. C const.) 
           x1+          x2 = 10  (10 oz in bottle)  
x1, x2  ≥ 0 

Solving with Big M method: 
Initial tableau: 

  ⇓        
z x1 x2 s1 e2 a2 a3 RHS BV Ratio 
1 2M-2 4M-3 0 -M 0 0 46M z=46M  
0 0.5 0.25 1 0 0 0 4 s1=4   16 
0 1 3 0 -1 1 0 36 a2=36   36/3 
0 1 1 0 0 0 1 10 a3=10   10 ⇒ 

Optimal tableau:  
z  x1  x2  s1  e2  a2  a3  RHS BV  
1  1-2M  0  0  -M  0  3-4M  30+6M  z=30+6M  
0  1/4  0  1  0  0  -1/4  3/2  s1=3/2 
0  -2  0  0  -1  1  -3  6 a2=6 
0  1 1  0  0  0  1  10 x2=10  

An artificial variable (a2) is BV so the original LP has no feasible solution 

Report:  
It is impossible to produce Oranj under these conditions.  

 

3.2.5 Unrestricted in Sign Variables 
Some variables are allowed to be unrestricted in sign (urs).  

To be solved, an LP with urs variables should be transformed into an LP in which all 

variables are required to be nonnegative. 

For each urs variable xi,  

• define two new variables xi’ and xi’’ 

• in each constraint and in the objective function, substitute xi’ - xi’’ for xi  

xi = xi’ – xi’’  

• add the sign restrictions xi’ ≥ 0 and xi’’ ≥ 0 

Example. Baker 
A baker has 30 kg. of flour and 8 packages of yeast. Baking a loaf of bread requires 

0.5 kg. of flour and 0.2 package of yeast. Each loaf of bread can be sold for $3. The 
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baker may purchase additional flour at $4/kg. or sell leftover flour at the same price. 

Formulate and solve an LP model to help the baker maximize profits. 

Answer 
Decision variables: 

• x1: number of loaves of bread baked 

• x2: ounces by which flour supply is increased by transactions 

Therefore, if x2 oz of flour were purchased then x2 > 0, if -x2 ounces of flour were sold 

then x2 < 0, if no flour was bought or sold then x2 = 0. 

LP model would be: 

𝑚𝑚𝑎𝑎𝑎𝑎 𝑧𝑧 = 3𝑎𝑎1 − 4𝑎𝑎2 

s.t.  

0.5𝑎𝑎1 ≤ 30 + 𝑎𝑎2 

0.2𝑎𝑎1 ≤ 8 

𝑎𝑎1 ≥ 0,   𝑎𝑎2  𝑢𝑢𝑢𝑢𝑠𝑠 

Use the substitution x2 = x2’ – x2’’ 

𝑚𝑚𝑎𝑎𝑎𝑎 𝑧𝑧 = 3𝑎𝑎1 − 4𝑎𝑎2′ + 4𝑎𝑎2′′ 

s.t.  

0.5𝑎𝑎1 ≤ 30 + 𝑎𝑎2′ − 𝑎𝑎2′′ 

0.2𝑎𝑎1 ≤ 8 

𝑎𝑎1, 𝑎𝑎2′ , 𝑎𝑎2′′ ≥ 0 

Apply Simplex Algorithm.  

Convert the problem to standard form: 

𝑀𝑀𝑎𝑎𝑎𝑎 𝑍𝑍 = 3𝑎𝑎1 − 4𝑎𝑎2′ + 4𝑎𝑎2′′ 

0.5𝑎𝑎1 − 𝑎𝑎2′ + 𝑎𝑎2′′ + 𝑠𝑠1 = 30 

0.2𝑎𝑎1 + 𝑠𝑠2 = 8 

𝑎𝑎1, 𝑎𝑎2′ , 𝑎𝑎2′′, 𝑠𝑠1, 𝑠𝑠2 ≥ 0 

Move the variables to left-hand side in the objective function: 

𝑍𝑍 − 3𝑎𝑎1 + 4𝑎𝑎2′ − 4𝑎𝑎2′′ = 0 

Construct the initial tableau (No need to add artificial variable): 

 z x1 x2’ x2’’ s1 s2 RHS BV Ratio 
R0 1 -3 4 -4 0 0 0 Z=0  
R1 0 0.5 -1 1 1 0 30 s1=30   30 
R2 0 0.2 0 0 0 1 8 s2=8   - 
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As we have negative values in R0, this bfs is not optimal. 

x2’’ enters the basis as it has the lowest R0 value. 
R1 has the minimum ratio. Thus, s1 leaves the basis.  
Apply EROs to make x2’’ a basic variable in R1: 
 R1’ = R1,   R0’ = R0 + 4R1’,    R2’ = R2 

The first tableau: 

 z x1 x2’ x2’’ s1 s2 RHS BV Ratio 
R0 1 -1 0 0 4 0 120 Z=120  
R1 0 0.5 -1 1 1 0 30 x2’’=30   60 
R2 0 0.2 0 0 0 1 8 s2=8   40* 

As we have negative values in R0, this bfs is not optimal. 

x1 enters the basis as it has the lowest R0 value. 
R2 has the minimum ratio. Thus, s2 leaves the basis.  
Apply EROs to make x1 a basic variable in R2: 
 R2’ = R2/0,2,   R0’ = R0 + R2’,    R1’ = R1 - 0,5R2’  

 z x1 x2’ x2’’ s1 s2 RHS BV 
R0 1 0 0 0 4 5 160 Z=160 
R1 0 0 -1 1 1 -2.5 10 x2’’=10 
R2 0 1 0 0 0 5 40 x1=40 

As we don’t have any negative values in R0, this bfs is optimal. 

Optimal solution: x1 = 40; x2’= 0, and x2’’= 10  x2 = -10; z = 160 

x2 = x2’ – x2’’ , x2 = 0 – 10 = -10.  

Report 
The baker can earn a profit of $160 by baking and selling 40 loaves of bread. He 

should also sell the remaining 10 kg. of flour. 

3.3 DUALITY 

3.3.1 Primal – Dual  
Associated with any LP is another LP called the dual. Knowledge of the dual provides 

interesting economic and sensitivity analysis insights. When taking the dual of any LP, 

the given LP is referred to as the primal. If the primal is a max problem, the dual will 

be a min problem and vice versa.  
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3.3.2 Finding the Dual of an LP 
The dual of a normal max problem is a normal min problem.  

Normal max problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≤ constraints. 

Normal min problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≥ constraints. 

Similarly, the dual of a normal min problem is a normal max problem.  

Finding the Dual of a Normal Max Problem 
PRIMAL 

max z = c1x1+ c2x2 +…+ cnxn 

s.t.  a11x1 + a12x2 + … + a1nxn   ≤  b1 

  a21x1 + a22x2 + … + a2nxn   ≤  b2 

  …         …         …    … 

  am1x1 + am2x2 + …  + amnxn ≤ bm 

 xj ≥ 0 (j = 1, 2, …, n) 

DUAL 

 min w =  b1y1 + b2y2 +…+ bmym 

 s.t.  a11y1 + a21y2 + … + am1ym  ≥  c1 

       a12y1 + a22y2 + … + am2ym  ≥  c2 

       …         …     …      … 

   a1ny1 + a2ny2 + …+ amnym   ≥  cn 

  yi ≥ 0 (i = 1, 2, …, m) 

Finding the Dual of a Normal Min Problem 
PRIMAL 

 min w =  b1y1+ b2y2 +…+ bmym 

 s.t.  a11y1 + a21y2 + … + am1ym  ≥  c1 

       a12y1 + a22y2 + … + am2ym  ≥  c2 

       …         …     …      … 

   a1ny1 + a2ny2 + …+ amnym   ≥  cn 

  yi ≥ 0 (i = 1, 2, …, m) 

DUAL 

max z = c1x1+ c2x2 +…+ cnxn 

s.t.  a11x1 + a12x2 + … + a1nxn   ≤  b1 

  a21x1 + a22x2 + … + a2nxn   ≤  b2 
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  …         …         …    … 

  am1x1 + am2x2 + …  + amnxn ≤ bm 

 xj ≥ 0 (j = 1, 2, …, n) 

 Finding the Dual of a Nonnormal Max Problem 
• If the ith primal constraint is a ≥ constraint, the corresponding dual variable 

yi must satisfy yi ≤ 0 

• If the ith primal constraint is an equality constraint, the dual variable yi is now 

unrestricted in sign (urs). 

• If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint 

 Finding the Dual of a Nonnormal Min Problem 

• If the ith primal constraint is a ≤ constraint, the corresponding dual variable 

xi must satisfy xi ≤ 0 

• If the ith primal constraint is an equality constraint, the dual variable xi is now 

urs. 

• If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint 

Example 
Primal model:  

max z = 20x1 – 4x2 

s.t.          5x1 –   x2 ≤ 30 

                x1 + 2x2 ≥  5     

     2x1 + 3x2 = 10        

                x1 ≥ 0, x2 urs 

Dual model:  

min w = 30y1 + 5y2 + 10y3 

s.t.          5y1 +   y2 +   2y3 ≥ 20 

               –y1 + 2y2 +   3y3 = –4    

                 y1 ≥ 0, y2 ≤ 0, y3 urs 

 

3.3.3 The Dual Theorem 
The primal and dual have equal optimal objective function values (if the problems have 

optimal solutions). 
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Weak duality implies that if for any feasible solution to the primal and an feasible 

solution to the dual, the w-value for the feasible dual solution will be at least as large 

as the z-value for the feasible primal solution  z ≤ w. 

Consequences 
• Any feasible solution to the dual can be used to develop a bound on the optimal 

value of the primal objective function.  

• If the primal is unbounded, then the dual problem is infeasible. 

• If the dual is unbounded, then the primal is infeasible. 

• How to read the optimal dual solution from Row 0 of the optimal tableau if the primal 

is a max problem: 

 ‘optimal value of dual variable yi’ 

= ‘coefficient of si in optimal row 0’  (if const. i is a ≤ const.) 

= –‘coefficient of ei in optimal row 0’  (if const. i is a ≥ const.) 

= ‘coefficient of ai in optimal row 0’ – M  (if const. i is a = const.) 

• How to read the optimal dual solution from Row 0 of the optimal tableau if the primal 

is a min problem: 

 ‘optimal value of dual variable xi’ 

= ‘coefficient of si in optimal row 0’  (if const. i is a ≤ const.) 

= –‘ coefficient of ei in optimal row 0’  (if const. i is a ≥ const.) 

= ‘coefficient of ai in optimal row 0’ + M  (if const. i is a = const.) 

Example 
LP and its optimal tableau is given as:  

 

 
Use this information to find the optimal solution to the dual LP 
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Answer 
Dual LP: 

 
According to dual theorem consequences; 

‘opt. value of dual var. yi’ 

= ‘coef. of si in opt. row 0’      (if const. i is a ≤ const.) 

= –‘coef. of ei in opt. row 0’  (if const. i is a ≥ const.) 

= ‘coef. of ai in opt. row 0’ – M  (if const. i is a = const.) 

We look at Row 0 of the optimal tableau of the primal model, and find the optimal 

dual solution as: 

 w = 565/23, y1 = 51/23, y2 = -58/23, y3 = 9/23 

Example 
LP and its optimal tableau is given as:  

 

 
Use this information to find the optimal solution to the dual LP 

Answer 
Dual LP: 
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According to dual theorem consequences; 

 ‘opt. value of dual var. xi’ 

= ‘coef. of si in opt. row 0’      (if const. i is a ≤ const.) 

= –‘coef. of ei in opt. row 0’  (if const. i is a ≥ const.) 

= ‘coef. of ai in opt. row 0’ – M  (if const. i is a = const.) 

We look at Row 0 of the optimal tableau of the primal model, and find the optimal 

dual solution as: 

z = 6, x1 = 3, x2 = 0, x3 = -1  

 

3.3.4 Economic Interpretation 
When the primal is a normal max problem, the dual variables are related to the value 

of resources available to the decision maker. For this reason, dual variables are often 

referred to as resource shadow prices. 

Example 
PRIMAL 

Let x1, x2, x3 be the number of desks, tables and chairs produced. Let the weekly 

profit be $z. Then, we must 

 max z = 60x1 + 30x2 + 20x3 

 s.t.      8x1 +   6x2 +     x3 ≤  48 (Lumber constraint) 

     4x1 +   2x2 + 1.5x3 ≤  20 (Finishing hour constraint) 

     2x1 + 1.5x2 + 0.5x3 ≤    8 (Carpentry hour constraint) 

x1, x2, x3 ≥ 0 

DUAL 
Suppose an entrepreneur wants to purchase all of Dakota’s resources.  

In the dual problem y1, y2, y3 are the resource prices (price paid for one board ft of 

lumber, one finishing hour, and one carpentry hour).  

$w is the cost of purchasing the resources. 

Resource prices must be set high enough to induce Dakota to sell. i.e. total purchasing 

cost equals total profit. 
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 min w = 48y1 +  20y2 +   8y3 

 s.t.      8y1 +    4y2 +   2y3   ≥  60 (Desk constraint) 

     6y1 +    2y2 + 1.5y3  ≥  30 (Table constraint) 

       y1 + 1.5y2+ 0.5y3   ≥  20 (Chair constraint) 

y1, y2, y3 ≥ 0 
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3.4 SENSITIVITY ANALYSIS 

3.4.1 Reduced Cost 
For any nonbasic variable, the reduced cost for the variable is the amount by which 

the nonbasic variable's objective function coefficient must be improved before that 

variable will become a basic variable in some optimal solution to the LP. 

If the objective function coefficient of a nonbasic variable xk is improved by its reduced 

cost, then the LP will have alternative optimal solutions at least one in which xk is a 

basic variable, and at least one in which xk is not a basic variable.  

If the objective function coefficient of a nonbasic variable xk is improved by more than 

its reduced cost, then any optimal solution to the LP will have xk as a basic variable 

and xk > 0. 

Reduced cost of a basic variable is zero (see definition)! 

 

3.4.2 Shadow Price 
We define the shadow price for the ith constraint of an LP to be the amount by which 

the optimal z value is "improved" (increased in a max problem and decreased in a min 

problem) if the RHS of the ith constraint is increased by 1. 

This definition applies only if the change in the RHS of the constraint leaves the current 

basis optimal! 

A ≥ constraint will always have a nonpositive shadow price; a ≤ constraint will always 

have a nonnegative shadow price. 

 

3.4.3 Conceptualization 
max z = 6 x1 + x2 + 10x3 

x1 + x3 ≤ 100 

x2 ≤ 1 

All variables ≥ 0 

This is a very easy LP model and can be solved manually without utilizing Simplex. 

x2 = 1 (This variable does not exist in the first constraint. In this case, as the problem 

is a maximization problem, the optimum value of the variable equals the RHS value of 

the second constraint). 
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x1 = 0, x3 = 100 (These two variables do exist only in the first constraint and as the 

objective function coefficient of x3 is greater than that of x1, the optimum value of x3 

equals the RHS value of the first constraint). 

Hence, the optimal solution is as follows: 

z = 1001, [x1, x2, x3] = [0, 1, 100] 

Similarly, sensitivity analysis can be executed manually. 

Reduced Cost 
As x2 and x3 are in the basis, their reduced costs are 0. 

In order to have x1 enter in the basis, we should make its objective function coefficient 

as great as that of x3. In other words, improve the coefficient as 4 (10-6). New objective 

function would be (max z = 10x1 + x2 + 10x3) and there would be at least two optimal 

solutions for [x1, x2, x3]: [0, 1, 100] and [100, 1, 0]. 

Therefore reduced cost of x1 equals 4. 

