Introduction to Scientific and Engineering Computing

Final Exam (9/1/2004)
M.Turan Söylemez

1. Show the contents of the file fall2003.txt and the screen output after the execution of the following program. Please use rectangles to represent space characters.

2. A prime number, p, is an integer which is divided to all integers greater than 1 and less than p with nonzero remainder. A negative number, p, is considered to be prime, if –p is a prime number. Using this fact, implement the following:

a. Write a function called isPrime(p) that returns a nonzero integer if p is a prime number and zero otherwise