If we improve the objective function coefficient of x1 more than its reduced cost, there 

would be a unique optimal solution: [100, 1, 0]. 

Shadow Price 
If the RHS of the first constraint is increased by 1, new optimal solution of x3 would be 

101 instead of 100. In this case, new z value would be 1011. 

If we use the definition: 1011 - 1001 = 10 is the shadow price of the first constraint. 

Similarly the shadow price of the second constraint can be calculated as 1 (please find 

it). 

 

3.4.4 Utilizing Lindo Output for Sensitivity 
NOTICE: The objective function which is regarded as Row 0 in Simplex is 
accepted as Row 1 in Lindo. 
Therefore the first constraint of the model is always second row in Lindo!!! 

 
  MAX     6 X1 + X2 + 10 X3  
  SUBJECT TO  
         2)   X1 + X3 <=   100  
         3)   X2 <=   1  
  END  
   
 LP OPTIMUM FOUND AT STEP      1  
   
        OBJECTIVE FUNCTION VALUE  
        1)      1001.000  
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  VARIABLE        VALUE          REDUCED COST  
        X1                 0.000000               4.000000  
        X2                 1.000000               0.000000  
        X3             100.000000               0.000000  
      ROW   SLACK OR SURPLUS     DUAL PRICES  
        2)              0.000000                        10.000000  
        3)              0.000000                         1.000000  
   
 RANGES IN WHICH THE BASIS IS UNCHANGED:  
                             OBJ COEFFICIENT RANGES  
 VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE  

                   COEF                 INCREASE              DECREASE  
       X1               6.000000               4.000000                 INFINITY  
       X2               1.000000             INFINITY                 1.000000  
       X3            10.000000             INFINITY                 4.000000  
                             RIGHTHAND SIDE RANGES  
      ROW         CURRENT        ALLOWABLE        ALLOWABLE  

                    RHS              INCREASE            DECREASE  
        2       100.000000          INFINITY               100.000000  
        3             1.000000          INFINITY                  1.000000  

 

Lindo output reveals the reduced costs of x1, x2, and x3 as 4, 0, and 0 respectively. 

In the maximization problems, the reduced cost of a non-basic variable can also be 

read from the allowable increase value of that variable at obj. coefficient ranges. Here, 

the corresponding value of x1 is 4. 

In the minimization problems, the reduced cost of a non-basic variable can also be 

read from the allowable decrease value of that variable at obj. coefficient ranges. 

The same Lindo output reveals the shadow prices of the constraints in the "dual price" 

section: 

Here, the shadow price of the first constraint (Row 2) equals 10. 

The shadow price of the second constraint (Row 3) equals 1. 

 

3.4.5 Some important equations 
If the change in the RHS of the constraint leaves the current basis optimal (within the 

allowable RHS range), the following equations can be used to calculate new objective 

function value: 

for maximization problems 

• new obj. fn. value = old obj. fn. value + (new RHS – old RHS) × shadow price 

for minimization problems 

• new obj. fn. value = old obj. fn. value – (new RHS – old RHS) × shadow price 
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For Lindo example, as the allowable increases in RHS ranges are infinity for each 

constraint, we can increase RHS of them as much as we want. But according to 

allowable decreases, RHS of the first constraint can be decreased by 100 and that of 

second constraint by 1. 

 Lets assume that new RHS value of the first constraint is 60. 

As the change is within allowable range, we can use the first equation (max. problem): 

znew = 1001 + ( 60 - 100 ) 10 = 601. 

 

3.4.6 Utilizing Simplex for Sensitivity 
In Dakota furniture example; x1, x2, and x3 were representing the number of desks, 

tables, and chairs produced. 

The LP formulated for profit maximization: 

max z = 60 x1 + 30 x2 + 20x3       
 8 x1 +  6 x2 +    x3 + s1    = 48 Lumber 
 4 x1 +  2 x2 +1.5 x3  + s2   = 20 Finishing 
 2 x1 +1.5 x2 +  .5 x3   + s3  =  8 Carpentry 
  x2     + s4 =  5 Demand 

The optimal solution was: 

z  +5 x2   +10 s2 +10 s3  = 280 
  -2 x2  +s1 +2 s2 -8 s3  =   24 
  -2 x2 + x3  +2 s2 -4 s3  =     8 
 + x1 + 1.25 x2   -.5 s2 +1.5 s3  =    2 
  x2     + s4 =    5 

 

Analysis 1  

Suppose available finishing time changes from 20 → 20+δ, then we have the system:  

z' =  60 x1' + 30 x2' + 20 x3'      
 8 x1' +   6 x2' +     x3' + s1'    = 48 
 4 x1' +   2 x2' +1.5 x3'  + s2'   = 20+δ 
 2 x1' +1.5 x2' +  .5 x3'   + s3'  =   8 
  +     x2'     + s4' =   5 

or equivalently: 

z' =  60 x1' + 30 x2' + 20 x3'      
 8 x1' +   6 x2' +     x3' + s1'    = 48 
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 4 x1' +   2 x2' +1.5 x3'  +(s2'-δ)   = 20 
 2 x1' +1.5 x2' +  .5 x3'   + s3'  =   8 
  +     x2'     + s4' =   5 

That is z’, x1’, x2’, x3’,x4’,s1’,s2’-δ,s3’,s4’ satisfy the original problem, and hence (1) 

Substituting in: 

z'  +5 x2'   +10(s2'-δ) +10 s3'  = 280 
  -2 x2'  + s1' +2(s2'-δ) -8 s3'  =   24 
  -2 x2' + x3'  +2(s2'-δ) -4 s3'  =     8 
 + x1' +1.25 x2'   -.5(s2'-δ) +1.5 s3'  =    2 
  x2'     + s4' =    5 

and thus 

z'  +5 x2'   +10 s2' +10 s3'  = 280+10δ 
  -2 x2'  +s1' +2 s2' -8 s3'  =   24+2δ 
  -2 x2' + x3'  +2 s2' -4 s3'  =     8+2δ 
 + x1' +1.25 x2'   -.5 s2' +1.5 s3'  =    2-.5δ 
  x2'     + s4' =    5 

For -4 ≤ δ ≤ 4, the new system maximizes z’. In this range RHS values are non-

negative. 

As δ increases, revenue increases by 10δ. Therefore, the shadow price of finishing 

labor is $10 per hr. (This is valid for up to 4 extra hours or 4 fewer hours). 

 

Analysis 2 

What happens if revenue from desks changes to $60+γ? For small γ, revenue 

increases by 2γ (as we are making 2 desks currently). But how large an increase is 

possible?  

The new revenue is: 

z' = (60+γ)x1+30x2+20x3 = z+γx1 

= (280 - 5x2 - 10s2 - 10s3) + γ(2 - 1.25x2 + .5s2 - 1.5s3) 

= 280 + 2γ - (5 + 1.25γ)x2 - (10-.5γ)s2 - (10 + 1.5γ)s3 

So the top line in the final system would be: 

z' + (5 + 1.25γ)x2 + (10 - .5γ)s2 + (10 + 1.5γ)s3 = 280 + 2γ 

Provided all terms in this row are ≥ 0, we are still optimal.  

For -4 ≤ γ ≤ 20, the current production schedule is still optimal.  
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Analysis 3 
If revenue from a non-basic variable changes, the revenue is 

z’ = 60x1 + (30 + γ)x2 + 20x3 = z + γx2 

= 280 - 5x2 - 10s2 - 10s3 + γx2 

= 280 - (5 - γ)x2 - 10s2 - 10s3 

The current solution is optimal for γ ≤ 5. But when γ > 5 or the revenue per table is 

increased past $35, it becomes better to produce tables. We say the reduced cost 
of tables is $5.00. 

 

3.4.7 Interpretation of Dual Prices  
For maximization problems: 

• The shadow price of the i th constraint = the optimal value of the i th dual variable 

For minimization problems: 

• The shadow price of the i th constraint = -(the optimal value of the i th dual variable) 

Example 
PRIMAL: x1, x2, x3 be the number of desks, tables and chairs produced  

 max z = 60x1 +  30 x2 +  20 x3 

 s.t.           8x1 +   6 x2 +       x3  ≤ 48 (lumber) 

                     4x1 +   2 x2 + 1.5 x3 ≤ 20  (finishing) 

                     2x1 + 1.5 x2 + .5 x3 ≤   8   (carpentry) 

    x1, x2, x3  ≥ 0 

DUAL: y1, y2, y3 are the resource prices (price paid for one board ft of lumber, one 

finishing hour, and one carpentry hour) 

 min w =  48y1+ 20y2+ 8y3 

 s.t.       8y1  +   4y2+   2y3 ≥ 60 (Desk constraint) 

        6y1  +   2y2+ 1.5y3 ≥ 30 (Table constraint) 

           y1 + 1.5y2 +0.5y3 ≥ 20 (Chair constraint) 

     y1, y2, y3 ≥ 0 

 
In this case, the optimal value of the dual variables may be read at the Lindo output of 
primal model: 
OBJECTIVE FUNCTION VALUE 

        1)      280.0000  w 
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  VARIABLE        VALUE           REDUCED COST 

        X1         2.000000           0.000000 

        X2         0.000000           5.000000 

        X3         8.000000           0.000000 

       ROW   SLACK OR SURPLUS     DUAL PRICES 

        2)        24.000000            0.000000    y1 

        3)         0.000000           10.000000  y2 

        4)         0.000000           10.000000  y3 

 

3.4.8 Duality and Sensitivity Analysis 
We may utilize three types of sensitivity analysis by using “duaity and sensitivity”: 

• Changing the Objective Function Coefficient of a NBV  

• Changing the column of a NBV  

• Adding a new activity 

 

Changing the Objective Function Coefficient of a NBV  
Example 
c2 is the price at which a table is sold. For what values of c2 will the current basis remain 

optimal? 

Answer 
The 2nd (table) dual constraint:  

 6y1  +   2y2+ 1.5y3 ≥ c2  

 y1 = 0, y2 = 10, y3 = 10  

The current basis remains optimal if c2 satisfies 

 6 (0) + 2 (10) + 1.5 (10) ≥ c2 → c2 ≤ 35 

The current basis is no longer optimal if c2 > 35 

 

Changing the column of a NBV  
Example 
Suppose a table sells for $43 and uses 5 board feet of lumber, 2 finishing hours, and 

2 carpentry hours. Does the current basis remain optimal? 

Answer 
 max z =  60x1 +  30 x2 +  20 x3 

 s.t.           8x1 +   6 x2 +       x3 ≤ 48 (lumber) 
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                     4x1 +   2 x2 + 1.5 x3 ≤ 20 (finishing) 

                     2x1 + 1.5 x2 +  .5 x3 ≤   8 (carpentry) 

    x1, x2, x3  ≥ 0 

 max z =  60x1 +  43 x2 +  20 x3 

 s.t.           8x1 +   5 x2 +       x3 ≤ 48 (lumber) 

                     4x1 +   2 x2 + 1.5 x3 ≤ 20 (finishing) 

                     2x1 +   2 x2 +  .5 x3 ≤   8 (carpentry) 

    x1, x2, x3  ≥ 0 

  5y1 + 2y2 + 2y3 ≥? 43 (New table constraint in dual) 

 40 < 43 → The current basis is no longer optimal 

Each table uses $40 worth of resources and sells for $43. So the revenue for the table 

would be $3. In this case, table will be basic in the new optimal solution. 

 

Adding a new activity 
Example 
Suppose Dakota considers manufacturing footstools (x4). A footstool sells for $15 and 

uses 1 board foot of lumber, 1 finishing hour, and 1 carpentry hour. Does the current 

basis remain optimal? 

Answer 
 max z =  60x1 +  30 x2 +  20 x3 +  15 x4 

 s.t.           8x1 +   6 x2 +       x3 +    x4 ≤ 48 (lumber) 

                     4x1 +   2 x2 + 1.5 x3 +    x4 ≤ 20 (finishing) 

                     2x1 + 1.5 x2 +  .5 x3 +    x4 ≤   8 (carpentry) 

    x1, x2, x3, x4  ≥ 0 

  y1 + y2 + y3 ≥? 15 (Footstool constraint in dual) 

 20 > 15 → The current basis remains optimal 

 Dakota should not make footstools. 

 

3.4.9 The 100% Rule 
If the values of more than one parameter of the model changes, we utilize 100% rule. 

These changes: 

• Change in an Objective Function Coefficient  

• Change in a Right-Hand Side  
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Change in an Objective Function Coefficient  
CASE 1:  

The case where all variables whose objective function coefficients are changed have 

non-zero reduced costs. 

• The current basis remains optimal if and only if the objective function coefficient 

for each variable remains within the allowable range  

• If the objective function coefficient for any variable is outside its allowable range, 

then the current basis is no longer optimal. 

CASE 2:  

The case where at least one variable whose objective function coefficient is changed 

has a reduced cost of zero. 100% rule is utilized: 

If ∆𝑐𝑐𝑗𝑗  ≥ 0,   𝑢𝑢𝑗𝑗  =  ∆𝑐𝑐𝑗𝑗
𝐼𝐼𝑗𝑗

    𝐼𝐼𝑗𝑗: allowable increase 

 If ∆𝑐𝑐𝑗𝑗  ≤ 0,   𝑢𝑢𝑗𝑗  =  −∆𝑐𝑐𝑗𝑗
𝐷𝐷𝑗𝑗

   𝐷𝐷𝑗𝑗: allowable decrease  

• ∑𝑢𝑢𝑗𝑗  ≤ 1 → current basis remains optimal 

• ∑𝑢𝑢𝑗𝑗  > 1 → current basis may be or may not be optimal, we can’t be sure 

Example 
If the price of brownie (x1) changes from 50¢ to 60¢ and the price of cheesecake (x4) 

changes from 80¢ to 50¢, does the current basis remain optimal?  

What would be the new optimal solution? 

Answer 
VARIABLE        VALUE          REDUCED COST 
        X1          0.000000           27.500000 
        X4            0.000000           50.000000 

As both decision variables are NBVs, we are in CASE 1 
OBJ COEFFICIENT RANGES 

       VARIABLE   CURRENT        ALLOWABLE      ALLOWABLE 
                    COEF            INCREASE         DECREASE 
       X1       50.000000         INFINITY            27.500000 
       X4       80.000000         INFINITY            50.000000 

New prices are within allowable ranges: current basis remains optimal 

Also the optimal z-value and optimal value of the decision variables remain unchanged. 
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Example 
If the price of brownie (x1) changes from 50¢ to 40¢ and the price of cheesecake (x4) 

changes from 80¢ to 25¢, does the current basis remain optimal?  

What would be the new optimal solution?  

Answer 
VARIABLE        VALUE          REDUCED COST 
        X1          0.000000           27.500000 
        X4            0.000000           50.000000 

As both decision variables are NBVs, we are in CASE 1. 
OBJ COEFFICIENT RANGES 

       VARIABLE   CURRENT        ALLOWABLE      ALLOWABLE 
                    COEF            INCREASE         DECREASE 
       X1       50.000000         INFINITY            27.500000 
       X4       80.000000         INFINITY            50.000000 

The price of cheesecake does not remain in its allowable range: current basis is no 

longer optimal 

The problem must be solved again. 

Example 
The price of desk (x1) changes from $60 to $70 and the price of chair (x3) changes 

from $20 to $18. Does the current basis remain optimal? What would be the new 

optimal solution? 

Answer 
VARIABLE        VALUE          REDUCED COST 
        X1          2.000000           0.000000 
        X3            8.000000           0.000000 

As at least one decision is a BV, we are in CASE 2. 
OBJ COEFFICIENT RANGES 

       VARIABLE   CURRENT        ALLOWABLE      ALLOWABLE 
                    COEF            INCREASE         DECREASE 
       X1       60.000000         20.000000           4.000000 
       X3       20.000000           2.500000           5.000000 

∆𝑐𝑐1 = 10,  𝐼𝐼1 = 20,  𝑢𝑢1 = 10
20

= 0.5;   ∆𝑐𝑐3 = −2,  𝐷𝐷3 = 5, 𝑢𝑢3 = 2
5

= 0.4 

𝑢𝑢1 + 𝑢𝑢2 + 𝑢𝑢3 = 0.9 ≤ 1  → Current basis remains optimal 

So the values of the decision variables do not change. 

New profit = 280 + 2 (10) + 8 (-2) = 284 

Example 
The price of desk (x1) changes from $60 to $58 and the price of table (x2) changes 

from $30 to $33. Does the current basis remain optimal?  
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What would be the new optimal solution? 

Answer 
VARIABLE        VALUE          REDUCED COST 
        X1          2.000000           0.000000 
        X2            0.000000           5.000000 

As at least one decision is a BV, we are in CASE 2. 
OBJ COEFFICIENT RANGES 

       VARIABLE   CURRENT        ALLOWABLE      ALLOWABLE 
                    COEF            INCREASE         DECREASE 
       X1       60.000000         20.000000           4.000000 
       X2       30.000000           5.000000           INFINITY 

∆𝑐𝑐1 = −2,  𝐷𝐷1 = 4,   𝑢𝑢1 = 2
4

= 0.5;   ∆𝑐𝑐2 = 3,  𝐼𝐼2 = 5,   𝑢𝑢3 = 3
5

= 0.6 

𝑢𝑢1 + 𝑢𝑢2 + 𝑢𝑢3 = 1.1 > 1 →  

No information about whether the current basis is optimal  

 

Changes in Right-Hand Sides 
CASE 1:  

The case where all constraints whose Right-Hand Sides are being modified are 

nonbinding constraints 

• The current basis remains optimal if and only if each right hand side remains 

within its allowable range 

• If the right-hand side for any constraint is outside its allowable range, then the 

current basis is no longer optimal 

CASE 2: 

The case where at least one of the constraints whose Right-Hand Side is being 

modified is a binding constraint. 100% rule is utilized: 

If ∆𝑏𝑏𝑖𝑖 ≥ 0,   𝑢𝑢𝑖𝑖 =  ∆𝑏𝑏𝑖𝑖
𝐼𝐼𝑖𝑖

    𝐼𝐼𝑖𝑖: allowable increase 

 If ∆𝑏𝑏𝑖𝑖 ≤ 0,   𝑢𝑢𝑖𝑖 =  −∆𝑏𝑏𝑖𝑖
𝐷𝐷𝑖𝑖

   𝐷𝐷𝑖𝑖: allowable decrease  

• ∑𝑢𝑢𝑖𝑖 ≤ 1 → current basis remains optimal 

• ∑𝑢𝑢𝑖𝑖 > 1 → current basis may be or may not be optimal, we can’t be sure 

Example 
The calorie requirement changes from 500 cal. to 400 cal. and the fat requirement 

changes from 8 oz. to 10 oz. Does the current basis remain optimal? What would be 

the new optimal solution? 
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Answer 
   ROW    SLACK OR SURPLUS     DUAL PRICES 
  CALORIE)           250.000000      0.000000 
           FAT)               5.000000           0.000000 

As both constraints are nonbinding, we are in CASE 1 
                           RIGHTHAND SIDE RANGES 
      ROW         CURRENT        ALLOWABLE      ALLOWABLE 
                            RHS              INCREASE          DECREASE 
  CALORIE      500.000000       250.000000         INFINITY 
          FAT         8.000000             5.000000         INFINITY 

New requirements are within allowable ranges: current basis remains optimal 

Also the optimal z-value and optimal value of the decision variables remain 

unchanged. 

Example 
The calorie requirement changes from 500 cal. to 400 cal. and the fat requirement 

changes from 8 oz. to 15 oz. Does the current basis remain optimal?  

What would be the new optimal solution? 

Answer 
   ROW    SLACK OR SURPLUS     DUAL PRICES 
  CALORIE)           250.000000      0.000000 
           FAT)               5.000000           0.000000 

As both constraints are nonbinding, we are in CASE 1. 
                           RIGHTHAND SIDE RANGES 
      ROW         CURRENT        ALLOWABLE      ALLOWABLE 
                            RHS              INCREASE          DECREASE 
  CALORIE      500.000000       250.000000           INFINITY 
          FAT           8.000000           5.000000           INFINITY 

The fat requirement is no longer in its allowable range: the current basis is no longer 

optimal  

The problem must be solved again. 

Example 
Available finishing changes from 20 hrs to 22 hrs and available carpentry changes from 

8 hrs to 9 hrs. Does the current basis remain optimal?  

What would be the new optimal solution? 

Answer 
ROW                SLACK OR SURPLUS DUAL PRICES 
finishinq)    0.000000       10.000000 
carpentry)    0.000000       10.000000 

As at least one of these constraint is binding, we are in CASE 2. 
    RIGHTHAND SIDE RANGES  
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ROW  CURRENT ALLOWABLE      ALLLOWABLE  
        RHS    INCREASE        DECREASE 
finishinq  20.000000    4.000000         4.000000 
carpentry   8.000000    2.000000         1.333333 

     
∆𝑏𝑏2 = 2,  𝐼𝐼2 = 4,  𝑢𝑢2 = 2

4
= 0.5;   ∆𝑏𝑏3 = 1,  𝐼𝐼3 = 2, 𝑢𝑢3 = 1

2
= 0.5 

𝑢𝑢2 + 𝑢𝑢3 = 1  → Current basis remains optimal 

As RHS changed, optimal values of decision variables and objective function may 

change. 

Example 
The chocolate requirement changes from 6 oz. to 8 oz. And the sugar requirement 

changes from 10 oz. to 7 oz. Does the current basis remain optimal?  

What would be the new optimal solution? 

Answer 
      ROW    SLACK OR SURPLUS     DUAL PRICES 
    CHOCO)              0.000000      -2.500000 
     SUGAR)              0.000000           -7.500000 

As at least one of these constraint is binding, we are in CASE 2. 

 
                              RIGHTHAND SIDE RANGES 
      ROW         CURRENT        ALLOWABLE      ALLOWABLE 
                            RHS              INCREASE          DECREASE 
    CHOCO       6.000000            4.000000             2.857143 
     SUGAR     10.000000            INFINITY             4.000000 

∆𝑏𝑏2 = 2,  𝐼𝐼2 = 4,  𝑢𝑢2 = 2
4

= 0.5;   ∆𝑏𝑏3 = −3,  𝐷𝐷3 = 4, 𝑢𝑢3 = 3
4

= 0.75 

𝑢𝑢2 + 𝑢𝑢3 = 1.25 > 1  →  

100% Rule yields no information about whether the current basis is optimal  
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4. TRANSPORTATION PROBLEMS 

4.1 FORMULATING TRANSPORTATION PROBLEMS 
In general, a transportation problem is specified by the following information: 

• A set of m supply points from which a good/service is shipped. Supply point i 

can supply at most si units. 

• A set of n demand points to which the good/service is shipped. Demand point 

j must receive at least dj units. 

• Each unit produced at supply point i and shipped to demand point j incurs a 

variable cost of cij. 

The relevant data can be formulated in a transportation tableau: 

 Demand 
point 1 

Demand 
point 2 ..... Demand 

point n SUPPLY 

Supply 
point 1 

 c11  c12    c1n s1         
Supply 
point 2 

 c21  c22    c2n s2         

.....                  
Supply 
point m 

 cm1  cm2    cmn sm         
DEMAND d1 d2  dn  

 

If total supply equals total demand then the problem is said to be a balanced 
transportation problem. 

 

Let xij = number of units shipped from supply point i to demand point j  

 Decision variable xij: number of units shipped from supply point i to 

demand point j 

then the general LP representation of a transportation problem is  

 min Σi Σj cij xij 

 s.t. Σj xij < si (i=1,2, ..., m) Supply constraints 

  Σi xij > dj (j=1,2, ..., n) Demand constraints 

 xij > 0 

If a problem has the constraints given above and is a maximization problem, it is still a 

transportation problem. 
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4.1.1 Formulating Balanced Transportation Problem  
Example 1. Powerco 
Powerco has three electric power plants that supply the needs of four cities. Each 

power plant can supply the following numbers of kwh of electricity: plant 1, 35 million; 

plant 2, 50 million; and plant 3, 40 million. The peak power demands in these cities as 

follows (in kwh): city 1, 45 million; city 2, 20 million; city 3, 30 million; city 4, 30 million. 

The costs of sending 1 million kwh of electricity from plant to city is given in the table 

below. To minimize the cost of meeting each city’s peak power demand, formulate a 

balanced transportation problem in a transportation tableau and represent the problem 

as a LP model. 

 To 
From City 1 City 2 City 3 City 4 

Plant 1  $8 $6 $10 $9 
Plant 2 $9 $12 $13 $7 
Plant 3 $14 $9 $16 $5 

 

Answer 
Representation of the problem as a LP model 

xij: number of (million) kwh produced at plant i and sent to city j. 

min z = 8 x11 + 6 x12 + 10 x13 + 9 x14 + 9 x21 + 12 x22 + 13 x23 + 7 x24 + 14 x31 

+ 9 x32 + 16 x33 + 5 x34 

s.t. x11 + x12 + x13 + x14 < 35 (supply constraints) 

 x21 + x22 + x23 + x24 < 50 

 x31 + x32 + x33 + x34 < 40 

 x11 + x21 + x31 > 45  (demand constraints) 

 x12 + x22 + x32 > 20 

 x13 + x23 + x33 > 30 

 x14 + x24 + x34 > 30 

xij > 0 (i = 1, 2, 3; j = 1, 2, 3, 4) 
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Formulation of the transportation problem 

 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1  8  6  10  9 35         

Plant 2   9  12  13  7 50         

Plant 3  14  9  16  5 40         
DEMAND 45 20 30 30 125 

Total supply & total demand both equal 125: “balanced transport’n problem”. 

 

4.1.2 Balancing an Unbalanced Transportation Problem  
Excess Supply 

If total supply exceeds total demand, we can balance a transportation problem by 

creating a dummy demand point that has a demand equal to the amount of excess 

supply. Since shipments to the dummy demand point are not real shipments, they are 

assigned a cost of zero. These shipments indicate unused supply capacity. 

Unmet Demand 

If total supply is less than total demand, actually the problem has no feasible solution. 

To solve the problem it is sometimes desirable to allow the possibility of leaving some 

demand unmet. In such a situation, a penalty is often associated with unmet demand. 

This means that a dummy supply point should be introduced.  

 

Example 2. Modified Powerco for Excess Supply 
Suppose that demand for city 1 is 40 million kwh. Formulate a balanced transportation 

problem. 

Answer 
Total demand is 120, total supply is 125. 

To balance the problem, we would add a dummy demand point with a demand of 125 

– 120 = 5 million kwh.  

From each plant, the cost of shipping 1 million kwh to the dummy is 0. 

For details see Table 4. 
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Table 4. Transportation Tableau for Excess Supply 

 City 1 City 2 City 3 City 4 Dummy SUPPLY 

Plant 1  8  6  10  9  0 35           

Plant 2   9  12  13  7  0 50           

Plant 3  14  9  16  5  0 40           
DEMAND 40 20 30 30 5 125 

 

Example 3. Modified Powerco for Unmet Demand 
Suppose that demand for city 1 is 50 million kwh. For each million kwh of unmet 

demand, there is a penalty of 80$. Formulate a balanced transportation problem. 

Answer 
We would add a dummy supply point having a supply of 5 million kwh representing 

shortage. 

 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1  8  6  10  9 35         

Plant 2   9  12  13  7 50         

Plant 3  14  9  16  5 40         
Dummy 

(Shortage) 
 80  80  80  80 5         

DEMAND 50 20 30 30 130 
 

4.2 FINDING BFS FOR TRANSPORT’N PROBLEMS 
For a balanced transportation problem, general LP representation may be written as: 

 min Σi Σj cij xij 

 s.t. Σj xij = si (i=1,2, ..., m) Supply constraints 

  Σi xij = dj (j=1,2, ..., n) Demand constraints 

 xij > 0 

To find a bfs to a balanced transportation problem, we need to make the following 

important observation:  
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If a set of values for the xij’s satisfies all but one of the constraints of a balanced 

transportation problem, the values for the xij’s will automatically satisfy the other 

constraint. 

This observation shows that when we solve a balanced transportation, we may omit 

from consideration any one of the problem’s constraints and solve an LP having m+n-

1 constraints. We arbitrarily assume that the first supply constraint is omitted from 

consideration. In trying to find a bfs to the remaining m+n-1 constraints, you might think 

that any collection of m+n-1 variables would yield a basic solution. But this is not the 

case: If the m+n-1 variables yield a basic solution, the cells corresponding to this set 

contain no loop. 

An ordered sequence of at least four different cells is called a loop if 

• Any two consecutives cells lie in either the same row or same column 

• No three consecutive cells lie in the same row or column 

• The last cell in the sequence has a row or column in common with the first cell 

in the sequence 

There are three methods that can be used to find a bfs for a balanced transportation 

problem: 

1. Northwest Corner method 

2. Minimum cost method 

3. Vogel’s method 

 
4.2.1 Northwest Corner Method 
We begin in the upper left corner of the transportation tableau and set x11 as large as 

possible (clearly, x11 can be no larger than the smaller of s1 and d1). 

• If x11=s1, cross out the first row of the tableau. Also change d1 to d1-s1. 

• If x11=d1, cross out the first column of the tableau. Change s1 to s1-d1. 

• If x11=s1=d1, cross out either row 1 or column 1 (but not both!). 

o If you cross out row, change d1 to 0. 

o If you cross out column, change s1 to 0. 

Continue applying this procedure to the most northwest cell in the tableau that does 

not lie in a crossed out row or column. 
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Eventually, you will come to a point where there is only one cell that can be assigned 

a value. Assign this cell a value equal to its row or column demand, and cross out both 

the cell’s row or column.  

A bfs has now been obtained. 

 

Example 1. 
For example consider a balanced transportation problem given below (We omit the 

costs because they are not needed to find a bfs!). 

    5 

    1 

    3 

2 4 2 1  
Total demand equals total supply (9): this is a balanced transport’n problem. 

2    3 

    1 

    3 

X 4 2 1  
 

2 3   X 

    1 

    3 

X 1 2 1  
     
2 3   X 

 1   X 

    3 

X 0 2 1  
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2 3   X 

 1   X 

 0 2 1 3 

X 0 2 1  

NWC method assigned values to m+n-1 (3+4-1 = 6) variables. The variables chosen 

by NWC method can not form a loop, so a bfs is obtained. 

 

4.2.2 Minimum Cost Method 
Northwest Corner method does not utilize shipping costs, so it can yield an initial bfs 

that has a very high shipping cost. Then determining an optimal solution may require 

several pivots. 

To begin the minimum cost method, find the variable with the smallest shipping cost 

(call it xij). Then assign xij its largest possible value, min {si, dj}. 

As in the NWC method, cross out row i or column j and reduce the supply or demand 

of the noncrossed-out of row or column by the value of xij. 

Continue like NWC method (instead of assigning upper left corner, the cell with the 

minimum cost is assigned). See Northwest Corner Method for the details! 

 
Example 2. 

 2  3  5  6 5         
 2  1  3  5 10         
 3  8  4  6 15         

12 8 4 6  
     

 2  3  5  6 5         
 2  1  3  5 2   8      
 3  8  4  6 15         

12 X 4 6  
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 2  3  5  6 5         
 2  1  3  5 X 2  8      
 3  8  4  6 15         

10 X 4 6  
     

 2  3  5  6 X 5        
 2  1  3  5 X 2  8      
 3  8  4  6 15         

5 X 4 6  
     

 2  3  5  6 X 5        
 2  1  3  5 X 2  8      
 3  8  4  6 10 5    4  6  

5 X 4 6  
 

4.2.3 Vogel’s Method 
Begin by computing for each row and column a penalty equal to the difference between 

the two smallest costs in the row and column. Next find the row or column with the 

largest penalty. Choose as the first basic variable the variable in this row or column 

that has the smallest cost. As described in the NWC method, make this variable as 

large as possible, cross out row or column, and change the supply or demand 

associated with the basic variable (See Northwest Corner Method for the details!). Now 

recomputed new penalties (using only cells that do not lie in a crossed out row or 

column), and repeat the procedure until only one uncrossed cell remains. Set this 

variable equal to the supply or demand associated with the variable, and cross out the 

variable’s row and column. 
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Example 3. 
       Supply Row 

penalty 
  6  7  8 10 7-6=1        
  15  80  78 15 78-15=63        

Demand 15 5 5  
 Column 

penalty 15-6=9 80-7=73 78-8=70 

         
       Supply Row 

penalty 
  6  7  8 5 8-6=2    5    
  15  80  78 15 78-15=63        

Demand 15 X 5  
 Column 

penalty 15-6=9 - 78-8=70 

 
       Supply Row 

penalty 
  6  7  8 X -    5  5  
  15  80  78 15 -        

Demand 15 X 0  
 Column 

penalty 15-6=9 - - 

         
         
  6  7  8 X     5  5  
  15  80  78 15   15    0  

Demand 15 X 0   
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4.3 THE TRANSPORTATION SIMPLEX METHOD 
 

Steps of the Method 
1. If the problem is unbalanced, balance it 

2. Use one of the methods to find a bfs for the problem 

3. Use the fact that u1 = 0 and ui + vj = cij for all basic variables to find the u’s and v’s 

for the current bfs. 

4. If ui + vj – cij ≤ 0 for all nonbasic variables, then the current bfs is optimal. If this is 

not the case, we enter the variable with the most positive ui + vj – cij into the basis 

using the pivoting procedure. This yields a new bfs. Return to Step 3. 

 

For a maximization problem, proceed as stated, but replace Step 4 by the following 

step: 

If ui + vj – cij ≥ 0 for all nonbasic variables, then the current bfs is optimal. Otherwise, 

enter the variable with the most negative ui + vj – cij into the basis using the pivoting 

procedure. This yields a new bfs. Return to Step 3. 

 

Pivoting procedure 

1. Find the loop (there is only one possible loop!) involving the entering variable 

(determined at step 4 of the transport’n simplex method) and some or all of the 

basic variables. 

2. Counting only cells in the loop, label those that are an even number (0, 2, 4, and 

so on) of cells away from the entering variable as even cells. Also label those that 

are an odd number of cells away from the entering variable as odd cells.  

3. Find the odd cell whose variable assumes the smallest value. Call this value Φ. The 

variable corresponding to this odd cell will leave the basis. To perform the pivot, 

decrease the value of each odd cell by Φ and increase the value of each even cell 

by Φ. The values of variables not in the loop remain unchanged. The pivot is now 

complete. If Φ = 0, the entering variable will equal 0, and odd variable that has a 

current value of 0 will leave the basis. 
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Example 1. Powerco 
The problem is balanced (total supply equals total demand). 

When the NWC method is applied to the Powerco example, the bfs in the following 

table is obtained (check: there exist m+n–1=6 basic variables).  

 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1  8  6  10  9 35 35        

Plant 2   9  12  13  7 50 10  20  20    

Plant 3  14  9  16  5 40     10  30  
DEMAND 45 20 30 30 125 

u1 = 0 

u1 + v1 = 8 yields v1 = 8 

u2 + v1 = 9 yields u2 = 1 

u2 + v2 = 12 yields v2 = 11 

u2 + v3 = 13 yields v3 = 12 

u3 + v3 = 16 yields u3 = 4 

u3 + v4 = 5 yields v4 = 1 

For each nonbasic variable, we now compute ĉij = ui + vj – cij 

ĉ12 = 0 + 11 – 6 = 5 

ĉ13 = 0 + 12 – 10 = 2 

ĉ14 = 0 + 1 – 9 = -8 

ĉ24 = 1 + 1 – 7 = -5 

ĉ31 = 4 + 8 – 14 = -2 

ĉ32 = 4 + 11 – 9 = 6 

Since ĉ32 is the most positive one, we would next enter x32 into the basis: Each unit of 

x32 that is entered into the basis will decrease Powerco’s cost by $6. 

The loop involving x32 is (3,2)-(3,3)-(2,3)-(2,2). Φ = 10 (see table)  

 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1  8  6  10  9 35 35        

Plant 2   9  12  13  7 50 10  20–Φ  20+Φ    

Plant 3  14  9  16  5 40   Φ  10–Φ   30  

DEMAND 45 20 30 30 125 
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x33 would leave the basis. New bfs is shown at the following table: 

ui/vj 8 11 12 7 SUPPLY 

0  8  6  10  9 35 35        

1  9  12  13  7 50 10  10  30    

-2  14  9  16  5 40   10     30  

DEMAND 45 20 30 30 125 

ĉ12 = 5, ĉ13 = 2, ĉ14 = -2, ĉ24 = 1, ĉ31 = -8, ĉ33 = -6 

Since ĉ12 is the most positive one, we would next enter x12 into the basis. 

The loop involving x12 is (1,2)-(2,2)-(2,1)-(1,1). Φ = 10 (see table) 

 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1  8  6  10  9 35 35–Φ  Φ      

Plant 2   9  12  13  7 50 10+Φ  10–Φ  30    

Plant 3  14  9  16  5 40   10     30  

DEMAND 45 20 30 30 125 
 
x22 would leave the basis. New bfs is shown at the following table: 

ui/vj 8 6 12 2 SUPPLY 

0  8  6  10  9 35 25  10      

1  9  12  13  7 50 20    30    

3  14  9  16  5 40   10     30  

DEMAND 45 20 30 30 125 

ĉ13 = 2, ĉ14 = -7, ĉ22 = -5, ĉ24 = -4, ĉ31 = -3, ĉ33 = -1 

Since ĉ13 is the most positive one, we would next enter x13 into the basis. 

The loop involving x13 is (1,3)-(2,3)-(2,1)-(1,1). Φ = 25 (see table) 
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 City 1 City 2 City 3 City 4 SUPPLY 

Plant 1  8  6  10  9 35 25–Φ  10  Φ    

Plant 2   9  12  13  7 50 20+Φ    30–Φ    

Plant 3  14  9  16  5 40   10     30  

DEMAND 45 20 30 30 125 
x11 would leave the basis. New bfs is shown at the following table: 

ui/vj 6 6 10 2 SUPPLY 

0  8  6  10  9 35   10  25    

3  9  12  13  7 50 45    5    

3  14  9  16  5 40   10     30  

DEMAND 45 20 30 30 125 

ĉ11 = -2, ĉ14 = -7, ĉ22 = -3, ĉ24 = -2, ĉ31 = -5, ĉ33 = -3 

Since all ĉij’s are negative, an optimal solution has been obtained. 

Report 

45 million kwh of electricity would be sent from plant 2 to city 1. 

10 million kwh of electricity would be sent from plant 1 to city 2. Similarly, 10 million 

kwh of electricity would be sent from plant 3 to city 2. 

25 million kwh of electricity would be sent from plant 1 to city 3. 5 million kwh of 

electricity would be sent from plant 2 to city 3. 

30 million kwh of electricity would be sent from plant 3 to city 4 and 

Total shipping cost is: 

z = .9 (45) + 6 (10) + 9 (10) + 10 (25) + 13 (5) + 5 (30) = $ 1020  

 

4.4 TRANSSHIPMENT PROBLEMS 
Sometimes a point in the shipment process can both receive goods from other points 

and send goods to other points. This point is called as transshipment point through 

which goods can be transshipped on their journey from a supply point to demand point. 

Shipping problem with this characteristic is a transshipment problem. 
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The optimal solution to a transshipment problem can be found by converting this 

transshipment problem to a transportation problem and then solving this transportation 

problem. 

Remark 
As stated in “Formulating Transportation Problems”, we define a supply point to be a 

point that can send goods to another point but cannot receive goods from any other 

point. 

Similarly, a demand point is a point that can receive goods from other points but 

cannot send goods to any other point. 

Steps 
1. If the problem is unbalanced, balance it 

Let s = total available supply (or demand) for balanced problem 

2. Construct a transportation tableau as follows 

A row in the tableau will be needed for each supply point and transshipment point 

A column will be needed for each demand point and transshipment point 

Each supply point will have a supply equal to its original supply 

Each demand point will have a demand equal to its original demand  

Each transshipment point will have a supply equal to “that point’s original supply + 

s”  

Each transshipment point will have a demand equal to “that point’s original demand 

+ s” 

3. Solve the transportation problem 

 

Example 1. Bosphorus  
(Based on Winston 7.6.) 

Bosphorus manufactures LCD TVs at two factories, one in Istanbul and one in Bruges. 

The Istanbul factory can produce up to 150 TVs per day, and the Bruges factory can 

produce up to 200 TVs per day. TVs are shipped by air to customers in London and 

Paris. The customers in each city require 130 TVs per day. Because of the deregulation 

of air fares, Bosphorus  believes that it may be cheaper to first fly some TVs to 

Amsterdam or Munchen and then fly them to their final destinations. The costs of flying 

a TV are shown at the table below. Bosphorus wants to minimize the total cost of 

shipping the required TVs to its customers.  
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€ To 
From Istanbul Bruges Amsterdam Munchen London Paris 

Istanbul 0 - 8 13 25 28 
Bruges - 0 15 12 26 25 

Amsterdam - - 0 6 16 17 
Munchen - - 6 0 14 16 
London - - - - 0 - 
Paris - - - - - 0 

 
Answer:  

In this problem Amsterdam and Munchen are transshipment points. 

Step 1. Balancing the problem 

Total supply = 150 + 200 = 350 

Total demand = 130 + 130 = 260 

Dummy’s demand = 350 – 260 = 90 

s = 350 (total available supply or demand for balanced problem) 

Step 2. Constructing a transportation tableau 

Transshipment point’s demand = Its original demand + s = 0 + 350 = 350 

Transshipment point’s supply = Its original supply + s = 0 + 350 = 350 
  Amsterdam Munchen London Paris Dummy Supply 

Istanbul  8  13  25  28  0 150           

Bruges  15  12  26  25  0 200           

Amsterdam  0  6  16  17  0 350           

Munchen  6  0  14  16  0 350           

Demand 350 350 130 130 90   

Step 3. Solving the transportation problem 
  Amsterdam Munchen London Paris Dummy Supply 

Istanbul  8  13  25  28  0 150 130        20  

Bruges  15  12  26  25  0 200       130  70  

Amsterdam  0  6  16  17  0 350 220    130      

Munchen  6  0  14  16  0 350   350        

Demand 350 350 130 130 90 1050 
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Report: 
Bosphorus should produce 130 TVs at Istanbul, ship them to Amsterdam, and 

transship them from Amsterdam to London. 

The 130 TVs produced at Bruges should be shipped directly to Paris. 

The total shipment is 6370 Euros.  

 

4.5 ASSIGNMENT PROBLEMS 
There is a special case of transportation problems where each supply point should be 

assigned to a demand point and each demand should be met. This certain class of 

problems is called as “assignment problems”. For example determining which 

employee or machine should be assigned to which job is an assignment problem.  
 
4.5.1 LP Representation 
An assignment problem is characterized by knowledge of the cost of assigning each 

supply point to each demand point: cij 

On the other hand, a 0-1 integer variable xij is defined as follows 

 xij = 1 if supply point i is assigned to meet the demands of demand point j 

 xij = 0 if supply point i is not assigned to meet the demands of point j 

In this case, the general LP representation of an assignment problem is  

 min Σi Σj cij xij 

 s.t. Σj xij = 1 (i=1,2, ..., m) Supply constraints 

  Σi xij = 1 (j=1,2, ..., n) Demand constraints 

 xij = 0 or xij = 1 

 
4.5.2 Hungarian Method 
Since all the supplies and demands for any assignment problem are integers, all 

variables in optimal solution of the problem must be integers. Since the RHS of each 

constraint is equal to 1, each xij must be a nonnegative integer that is no larger than 1, 

so each xij must equal 0 or 1. 

Ignoring the xij = 0 or xij = 1 restrictions at the LP representation of the assignment 

problem, we see that we confront with a balanced transportation problem in which each 

supply point has a supply of 1 and each demand point has a demand of 1. 
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However, the high degree of degeneracy in an assignment problem may cause the 

Transportation Simplex to be an inefficient way of solving assignment problems. 

For this reason and the fact that the algorithm is even simpler than the Transportation 

Simplex, the Hungarian method is usually used to solve assignment  problems. 

Remarks 
1. To solve an assignment problem in which the goal is to maximize the objective 

function, multiply the profits matrix through by –1 and solve the problem as a 

minimization problem. 

2. If the number of rows and columns in the cost matrix are unequal, the assignment 

problem is unbalanced. Any assignment problem should be balanced by the 

addition of one or more dummy points before it is solved by the Hungarian method. 

Steps 
1. Find the minimum cost each row of the m*m cost matrix. 

2. Construct a new matrix by subtracting from each cost the minimum cost in its row 

3. For this new matrix, find the minimum cost in each column 

4. Construct a new matrix (reduced cost matrix) by subtracting from each cost the 

minimum cost in its column 

5. Draw the minimum number of lines (horizontal and/or vertical) that are needed to 

cover all the zeros in the reduced cost matrix. If m lines are required, an optimal 

solution is available among the covered zeros in the matrix. If fewer than m lines 

are needed, proceed to next step 

6. Find the smallest cost (k) in the reduced cost matrix that is uncovered by the lines 

drawn in Step 5 

7. Subtract k from each uncovered element of the reduced cost matrix and add k to 

each element that is covered by two lines. Return to Step 5 

Example 1. Flight Crew  
(Based on Winston 7.5.) 

Four captain pilots (CP1, CP2, CP3, CP4) has evaluated four flight officers (FO1, FO2, 

FO3, FO4) according to perfection, adaptation, morale motivation in a 1-20 scale (1: 

very good, 20: very bad). Evaluation grades are given in the table. Flight Company 

wants to assign each flight officer to a captain pilot according to these evaluations. 

Determine possible flight crews. 
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 FO1 FO2 FO3 FO4 
CP1 2 4 6 10 
CP2 2 12 6 5 
CP3 7 8 3 9 
CP4 14 5 8 7 

 

Answer: 
Step 1. For each row in the table we find the minimum cost: 2, 2, 3, and 5 respectively 

Step 2 & 3. We subtract the row minimum from each cost in the row. For this new 

matrix, we find the minimum cost in each column 
 0 2 4 8 
 0 10 4 3 
 4 5 0 6 
 9 0 3 2 

Column minimum 0 0 0 2 

Step 4. We now subtract the column minimum from each cost in the column obtaining 

reduced cost matrix. 
0 2 4 6 
0 10 4 1 
4 5 0 4 
9 0 3 0 

Step 5. As shown, lines through row 3, row 4, and column 1 cover all the zeros in the 

reduced cost matrix. The minimum number of lines for this operation is 3. Since fewer 

than four lines are required to cover all the zeros, solution is not optimal: we proceed 

to next step. 
0 2 4 6 
0 10 4 1 
4 5 0 4 
9 0 3 0 

Step 6 & 7. The smallest uncovered cost equals 1. We now subtract 1 from each 

uncovered cost, add 1 to each twice-covered cost, and obtain 
0 1 3 5 
0 9 3 0 
5 5 0 4 

10 0 3 0 

Four lines are now required to cover all the zeros: An optimal s9olution is available.  

Observe that the only covered 0 in column 3 is x33, and in column 2 is x42. As row 5 

can not be used again, for column 4 the remaining zero is x24. Finally we choose x11. 

Report:  
CP1 should fly with FO1; CP2 should fly with FO4; CP3 should fly with FO3; and CP4 

should fly with FO2.  
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Example 2. Maximization problem 

 F G H I J 
A 6 3 5 8 10 
B 2 7 6 3 2 
C 5 8 3 4 6 
D 6 9 3 1 7 
E 2 2 2 2 8 

Report:  
Optimal profit = 36 

Assigments: A-I, B-H, C-G, D-F, E-J 

Alternative optimal sol’n: A-I, B-H, C-F, D-G, E-J 
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5. INTEGER PROGRAMMING 

When formulating Linear Programs (LPs) we often found that, strictly, certain variables 

should have been regarded as taking integer values but, for the sake of convenience, 

we let them take fractional values reasoning that the variables were likely to be so large 

that any fractional part could be neglected.  

While this is acceptable in some situations, in many cases it is not, and in such cases, 

we must find a numeric solution in which the variables take integer values. 

Problems in which this is the case are called integer programs (IP's) and the subject 

of solving such programs is called integer programming (also referred to by the 

initials IP).  

IP's occur frequently because many decisions are essentially discrete (such as yes/no, 

do/do not) in that one or more options must be chosen from a finite set of alternatives.  

An IP in which all variables are required to be integers is called a pure IP problem. 

If some variables are restricted to be integer and some are not then the problem is a 

mixed IP problem.  

The case where the integer variables are restricted to be 0 or 1 comes up surprising 

often. Such problems are called pure (mixed) 0-1 programming problems or pure 
(mixed) binary IP problems. 

For any IP we can generate an LP by taking the same objective function and same 

constraints but with the requirement that variables are integer replaced by appropriate 

continuous constraints: 

“xi ≥ 0 and integer” can be replaced by xi ≥ 0 

“xi = 0 or 1” can be replaced by xi ≥ 0 and xi ≤ 1 

The LP obtained by omitting all integer or 0-1 constraints on variables is called LP 
Relaxation of the IP (LR). 

5.1 FORMULATING IP 

Practical problems can be formulated as IPs. For instance budgeting problems, 

knapsack problems, fixed charge production and location problems, set covering 

problems, etc. 
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5.1.1 Budgeting Problems 

Example 1. Capital Budgeting (Winston 9.2, p. 478 – modified) 

Stock is considering four investments. Each investment yields a determined NPV 

($8,000, $11,000, $6,000, $4,000). Each investment requires at certain cash flow at 

the present time ($5,000, $7,000, $4,000, $3,000). Currently Stock has $14,000 

available for investment. 

Formulate an IP whose solution will tell Stock how to maximize the NPV obtained from 

the four investments. 

Answer 
Begin by defining a variable for each decision that Stockco must make. 

In this case, we will use a 0-1 variable xj for each investment: 

If xj is 1 then Stock will make investment j.  

If it is 0, Stock will not make the investment.   

This leads to the 0-1 programming problem:  

max z =  8x1 + 11x2 + 6x3 + 4x4 

s.t.          5x1 +  7x2 + 4x3 + 3x4 ≤ 14 

      xj = 0 or 1  (j = 1,2,3,4) 

Comment 
Now, a straightforward “bang for buck” (taking ratios of objective coefficient over 

constraint coefficient) suggests that investment 1 is the best choice. 

Ignoring integrality constraints, the optimal linear programming solution is:  

 x1 = x2 = 1, x3 = 0.5, and x4 = 0 for a value of $22K  

Unfortunately, this solution is not integer. Rounding x3 down to 0: 

 x1 = x2 = 1, x3 = x4 = 0 for a value of $19K 

There is a better integer solution (optimal solution): 

 x1 = 0, x2 = x3 = x4 = 1 for a value of $21K  

This example shows that rounding does not necessarily give an optimal value.  

Example 2. Multiperiod Capital Budgeting 
There are four possible projects, which each run for three years and have the following 

characteristics: 

Which projects would you choose in order to maximize the total return?  
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   Capital requirements 

Project  Return Year1 Year2 Year3 

1  0.2 0.5 0.3 0.2 

2  0.3 1 0.5 0.2 

3  0.5 1.5 1.5 0.3 

4  0.1 0.1 0.4 0.1 

Available capital 3.1 2.5 0.4 

Answer 
We will use a 0-1 variable xj for each project:  

xj is 1 if we decide to do project j;  

xj is 0 otherwise (i.e. not do project j).  

This leads to the 0-1 programming problem:  

max 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

s.t. 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

 0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

 0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

 xj = 0 or 1 j = 1, …, 4  

Example 3. Capital Budgeting Extension 
There are a number of additional constraints Stock might want to add.  

Logical restrictions can be enforced using 0-1 variables: 

Stock can only make two investments 

x1 + x2 + x3 + x4 ≤ 2 

Any choice of three or four investments will have x1 + x2 + x3 + x4 ≥ 3 

If investment 2 is made, investment 4 must also be made 

x2 ≤ x4 or x2 – x4 ≤ 0 

If x2 is 1, then x4 is also 1; if x2 is 0, then there is no restriction for x4 (x4 is 0 or 1) 

If investment 1 is made, investment 3 cannot be made 

x1 + x3 ≤ 1 

If x1 is 1, then x3 is 0; if x1 is 0, then there is no restriction for x3 (x3 is 0 or 1) 

Either investment 1 or investment 2 must be made (only one of them, not both) 

x1 + x2 = 1 

If x1 is 1, then x2 is 0 (only investment 1 is made); if x1 is 0, then x2 is 1 (only investment 

2 is made)  
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5.1.2 Knapsack Problems 

Any IP that has only one constraint is referred to as a knapsack problem. 

Furthermore, the coefficients of this constraint and the objective are all non-negative. 

The traditional story is that: There is a knapsack. There are a number of items, each 

with a size and a value. The objective is to maximize the total value of the items in the 

knapsack.  

Knapsack problems are nice because they are (usually) easy to solve.  

General representation of the knapsack problem: 

max z = c1x1 + c2x2 + ∙∙∙ + cnxn  

s.t.        a1x1 + a2x2 + ∙∙∙ + anxn ≤ b  

xi = 0 or 1 (i = 1, 2, …, n) 

where ci is the value of item i, ai is the weight of item i, and  b is the total weight capacity.  

For instance, the following is a knapsack problem: 

Maximize 8 x1 + 11 x2 + 6 x3 + 4 x4  

Subject to 5 x1 +  7 x2 + 4 x3 + 3 x4 ≤ 14 

  xj = 0 or 1 j = 1, … 4 

5.1.3 Fixed Charge Problems 

There is a cost associated with performing an activity at a nonzero level that does not 

depend on the level of the activity. 

An important trick can be used to formulate many production and location problems 

involving the idea of a fixed charge as IP. 

Example 4. Gandhi (Winston 9.2, p. 480) 

Gandhi Co makes shirts, shorts, and pants using the limited labor and cloth described 

below.  

In addition, the machinery to make each product must be rented.  

 

 

 

 

 

 
 

 Shirts Shorts Pants Total Avail. 
Labor (hrs/wk)  3 2 6 150 
Cloth (m2/wk)  4 3 4 160 
Rent for machine ($/wk)  200 150 100  
Variable unit cost  6 4 8  
Sale Price  12 8 15  
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Answer 
Let xj be number of clothing produced. 

Let yj be 1 if any clothing j is manufactured and 0 otherwise. 

Profit = Sales revenue – Variable Cost – Costs of renting machinery 

For example the profit from shirts is  

 z1 = ( 12 – 6 ) x1 – 200 y1 

Since supply of labor and cloth is limited, Gandhi faces two constraints.  

To ensure xj > 0 forces yj = 1, we include the additional constraints  

 xj ≤ Mj yj  

From the cloth constraint at most 40 shirts can be produced (M1=40), so the additional 

constraint for shirts is not an additional limit on x1 (If M1 were not chosen large (say 

M1=10), then the additional constraint for shirts would unnecessarily restrict the value 

of x1). 

From the cloth constraint at most 53 shorts can be produced (M2=53) 

From the labor constraint at most 25 pants can be produced (M3=25)  

We thus get the mixed (binary) integer problem:  

max  6 x1 + 4 x2 + 7 x3 – 200 y1 – 150 y2 – 100 y3 

s.t. 3 x1 + 2 x2 + 6 x3 ≤ 150   (Labor constraint) 

 4 x1 + 3 x2 + 4 x3 ≤ 160   (Cloth constraint) 

 x1 ≤ 40 y1      (Shirt production constraint) 

 x2 ≤ 53 y2      (Short production constraint) 

 x3 ≤ 25 y3      (Pant production constraint) 

 x1, x2, x3 ≥ 0 and integer 

 y1, y2, y3 = 0 or 1 

Example 5. Warehouse problem 
ATK-White are planning where to open warehouse (WH) and how to transport products 

from warehouses to costumers.  5 possible WH locations are considered to serve 4 

customers. There is a fixed cost of opening and operating WHs (𝑓𝑓𝑖𝑖). There is also 

transportation cost of transporting products from WHs to customers (𝑐𝑐𝑖𝑖𝑗𝑗). If a WH is 

opened, its capacity (𝐾𝐾𝑖𝑖) cannot be exceeded. All demands of the customers (𝐷𝐷𝑗𝑗) 

should be met. 

Formulate an IP to minimize the total cost of ATK-White (WH opening costs and 

transportation costs) to meet the demands of the customers. 
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 Cust. 1 Cust. 2 Cust. 3 Cust. 4 Fixed cost (TL) Capacity 

WH -1 8TL 6TL 10TL 9TL 220,000 50,000 

WH -2 9TL 12TL 13TL 7TL 280,000 60,000 

WH -3 14TL 9TL 16TL 5TL 150,000 45,000 

WH -4 18TL 16TL 10TL 9TL 290,000 80,000 

WH -5 10TL 6TL 13TL 8TL 490,000 120,000 

Demand 40,000 30,000 25,000 75,000   

Answer 
Define decision variables: 

𝑎𝑎𝑖𝑖𝑗𝑗: Amount of product transported from WH-i to Customer j. (i=1,2,3,4,5; j=1,2,3,4) 

𝑦𝑦𝑖𝑖: Binary variable for opening WH-i. (i=1,2,3,4,5) 

 𝑦𝑦𝑖𝑖= 1 if WH-i is opened,  𝑦𝑦𝑖𝑖= 0 if WH-i is not opened. 

Objective is to minimize the sum of WH opening cost and total transportation cost. 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  �𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖

5

𝑖𝑖=1

+ ��𝑐𝑐𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗

4

𝑗𝑗=

5

𝑖𝑖=1

 

Subject to the following constraints: 

�𝑎𝑎𝑖𝑖𝑗𝑗

4

𝑗𝑗=1

≤ 𝐾𝐾𝑖𝑖𝑦𝑦𝑖𝑖              ∀𝑀𝑀 

�𝑎𝑎𝑖𝑖𝑗𝑗

5

𝑖𝑖=1

≥ 𝐷𝐷𝑗𝑗             ∀𝑗𝑗 

𝑎𝑎𝑖𝑖𝑗𝑗 ≥ 0    ∀𝑀𝑀, 𝑗𝑗,         𝑦𝑦𝑖𝑖 ∈ �
0
1�    ∀𝑀𝑀      

5.1.4 Either-Or Constraints 

Given two constraints 

 f(x1, x2,…, xn) ≤ 0  (1) 

 g(x1, x2,…, xn) ≤ 0  (2) 

ensure that at least one is satisfied (1 or 2) by adding either-or-constraints: 

 f(x1, x2,…, xn) ≤ M y 

 g(x1, x2,…, xn) ≤ M (1 – y) 

Here y is a 0-1 variable, and M is a number chosen large enough to ensure that both 

constraints are satisfied for all values of decision variables that satisfy the other 

constraints in the problem: 
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o If y = 0, then (1) and possibly (2) must be satisfied.  

o If y = 1, then (2) and possibly (1) must be satisfied. 

Example 1. Warehouse problem – Either-Or extension 
Consider the Warehouse problem. Suppose that ATK-White has a chance of ignoring 

the demand of either customer 1 or customer 2. (i.e. they can choose to meet the 

demand of one of the two customers). How would you add this condition to the IP? 

Answer 
One of the following constraints should be satisfied: 

𝑎𝑎11 + 𝑎𝑎21 + 𝑎𝑎31 + 𝑎𝑎41 + 𝑎𝑎51 ≥ 40,000 

𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 + 𝑎𝑎52 ≥ 30,000 

Arrange the constraints to be in the format of Either-or constraint formulation:  

−(𝑎𝑎11 + 𝑎𝑎21 + 𝑎𝑎31 + 𝑎𝑎41 + 𝑎𝑎51) + 40,000 ≤ 0 

−(𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 + 𝑎𝑎52) + 30,000 ≤ 0 

In this way;  

𝑓𝑓(𝑎𝑎) = −(𝑎𝑎11 + 𝑎𝑎21 + 𝑎𝑎31 + 𝑎𝑎41 + 𝑎𝑎51) + 40,000  and 

𝑔𝑔(𝑎𝑎) = −(𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 + 𝑎𝑎52) + 30,000. 

Add the following constraints to the model: 

−(𝑎𝑎11 + 𝑎𝑎21 + 𝑎𝑎31 + 𝑎𝑎41 + 𝑎𝑎51) + 40000 ≤ M1𝑦𝑦 

 −(𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 + 𝑎𝑎52) + 30000 ≤ M2(1 − 𝑦𝑦). 

where 𝑦𝑦 ∈ �01� . M values can be considered as 40,000 and 30,000, respectively. 

The final model would be as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  �𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖

5

𝑖𝑖=1

+ ��𝑐𝑐𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗

4

𝑗𝑗=

5

𝑖𝑖=1

 

Subject to 

�𝑎𝑎𝑖𝑖𝑗𝑗

4

𝑗𝑗=1

≤ 𝐾𝐾𝑖𝑖𝑦𝑦𝑖𝑖              ∀𝑀𝑀 

�𝑎𝑎𝑖𝑖𝑗𝑗

5

𝑖𝑖=1

≥ 𝐷𝐷𝑗𝑗             𝑗𝑗 = 3,4,5. 

−(𝑎𝑎11 + 𝑎𝑎21 + 𝑎𝑎31 + 𝑎𝑎41 + 𝑎𝑎51) + 40000 ≤ 40000𝑦𝑦 

 −(𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 + 𝑎𝑎52) + 30000 ≤ 30000(1 − 𝑦𝑦). 

𝑎𝑎𝑖𝑖𝑗𝑗 ≥ 0    ∀𝑀𝑀, 𝑗𝑗,         𝑦𝑦𝑖𝑖 ∈ �
0
1�    ∀𝑀𝑀 , 𝑦𝑦  ∈ �01� .   
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Example 7. Compact Car 
Suppose 1.5 tons of steel and 30 hours of labor are required for production of one 

compact car. 

At present, 6,000 tons of steel and 60,000 hours of labor are available. 

For an economically feasible production, at least 1,000 cars of compact car must be 

produced. 

• Constraint:  x ≤ 0 or x ≥ 1000  

• Sign restriction: x ≥ 0 and Integer  

Answer  
For f(x) = x; g(x) = 1000 –  x 

We can replace the constraint by the following pair of linear constraints: 

 x ≤ M y 

 1000 – x ≤ M (1 – y) 

 y = 0 or 1 

 M = min (6,000/1.5, 60,000/30) = 2000 

5.1.5 If-Then Constraints 

Suppose we want to ensure that 

a constraint  f(x1, x2,…, xn) > 0 implies  

the constraint g(x1, x2,…, xn) ≥ 0 

Then we include the following constraints in the formulation: 

–g(x1, x2,…, xn) ≤ M y  (1) 

f(x1, x2,…, xn) ≤ M (1 – y)  (2) 

Here y is a 0-1 variable, and M is a large positive number, chosen large enough so that 

f<M and –g<M hold for all values of decision variables that satisfy the other constraints 

in the problem. 

If f > 0, then (2) can be satisfied only if y = 0. (1) implies –g ≤ 0 or g ≥ 0, which is the 

desired result 

Example 2. Warehouse problem – If-then extension 
Consider the Warehouse problem. How would you add the following condition to the 

model: If more than 40% of the capacity of WH-2 is used, WH-3 cannot be opened? 

Answer 
Initially, write a mathematical formulation for the condition: 
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If 𝑎𝑎21 + 𝑎𝑎22 + 𝑎𝑎23 + 𝑎𝑎24 + 𝑎𝑎25 > 24,000  then  𝑦𝑦3 = 0. 

𝑦𝑦3 = 0  𝑦𝑦3 ≤ 0  −𝑦𝑦3 ≥ 0 

Arrange the constraints to be in the format of If-then constraint formulation 

 
𝑓𝑓(𝑎𝑎) = 𝑎𝑎21 + 𝑎𝑎22 + 𝑎𝑎23 + 𝑎𝑎24 + 𝑎𝑎25 − 24,000 > 0 

𝑔𝑔(𝑎𝑎) = −𝑦𝑦3 

Add the following constraints to the model: 

𝑦𝑦3 ≤ M1𝑦𝑦 

𝑎𝑎21 + 𝑎𝑎22 + 𝑎𝑎23 + 𝑎𝑎24 + 𝑎𝑎25 − 24000 ≤ M2(1 − 𝑦𝑦) 

Where 𝑦𝑦 ∈ �01� . M values can be considered as 1 and 36,000, respectively. 

The final model would be as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  �𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖

5

𝑖𝑖=1

+ ��𝑐𝑐𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗

4

𝑗𝑗=

5

𝑖𝑖=1

 

Subject to 

�𝑎𝑎𝑖𝑖𝑗𝑗

4

𝑗𝑗=1

≤ 𝐾𝐾𝑖𝑖𝑦𝑦𝑖𝑖              ∀𝑀𝑀 

�𝑎𝑎𝑖𝑖𝑗𝑗

5

𝑖𝑖=1

≥ 𝐷𝐷𝑗𝑗             ∀𝑗𝑗 

𝑦𝑦3 ≤ 𝑦𝑦 

𝑎𝑎21 + 𝑎𝑎22 + 𝑎𝑎23 + 𝑎𝑎24 + 𝑎𝑎25 − 24000 ≤ 36000(1 − 𝑦𝑦) 

𝑎𝑎𝑖𝑖𝑗𝑗 ≥ 0    ∀𝑀𝑀, 𝑗𝑗,         𝑦𝑦𝑖𝑖 ∈ �
0
1�    ∀𝑀𝑀 , 𝑦𝑦  ∈ �01� .   

5.1.6 Membership in Specified Subsets 

Set covering, set packing, and set partitioning models are a special class of IP. 

Using decision variables that equal 1 if an object is part of a solution and 0 otherwise, 

set covering, set packing, and set partitioning models formulate problems where the 

core issue is membership in specified subsets. 

There are many applications in areas such as location (facility, fire/police station, 

warehouse), scheduling (crew, airline, truck, bus), delivery, vehicle routing, political 

districting, capital budgeting. 
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• Set covering problems arises when each set element must appear in at least one 

subset:  

∑j∈J xj ≥ 1 

• Set packing problems arises when each set element must appear in at most one 

subset:  

∑j∈J xj ≤ 1 

• Set partitioning problems arises when each set element must appear in exactly 

one subset:  

∑j∈J xj = 1 

Example 9. Fire Station 
A county made up of 11 cities is reviewing the location of its fire stations.  

  

A fire station can be placed in any city.  

It is able to handle the fires for both its city and any adjacent city (any city with a non-

zero border with its home city).  

How many fire stations should be built and where? 

Answer  
We can create one variable xj for each city j (1 if we place a station in the city, 0 

otherwise):  

Each constraint should state that there must be a station either in city j or in some 

adjacent city.  
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The jth column of the constraint matrix represents the set of cities that can be served 

by a fire station in city j.  

We are asked to find a set of such subsets j that covers the set of all cities in the sense 

that every city appears in the service subset associated with at least one fire station. 

There must be at least one fire station either in city j or in some adjacent city (set 

covering constraints).  

min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 

s.t.  x1 + x2 + x3 + x4                    ≥ 1 (city 1) 

 x1 + x2 + x3 +         x5                  ≥ 1 (city 2) 

 x1 + x2 + x3 + x4 + x5 + x6         ≥  1 (city 3) 

 x1         + x3 + x4        + x6 + x7                 ≥ 1 (city 4) 

         x2 + x3        + x5 + x6         + x8 + x9        ≥ 1 (city 5) 

        x3 + x4 + x5 + x6 + x7 + x8                ≥ 1 (city 6) 

               x4        + x6 + x7 + x8          ≥ 1 (city 7) 

                                         x5 + x6 + x7 + x8 + x9 + x10         ≥ 1 (city 8) 

                      x5                + x8 + x9 + x10 + x11     ≥ 1 (city 9) 

                                  x8 + x9 + x10 + x11      ≥ 1 (city 10) 

                                          x9 + x10 + x11       ≥ 1 (city 11) 

 All xj = 0 or 1 

Example 10. Timetable Scheduling 
In an IE department, on Monday, 4 classes have to be assigned to classrooms. There 

are 3 classrooms devoted to the IE department. Each day is divided into 2 periods: 

morning and afternoon. Schedule a class timetable for the department.  

Answer 
xijk = 1 if class i is assigned to classroom j at time period k, 0 otherwise  

         i = 1, 2, 3, 4 (classes), j = 1, 2, 3 (rooms), k = 1, 2 (periods) 

Each class should be assigned to exactly one classroom at a specific time period (set 

partitioning constraints): 

x111 + x112 + x121 + x122 + x131 + x132 = 1  (class 1) 

x211 + x212 + x221 + x222 + x231 + x232 = 1  (class 2) 

x311 + x312 + x321 + x322 + x331 + x332 = 1  (class 3) 

x411 + x412 + x421 + x422 + x431 + x432 = 1  (class 4) 
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At most one class can be held in each classroom at a specific time period (set packing 

constraints): 

x111 + x211 + x311 +  x411 ≤ 1   (room 1 – morning) 

x112 + x212 + x312 +  x412 ≤ 1   (room 1 – afternoon) 

x121 + x221 + x321 +  x421 ≤ 1   (room 2 – morning) 

x122 + x222 + x322 +  x422 ≤ 1   (room 2 – afternoon) 

x131 + x231 + x331 +  x431 ≤ 1   (room 3 – morning) 

x132 + x232 + x332 +  x432 ≤ 1   (room 3 – afternoon) 

Therefore the IP model that would be formulated to schedule the timetable will be: 

max f (or any other objective function) 

s.t.  x111 + x112 + x121 + x122 + x131 + x132 = 1  (class 1) 

x211 + x212 + x221 + x222 + x231 + x232 = 1  (class 2) 

x311 + x312 + x321 + x322 + x331 + x332 = 1  (class 3) 

x411 + x412 + x421 + x422 + x431 + x432 = 1  (class 4) 

x111 + x211 + x311 +  x411 ≤ 1      (room 1 – morning) 

x112 + x212 + x312 +  x412 ≤ 1      (room 1 – afternoon) 

x121 + x221 + x321 +  x421 ≤ 1      (room 2 – morning) 

x122 + x222 + x322 +  x422 ≤ 1      (room 2 – afternoon) 

x131 + x231 + x331 +  x431 ≤ 1      (room 3 – morning) 

x132 + x232 + x332 +  x432 ≤ 1      (room 3 – afternoon) 

All xijk = 0 or 1 

5.1.7 Traveling Salesperson Problems 

“Given a number of cities and the costs of traveling from any city to any other city, what 

is the cheapest round-trip route (tour) that visits each city once and then returns to the 

starting city?” 

This problem is called the traveling salesperson problem (TSP), not surprisingly. 

An itinerary that begins and ends at the same city and visits each city once is called a 

tour.  
Suppose there are N cities.  

Let cij = Distance from city i to city j (for i≠j) and  

Let cii = M (a very large number relative to actual distances) 

Also define xij as a 0-1 variable as follows: 

xij = 1 if s/he goes from city i to city j; 
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xij = 0 otherwise 

The formulation of the TSP is: 

 min  ∑İ ∑j cij xij  

 s.t. ∑İ xij = 1  for all j 

  ∑j xij = 1  for all i 

  ui – uj + N xij ≤ N – 1  for i≠j; i, j > 1 

 All xij = 0 or 1, All ui ≥ 0  

The first set of constraints ensures that s/he arrives once at each city. 

The second set of constraints ensures that s/he leaves each city once. 

The third set of constraints ensure the following: 

Any set of xij’s containing a subtour will be infeasible 

Any set of xij’s that forms a tour will be feasible 

ui – uj + N xij ≤ N – 1  for i≠j; i, j > 1 

Assume N=5  

Subtours: 1-5-2-1, 3-4-3 ??? 

Choose the subtour that does not contain city 1: 

  u3 – u4 + 5 x34 ≤ 4   

  u4 – u3 + 5 x43 ≤ 4 

    5 (x34 + x43) ≤ 8 

This rules out the possibility that x34 = x43 = 1  

The formulation of an IP whose solution will solve a TSP becomes unwieldy and 

inefficient for large TSPs.  

When using branch and bound methods to solve TSPs with many cities, large amounts 

of computer time may be required. For this reason, heuristics, which quickly lead to a 

good (but not necessarily optimal) solution to a TSP, are often used.  

5.2 SOLVING IP 

We have gone through a number of examples of IPs at the “Formulating IP Problems” 

section. 

“How can we get solutions to these models?” There are two common approaches:  

The technique based on dividing the problem into a number of smaller problems in a 

tree search method called branch and bound.  

The method based on cutting planes (adding constraints to force integrality).  
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Solving IP 

Actually, all these approaches involve solving a series of LP.  

For solving LP’s we have general purpose (independent of the LP being solved) and 

computationally effective (able to solve large LP's) algorithms (simplex or interior 

point).  

For solving IP's no similar general purpose and computationally effective algorithms 

exist   

5.2.1 Categorization  

Categorization (w.r.t. Purpose) 
• General purpose methods will solve any IP but potentially computationally 

ineffective (will only solve relatively small problems); or  

• Special purpose methods are designed for one particular type of IP problem but 

potentially computationally more effective.  

Categorization (w.r.t. Algorithm) 

• Optimal algorithms mathematically guarantee to find the optimal solution  

• Heuristic algorithms are used to solve a problem by trial and error when an 

optimal algorithm approach is impractical. They hopefully find a good feasible 

solution that, in objective function terms, is close to the optimal solution.  

Why Heuristics? 
Because the size of problem that we want to solve is beyond the computational limit of 

known optimal algorithms within the computer time we have available. 

We could solve optimally but feel that this is not worth the effort (time, money, etc) we 

would expend in finding the optimal solution.  

In fact it is often the case that a well-designed heuristic algorithm can give good quality 

(near-optimal) results.  

Solution Algorithms Categories  

• General Purpose, Optimal 

Enumeration, branch and bound, cutting plane 

• General Purpose, Heuristic  

Running a general purpose optimal algorithm and terminating after a specified time 

• Special Purpose, Optimal 

Tree search approaches based upon generating bounds via dual ascent, 

lagrangean relaxation 
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• Special Purpose, Heuristic  

Bound based heuristics, tabu search, simulated annealing, population heuristics 

(e.g. genetic algorithms), interchange 

5.2.2 LP Relaxation 

For any IP we can generate an LP by taking the same objective function and same 

constraints but with the requirement that variables are integer replaced by appropriate 

continuous constraints: 

“xi = 0 or 1”  xi ≥ 0 and xi ≤ 1 

“xi ≥ 0 and integer”  xi ≥ 0 

The LP obtained by omitting all integer and 0-1 constraints on variables is called the 

LP Relaxation of the IP (LR). We can then solve this LR of the original IP.  

Example 1. IP 
Write the LR of the following IP: 

Maximize  8 x1 + 5 x2  

Subject to          x1 +    x2 ≤ 6  

                       9 x1 + 5 x2 ≤ 45 

x1, x2 ≥ 0 and integer  

Answer 
Maximize  8 x1 + 5 x2  

Subject to          x1 +    x2 ≤ 6  

                       9 x1 + 5 x2 ≤ 45 

x1, x2 ≥ 0  

Example 2. Binary IP 
Write the LR of the following IP: 

Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

Subject to 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

  xj = 0 or 1 j = 1, … 4 

Answer 
Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

Subject to 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 
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  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

   x1 ≤ 1     

   x2 ≤ 1 

   x3 ≤ 1 

   x4 ≤ 1 

   All xi ≥ 0  

Example 3. Mixed IP 
Write the LR of the following IP: 

max z = x1+ x2+x3 

s.t.   x1 + 6x2+ x3 ≤ 8 

    x1 + 2x2+1,5x3 ≤ 2 

  2x1 + x2+ 5x3 ≤ 8 

  x1 ≥ 0, x2 ≥ 0 and integer, x3 binary 

Answer 
max z = x1+ x2+x3 

s.t.   x1 + 6x2+ x3 ≤ 8 

    x1 + 2x2+1,5x3 ≤ 2 

  2x1 + x2+ 5x3 ≤ 8 

     x3 ≤ 1 

 x1, x2 , x3 ≥ 0 

Naturally Integer LP 
If LR is optimized by integer variables then that solution is feasible and optimal for IP. 

In other words, if the solution is turned out to have all variables taking integer values 

at the optimal solution, it is also optimal solution for IP: 

LR – IP Relation  
Since LR is less constrained than IP:  

• If IP is a maximization problem, the optimal objective value for LR is greater than 

or equal to that of IP.  

• If IP is a minimization problem, the optimal objective value for LR is less than or 

equal to that of IP.  

• If LR is infeasible, then so is IP.  
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So solving LR does give some information. It gives a bound on the optimal value, and, 

if we are lucky, may give the optimal solution to IP.  

5.2.3 Enumeration 

Unlike LP (where variables took continuous values) in IP's (where all variables are 

integers) each variable can only take a finite number of discrete (integer) values. 

Hence the obvious solution approach is simply to enumerate all these possibilities - 

calculating the value of the objective function at each one and choosing the (feasible) 

one with the optimal value.  

Example 4. Multi-period Capital Budgeting  
Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

Subject to 0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

  xj = 0 or 1 j = 1, … 4 

Possible Solutions  
There are 24=16 possible solutions: 

 

Review 
Hence for our example, we merely have to examine 16 possibilities before we know 

precisely what the best possible solution is. This example illustrates a general truth 

about integer programming. 

What makes solving the problem easy when it is small is precisely what makes it hard 

very quickly as the problem size increases. 

0  0  0  0  do no projects

0  0  0  1  do one project
0  0  1  0
0  1  0  0
1  0  0  0

0  0  1  1  do two projects
0  1  0  1
1  0  0  1
0  1  1  0
1  0  1  0
1  1  0  0

1  1  1  0  do three projects
1  1  0  1
1  0  1  1
0  1  1  1

1  1  1  1  do four projects
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This is simply illustrated: suppose we have 100 integer variables each with two 

possible integer values then there are 2x2x2x ... x2 = 2100 (approximately 1030) 

possibilities which we have to enumerate (obviously many of these possibilities will be 

infeasible, but until we generate one we cannot check it against the constraints to see 

if it is feasible). 

For 100 integer variable - conceptually there is not a problem - simply enumerate all 

possibilities and choose the best one. But computationally (numerically) this is just 

impossible. 

5.2.4 The Branch-and-Bound Method 

The most effective general purpose optimal algorithm is an LP-based tree search 

approach  called as branch and bound (B&B).  

The method was first put forward in the early 1960's by Land and Doig.  

This is a way of systematically (implicitly) enumerating feasible solutions such that the 

optimal integer solution is found. 

Where this method differs from the enumeration method is that not all the feasible 

solutions are enumerated but only a part (hopefully a small part) of them. However we 

can still guarantee that we will find the optimal integer solution.  

By solving a single sub-problem, many possible solutions may be eliminated from 

consideration.   

Sub-problems are generated by branching on an appropriately chosen fractional-

valued variable. 

Suppose that in a given sub-problem (call it subp.1), assumes a fractional value 

between the integers i and i+1. Then the two newly generated sub-problems: 
Subp.2 = Subp.1 + Constraint “xi ≥ i+1” 
Subp.3 = Subp.1 + Constraint “xi ≤ I” 

If all variables have integer values in the optimal solution to the sub-problem then the 

solution is a feasible solution for the original IP. 

If the current feasible solution for the IP has a better z-value than any previously 

obtained feasible solution, then it becomes a candidate solution, and its z-value 

becomes the current Lower Bound (LB) on the optimal z-value (for a max problem). 

If it is unnecessary to branch on a sub-problem, we say that it is fathomed (inactive):  

• The sub-problem is infeasible 
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• The sub-problem yields an optimal solution in which all variables have integer 

values 

• The optimal z-value for the sub-problem does not exceed the current LB, so it 

cannot yield the optimal solution of the IP 

Two general approaches are used to determine which sub-problem should be solved 

next: 

• Backtracking (LIFO) 

Leads us down one side of the B&B tree and finds a candidate solution. Then we 

backtrack our way up to the top of the other side of the tree. 

• Jumptracking 

Solves all the problems created by branching. Then it branches again on the node 

with the best z-value. Often jumps from one side of the tree to the other. 

A display of the sub-problems that have been created is called a tree.  

Each sub-problem is referred to as a node of the tree. 

Each additional constraint is referred to as a line (arc) connecting two nodes (old sub-

problem and one of the new sub-problems) of the tree. 

5.2.4.1 B&B for Solving Pure IP Problems 

Example 5. Pure IP (Winston 9.3., p. 513) 

max z = 8 x1 + 5 x2  

s.t.           x1 +    x2 ≤ 6  

             9 x1 + 5 x2 ≤ 45 

 x1, x2 ≥ 0 and integer  

Answer 
Suppose that we were to solve the LR of the problem [replace “x1, x2 ≥ 0 and integer” 

by “x1, x2 ≥ 0”], then using any LP package or utilizing simplex method we get  

 z = 165/4, x1 = 15/4, x2=9/4 

As a result of this we now know something about the optimal integer solution, i.e. this 

value of 165/4 is an Upper Bound on the optimal integer solution. This is because 

when we relax the integrality constraint we (as we are maximizing) end up with a 

solution value at least that of the optimal integer solution (and maybe better). 

We arbitrarily choose a variable that is fractional in the optimal solution to the LR 

(subp.1): say x1.  
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We need x1 to be integer. We branch on x1 and create two new sub-problems:  

Subp.2: LR +  “x1 ≥ 4” 

Subp.3: LR +  “x1 ≤ 3” 

Observe that neither subp.2 nor subp.3 includes any points with x1 = 15/4. This means 

that the optimal solution to LR can not recur when we solve these new sub-problems. 

We now arbitrarily choose to solve subp.2.  

We see that the optimal solution to subp.2 is 

 z = 41, x1 = 4, x2 = 9/5 

We choose x2 that is fractional in the optimal solution to subp.2. 

We need x2 to be integer. We branch on x2 and create two new sub-problems:  

Subp.4: LR + x1 ≥ 4 and x2 ≥ 2 = Subp.2 + x2 ≥ 2 

Subp.5: LR + x1 ≥ 4 and x2 ≤ 1 = Subp.2 + x2 ≤ 1 

The set of unsolved sub-problems are consists of subp.3, 4, and 5.  

We choose to solve the most recently created sub-problem (This is called LIFO): The 

LIFO rule implies that we should next solve subp.4 or 5. 

We now arbitrarily choose to solve subp.4.  

We see that subp.4 is infeasible. Thus subp.4 can not yield the optimal solution to the 

IP.  

Because any branches emanating from subp.4 will yield no useful information, it is 

fruitless to create them. 

LIFO rule implies that we should next solve subp.5. 

The optimal solution to subp.5 is 

 z = 365/9, x1 = 40/9, x2 = 1 

We branch on fractional-valued x1: 

Subp.6: Subp.5 + x1 ≥ 5 

Subp.7: Subp.5 + x1 ≤ 4 

Subp.3, 6, and 7 are now unsolved. 

The LIFO rule implies that we next solve subp.6 or 7. 

We now arbitrarily choose to solve subp.7. 

The optimal solution to subp.7 is 

 z = 37, x1 = 4, x2 = 1 

As both variables assume integer values, this solution is feasible for the original IP  

this solution is a candidate solution 
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We must keep this candidate solution until a better feasible solution to the IP (if any 

exists) is found. 

We may conclude that the optimal z-value for the IP ≥ 37  Lower Bound (LB) 
LIFO rule implies that we should next solve subp.6. 

The optimal solution to subp.6 is 

 z = 40, x1 = 5, x2 = 0 

Its z-value of 40 is larger than LB.  

Thus subp.7 cannot yield the optimal solution of the IP. 

We update our LB to 40. 

Subp.3 is the only remaining unsolved problem. 

The optimal solution to subp.3 is 

 z = 39, x1 = 3, x2 = 3 

Subp.3 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal 

solution to the IP. 

Final B&B Tree 
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Optimal Sol’n 
Thus, the optimal solution to the IP 

 z = 40, x1 = 5, x2 = 0 

5.2.4.2 B&B for Solving Mixed IP Problems 
In MIP, some variables are required to be integers and others are allowed to be either 

integer or nonintegers. 

To solve a MIP by B&B method, modify the method by branching only on variables that 

are required to be integers. 

For a solution to a sub-problem to be a candidate solution, it need only assign integer 

values to those variables that are required to be integers 

Example 6. Mixed IP (Winston 9.4., p. 523) 

max z = 2 x1 +   x2  

s.t.        5 x1 + 2 x2 ≤ 8  

                x1 +    x2 ≤ 3 

 x1, x2 ≥ 0; x1 integer 

Answer 
We solve the LR (subp.1) of the problem  

 [replace “x1≥ 0 and integer” by “x1 ≥ 0”] 

Then using any LP package or utilizing simplex or graphical solution method we get  

 z = 11/3, x1 = 2/3, x2=7/3 

Because x2 is allowed to be fractional, we do not branch on x2. 

We branch on x1 and create two new sub-problems:  

Subp.2: LR + x1 ≥ 1 

Subp.3: LR + x1 ≤ 0 

We see that the optimal solution to subp.2 is 

 z = 7/2, x1 = 1, x2 = 3/2 

As only x1 assume integer value, this solution is feasible for the original MIP  

Candidate solution; LB = 7/2 

The optimal solution to subp.3 is 

 z = 3, x1 = 0, x2 = 3 

Subp.3 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal 

solution to the MIP. 
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Optimal Sol’n 
Thus, the optimal solution to the MIP 

  z = 7/2, x1 = 1, x2 = 3/2 

5.2.4.3 B&B for Solving Binary IP Problems 
One aspect of the B&B method greatly simplify: 

Due to each variable equaling 0 or 1, branching on xi will yield in  

 xi = 0   and   xi = 1 

Example 7. Binary IP  
max z = 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4  

s.t.  0.5 x1 + 1    x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

  0.3 x1 + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

  0.2 x1 + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

  xj = 0 or 1 j = 1, … 4 

Answer  
Replace “xj = 0 or 1 (j=1,...,4)” by “0 ≤ xj ≤ 1 (j=1,...,4)”   LR of the problem 

Optimal solution to the LR: 

 z=0.65, x2=0.5, x3=1, x1=x4=0 

The variable x2 is fractional. To resolve this we can generate two new problems: 

P1: LR + x2=0  

P2: LR + x2=1  

We now have two new sub-problem to solve (jumptracking). 

If we do this we get  

P1 solution: z=0.6, x1=0.5, x3=1, x2=x4=0  

P2 solution: z=0.63, x2=1, x3=0.67, x1=x4=0 

Choosing sub-problem P2 (the best z–value), we branch on x3 and get 

P3 (P2 + x3=0) sol’n: z=0.5, x1=x2=1, x3=x4=0  

P4 (P2 + x3=1) sol’n: infeasible 

P3 solution is feasible for the original binary IP   Candidate solution; LB = 0.5 

Choosing the only remaining sub-problem P1, we branch on x1 and get 

P5 (P1 + x1=0) sol’n: z=0.6, x3=x4=1, x1=x2=0 

P6 (P1 + x1=1) sol’n: z=0.53, x1=1, x3=0.67, x2=x4=0  
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P5 solution is feasible for the original binary IP  New candidate solution; updated LB 

= 0.6 

P6 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal 

solution to the binary IP.  

Thus, the optimal solution to the binary IP 

 z = 0.6, x1 = 0, x2 = 0, x3 = 1, x4 = 1 

 

Review 
Note here that B&B, like complete enumeration, also involves powers of 2 as we 

progress down the (binary) tree.  

However also note that we did not enumerate all possible integer solutions (of which 

there are 16). Instead here we solved 7 LP's.  

This is an important point, and indeed why tree search works at all. We do not need to 

examine as many LP's as there are possible solutions.  

While the computational efficiency of tree search differs for different problems, it is this 

basic fact that enables us to solve problems that would be completely beyond us where 

we to try complete enumeration  

5.2.4.4 B&B for Solving Knapsack Problems 
Please recall that a knapsack problem is an IP, in which each variable must be equal 

to 0 or 1, with a single constraint: 

max z = c1x1 + c2x2 + ∙∙∙ + cnxn 

s.t.        a1x1 + a2x2 + ∙∙∙ + anxn ≤ b 

        xi = 0 or 1   (i = 1, 2, …, n) 
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Two aspects of the B&B method greatly simplify: 

• Due to each variable equaling 0 or 1, branching on xi will yield in xi =0 and xi =1 

• The LP relaxation may be solved by inspection instead of using any LP package 

or utilizing simplex or graphical solution method  

Inspection 
Recall that 

ci is the benefit obtained if item i is chosen 

b is the total amount of an available resource 

ai is the amount of the available resource used by item i 

Observe that ratio ri (ci/ai) may be interpreted as the benefit item i earns for each unit 

of the resource used by item i. 

Thus, the best items have the largest value of r and the worst items have the smallest 

values of r. 

To solve any sub-problem resulting from a knapsack problem, compute all the ratios. 

Then put the best item in the knapsack. 

Then put the second best item in the knapsack. 

Continue in this fashion until the best remaining item will overfill the knapsack.  

Then fill the knapsack with as much of this item as possible. 

Example 8. Knapsack 
max z =  8 x1 + 11 x2 + 6 x3 + 4 x4  

s.t.  5 x1 +  7 x2  + 4 x3 + 3 x4 ≤ 14 

    xj = 0 or 1 j = 1, … 4 

Answer 
We compute the ratios: 

 r1 = 8 / 5 = 1.6 

 r2 = 11 / 7 = 1.57 

 r3 = 6 / 4 = 1.5 

 r4 = 4 / 3 = 1.33 

Using the ratios, LR solution is 

 x1 = 1, x2 = 1, x3 = 0.5, x4 = 0, z = 22 

We branch on x3 and get 

P1 (LR + x3=0) sol’n: x3=0, x1=x2=1, x4=2/3, z=21.67 

P2 (LR + x3=1) sol’n: x3=x1=1, x2=5/7, x4=0, z=21.85 
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Choosing sub-problem P2 (the best z–value), we branch on x2 and get  

P3 (P2 + x2=0) sol’n: x3=1, x2=0, x1=1, x4=1, z=18 

P4 (P2 + x2=1) sol’n: x3=x2=1, x1=3/5, x4=0, z=21.8 

P3 solution is feasible for the original knapsack problem   Candidate solution; LB = 

18 

Choosing sub-problem P4, we branch on x1 and get  

P5 (P4 + x1=0) sol’n: x3=x2=1, x1=0, x4=1, z=21 

P6 (P4 + x1=1) sol’n: Infeasible (x3=x2=x1=1: LHS=16) 

P5 solution is feasible for the original knapsack problem  New candidate solution; 

updated LB = 21 

The only remaining sub-problem is P1 with solution value 21.67 

There is no better solution for this sub-problem than 21. But we already have a solution 

with value 21. 

It is not useful to search for another such solution. We can fathom P1 based on this 

bounding argument and mark P1 as inactive. 

Optimal sol’n and Report 
Thus, the optimal solution is z=21, x1=0, x2=1, x3=1, x4=1 

Items 2, 3, and 4 should be put in the knapsack; the total value would be 21. 

 

http://www.ilkertopcu.net/


 

Y. İlker Topcu, Ph.D. (www.ilkertopcu.net) 
98 

 

5.2.4.5 B&B for Solving Combinatorial Optimization Problems 
A combinatorial (discrete) optimization problem is any optimization problem that 

has a finite number of feasible solutions.  

A B&B approach is often an efficient way to solve them. 

Examples of combinatorial optimization problems: 

• Ten jobs must be processed on a single machine. It is known how long it takes to 

complete each job and the time at which each job must be completed (the job’s due 

date). What ordering of the jobs minimizes the total delay of the 10 jobs?  

• A salesperson must visit each of the 10 cities before returning to her/his home. 

What ordering of the cities minimizes the total distance the salesperson must travel 

before returning home? (TSP). 

In each of these problems, many possible solutions must be considered. 

Example 9: Machine Scheduling 
Please refer to Winston 9.6. p. 528 
 

TSP 
Please recall that 

We define xij as a 0-1 variable: 

xij = 1 if TS goes from city i to city j; 

xij = 0 otherwise 

cij = distance form city i to city j (for i≠j) 

cii = M (a very large number relative to actual distances) 

An itinerary that begins and ends at the same city and visits each city once is 

called a tour. 

It seems reasonable that we might be able to find the answer to TSP by solving an 

assignment problem having a cost matrix whose ijth is cij. 

If the optimal solution to the assignment problem yields a tour, it is the optimal solution 

to the TSP.  

Unfortunately, the optimal solution to the assignment problem need not be a tour (may 

yield subtours). 

If we could exclude all feasible solutions that contain subtours and then solve the 

assignment problem, we would obtain the optimal solution to TSP  Not easy to do... 
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Several B&B approaches have been developed for solving TSPs. 

One approach start with solving the preceding assignment problem (sub-problem 1). 

Because this sub-problem contains no provisions to prevent subtours, it is a relaxation 

of the original TSP. 

Thus, if the optimal solution to the subp.1 is feasible for the TSP (no subtours), then it 

is also optimal for the TSP. 

If it is infeasible (contain subtours), we branch on the subp.1 in a way that will prevent 

one of subp.1’s subtours from recurring in solutions to subsequent sub-problems. 

Example 10. TSP (Winston 9.6., p. 530) 

Joe State lives in Gary, Indiana and owns insurance agencies in Gary, Fort Wayne, 

Evansville, Terre Haute, and South Bend. 

Each December, he visits each of his insurance agencies. 

The distance between each agency: 

 
What order of visiting his agencies will minimize the total distance traveled? 

Answer 
We first solve the assignment problem (subp.1) applying the Hungarian method to the 

cost matrix shown: 

 
The optimal solution will be: 

 x15=x21=x34=x43=x52=1, z=495   

The optimal solution to subp.1 contains two subtours: 

• recommends going from Gary (1) to South Bend (5), then to Fort Wayne (2), and 

then back to Gary (1–5–2–1).  

• also suggests that if Joe is in Evansville (3), he should go to Terre Haute (4) and 

then to Evansville (3–4–3). 

miles G FW E TH SB
G 0 132 217 164 58
FW 132 0 290 201 79
E 217 290 0 113 303
TH 164 201 113 0 196
SB 58 79 303 196 0

COSTS G FW E TH SB
G 1000 132 217 164 58
FW 132 1000 290 201 79
E 217 290 1000 113 303
TH 164 201 113 1000 196
SB 58 79 303 196 1000

http://www.ilkertopcu.net/


 

Y. İlker Topcu, Ph.D. (www.ilkertopcu.net) 
100 

Thus, the optimal solution can not be the optimal solution to Joe’s problem. 

We arbitrarily choose to exclude the subtour 3-4-3. 

Observe that the optimal solution to Joe’s problem must have either x34=0 or x43=0. 

Thus, we can branch on subp.1 by creating two new sub-problems.  

Subp.2: Subp.1 + (x34=0, or c34=M) 

Subp.3: Subp.1 + (x43=0, or c43=M) 

Now arbitrarily choose subp.2 to solve. 

 

 

 

 

The optimal solution will be: 

 x14=x25=x31=x43=x52=1, z=652  

This solution includes the subtours 1–4–3–1 and 2–5–2. 

Thus, it can not be the optimal solution to Joe’s problem. 

Following the LIFO approach, now branch sub-problem 2 in an effort to exclude the 

subtour 2-5-2. Thus we add two additional sub-problems. 

Subp.4: Subp.2 + (x25=0, or c25=M) 

Subp.5: Subp.2 + (x52=0, or c52=M) 

By using the Hungarian method on subp.4, we obtain the  optimal solution 

 x15=x24=x31=x43=x52=1, z=668  

This solution contains no subtours and yields the tour 1–5–2–4–3–1 

It is a candidate solution and any node that cannot yield a z-value < 668 may be 

eliminated from consideration. 

We next solve subp.5.  

 x14=x43=x32=x25=x51=1, z=704  

This solution also yields a tour 1–4–3–2–5–1 

But z=704 is not as good as the subp.4 candidate’s z=668 

Thus this subp.5 may be eliminated from consideration. 

Only subp.3 remains.  

The optimal solution  

 x13=x25=x34=x41=x52=1, z =652.  

This solution includes the subtours 1–3–4–1 and 2–5–2. 

COSTS G FW E TH SB
G 1000 132 217 164 58
FW 132 1000 290 201 79
E 217 290 1000 1000 303
TH 164 201 113 1000 196
SB 58 79 303 196 1000

COSTS G FW E TH SB
G 1000 132 217 164 58
FW 132 1000 290 201 79
E 217 290 1000 1000 303
TH 164 201 113 1000 196
SB 58 79 303 196 1000
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However, it is still possible for this sub-problem to yield a solution with no subtours that 

beats z=668. 

Next branch on sub-problem 3 creating new sub-problems. 

Subp.6: Subp.3 + (x25=0, or c25=M) 

Subp.7: Subp.3 + (x52=0, or c52=M) 

Both of these sub-problems have a z-value that is larger than 668. 

Optimal sol’n and Report 
Subp.4 thus yields the optimal solution: 

 x15=x24=x31=x43=x52=1, z=668  

Joe should travel from Gary (1) to South Bend (5), from South Bend to Fort Wayne (2), 

from Fort Wayne to Terre Haute (4), from Terre Haute to Evansville (3), and then back 

to Gary. 

He will travel a total distance of 668 miles. 

5.2.4.6 Heuristics for TSPs 
An IP formulation can be used to solve a TSP but can become unwieldy and inefficient 

for large TSPs.  

When using B&B methods to solve TSPs with many cities, large amounts of computer 

time is needed. 

Heuristic methods, or heuristics, can be used to quickly lead to a good (but not 

necessarily optimal) solution. 

Two types of heuristic methods can be used to solve TSP: 

1. The Nearest-Neighbor 

2. The Cheapest-Insertion 

 
The Nearest-Neighbor Heuristic 
1. Begin at any city and then “visit” the nearest city.  

2. Then go to the unvisited city closest to the city we have most recently visited.  

3. Continue in this fashion until a tour is obtained. 

4. After applying this procedure beginning at each city, take the best tour found. 

Example 11. Applying the NNH to TSP 
We arbitrarily choose to begin at city 1. 

Of the cities 2, 3, 4, and 5, city 5 is the closest city to city 1   Generate the arc 1–5  
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Of the cities 2, 3, and 4, city 2 is the closest city to city 5   1–5–2 

Of the cities 3 and 4, city 4 is the closest city to city 2   1–5–2–4 

Joe must next visit city 3 and then return to city 1   1–5–2–4–3–1 (668 miles).  

In this case, the NNH yields the optimal tour. 

If we had begun at city 3, however, NNH yields the tour 3–4–1–5–2–3 (704 miles). 

Thus, the NNH need not yield an optimal tour. 

This procedure should be applied beginning at each city, and then the best tour found 

should be taken as solution. 

 

The Cheapest-Insertion Heuristic 
1. Begin at any city and find its closest neighbor.  

2. Then create a subtour joining those two cities.  

3. Next, replace an arc in the subtour (say, arc (i, j)) by the combinations of two arcs 

(i, k) and (k, j), where k is not in the current subtour that will increase the length of 

the subtour by the smallest (or cheapest) amount.  

4. Continue with this procedure until a tour is obtained.  

5. After applying this procedure beginning with each city, we take the best tour found. 

Example 12. Applying the CIH to TSP 
We arbitrarily choose to begin at city 1. 

Of the cities 2, 3, 4, and 5, city 5 is the closest city to city 1  Generate the arc 1–5 

We create a subtour (1, 5)–(5, 1) 

We could replace arc (1, 5) by (1, 2)–(2, 5), (1, 3)–(3, 5), or (1, 4)–(4, 5) 

We could also replace (5, 1) by (5, 2)–(2, 1), (5, 3)–(3, 1), or (5, 4)–(4, 1) 

The computations used to determine which arc of (1, 5)–(5, 1) should be replaced are 

given in the Table: 

 
* indicates the correct replacement: either (1, 5) or (5, 1)  

We arbitrarily choose to replace arc (1, 5) by arcs (1, 2) and (2, 5)  New subtour: (1, 

2)–(2, 5)–(5, 1) 

Arc replaced Arcs added Added length
(1, 5)* (1, 2)–(2, 5) c 12+c 25–c 15=153
(1, 5) (1, 3)–(3, 5) c 13+c3 5–c 15=462
(1, 5) (1, 4)–(4, 5) c 14+c 45–c 15=302
(5, 1)* (5, 2)–(2, 1) c 52+c 21–c 51=153
(5, 1) (5, 3)–(3, 1) c 53+c3 1–c 51=462
(5, 1) (5, 4)–(4, 1) c 54+c4 1–c 51=302
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We then determine which arc should be replaced  

 
We now replace arc (1, 2) by arcs (1, 4) and (4, 2)  New subtour: (1, 4)–(4, 2)–(2, 

5)–(5, 1) 

Which arc should be replaced? 

 
We now replace arc (1, 4) by arcs (1, 3) and (3, 4) 

This yields the tour (1, 3)–(3, 4)–(4, 2)–(2, 5)–(5, 1) 

In this case, the CIH yields the optimal tour. 

But, in general, the CIH does not necessarily do so. 

This procedure should be applied beginning at each city, and then the best tour found 

should be taken as solution. 

Evaluation of Heuristics 

• Performance guarantees 

Gives a worse-case bound on how far away from optimality a tour constructed by 

the heuristic can be 

• Probabilistic analysis 

A heuristic is evaluated by assuming that the location of cities follows some known 

probability distribution 

• Empirical analysis 

Heuristics are compared to the optimal solution for a number of problems for which 

the optimal tour is known 

 

Arc replaced Arcs added Added length
(1, 2) (1, 3)–(3, 2) 375
(1, 2)* (1, 4)–(4, 2) 233
(2, 5) (2, 3)–(3, 5) 514
(2, 5) (2, 4)–(4, 5) 318
(5, 1) (5, 3)–(3, 1) 462
(5, 1) (5, 4)–(4, 1) 302

Arc replaced Arcs added Added length
(1, 4)* (1, 3)–(3, 4) 166
(4, 2) (4, 3)–(3, 2) 202
(2, 5) (2, 3)–(3, 5) 514
(5, 1) (5, 3)–(3, 1) 462
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5.2.5 Cutting Planes 

A linear inequality is a valid inequality for a given IP problem if it holds for all integer 

feasible solutions to the model. 

Relaxations can often be strengthened dramatically by including valid inequalities that 

are not needed by a correct discrete model. 

To strengthen a relaxation, a valid inequality must cut off (render infeasible) some 

feasible solutions to current LR that are not feasible in the IP model. 

This need to cut off non-integer relaxation solutions is why valid inequalities are 

sometimes called cutting planes. 

Example 13. Cutting Plane - Conceptualization 
Consider the following problem in the figure. 
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eliminate fractional 
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later.
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Cut Classification 

• General purpose 

A fractional extreme point can always be separated (LP-based approach, that 

works for IP) 

o Disjunctive cuts 

o Gomory cutting planes 

• Problem specific 

Derived from problem structure, generally facets. (Capital Budgeting (Knapsack), 

Set Packing... ) 

 

Cutting Plane Algorithm (Gomory cut) 
Find the optimal tableau for the IP’s LR.  

If all variables in the optimal solution assume integer values, we have found an optimal 

solution! Otherwise proceed to next step 

Pick a constraint in the optimal tableau whose RHS has the fractional part closest to 

½.  

For the constraint identified, put all of the integer parts on the left side (round down), 

and all the fractional parts on the right 

Generate the cut as:  

 “RHS of the modified constraint” < 0 

Use the dual simplex to find the optimal solution to the LR, with the cut as an additional 

constraint.  

x

y

Optimum 
(integer) 
solution

If we add exactly 
the right 
inequalities, then 
every corner point 
of the LP will be 
integer, and the IP 
can be solved by 
solving the LP

P

We call this minimal 
LP, the convex hull
of the IP solutions.
For large problems, 
these constraints are 
hard to find.

The tightest possible 
constraints are very 
useful, and are 
called facets
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s.t. x, y are in P
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LP, the convex hull
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these constraints are 
hard to find.

The tightest possible 
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called facets
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s.t. x, y are in P
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• If all variables assume integer values in the optimal solution, we have found an 

optimal solution to the IP. 

• Otherwise, pick the constraint with the most fractional right-hand side and use it to 

generate another cut, which is added to the tableau. 

We continue this process until we obtain a solution in which all variables are integers. 

This will be an optimal solution to the IP. 

 

Dual Simplex Method 
Please recall that at dual simplex: 

o We choose the most negative RHS.  

o BV of this pivot row leaves the basis. 

o For the variables that have a negative coefficient in the pivot row, we 

calculate the ratios (coefficient in R0 / coefficient in pivot row).  

o Variable with the smallest ratio (absolute value) enters basis. 

Example 14. Telfa Co. (Winston 9.8., p. 546) 

 max z = 8 x1 + 5 x2 

 s.t.       x1 +   x2 ≤ 6 

   9 x1 + 5 x2 ≤ 45 

 x1, x2 > 0 and integer 

Answer 
If we ignore integrality, we get the following optimal tableau:  

 
Let's choose the constraint whose RHS has the fractional part closest to ½ (Arbitrarily 

choose the second constraint): 

 x1 – 1.25 s1 + 0.25 s2 =3.75 

We can manipulate this to put all of the integer parts on the left side (round down), and 

all the fractional parts on the right to get:  

 x1 – 2 s1 + 0 s2 – 3 = 0.75 – 0.75 s1 – 0.25 s2 

Now, note that the LHS consists only of integers, so the right hand side must add up 

to an integer. It consists of some positive fraction minus a series of positive values. 

z x 1 x 2 s 1 s 2 RHS
1 0 0 1.25 0.75 41.25
0 0 1 2.25 -0.25 2.25
0 1 0 -1.25 0.25 3.75
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Therefore, the right hand side cannot be a positive value. Therefore, we have derived 

the following constraint:  

 0.75 – 0.75 s1 – 0.25 s2 ≤ 0 

This constraint is satisfied by every feasible integer solution to our original problem. 

But, in our current solution, s1 and s2 both equal 0, which is infeasible to the above 

constraint. This means the above constraint is a cut, called the Gomory cut after its 

discoverer.  

We can now add this constraint to the linear program and be guaranteed to find a 

different solution, one that might be integer. 

 
The dual simplex ratio test indicates that s1 should enter the basis instead of s3.  

The optimal solution is an IP solution: 

 z = 40, x1 = 5, x2 = 0  

Example 15. Supplementary Problem 
min z = 6 x1 + 8 x2 

s.t.   3 x1 +    x2 ≥ 4 

      x1 + 2 x2 ≥ 4 

 x1, x2 > 0 and integer 

Answer 
Optimal tableau for LR 

 
Choose the second constraint 

 x2 + 0.2 e1 – 0.6 e2 = 1.6 

Manipulate this: 

 x2 – e2 – 1 = 0.6 – 0.2 e1 – 0.4 e2 

Cut: 

  0.6 – 0.2 e1 – 0.4 e2 ≤ 0  

New LP tableau 

z x 1 x 2 s 1 s 2 s 3 RHS
1 0 0 1.25 0.75 0 41.25
0 0 1 2.25 -0.25 0 2.25
0 1 0 -1.25 0.25 0 3.75
0 0 0 -0.75 -0.25 1 -0.75

z x 1 x 2 e 1 e 2 RHS
1 0 0 -0.80 -3.60 17.60
0 1 0 -0.40 0.20 0.80
0 0 1 0.20 -0.60 1.60
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The dual simplex ratio test indicates that e1 should enter the basis instead of s3.  

The optimal solution is an IP solution: 

 z = 20, x1 = 2, x2 = 1 

 

 

z x 1 x 2 e 1 e 2 s 3 RHS
1 0 0 -0.8 -3.6 0 17.6
0 1 0 -0.4 0.2 0 0.8
0 0 1 0.2 -0.6 0 1.6
0 0 0 -0.2 -0.4 1 -0.6
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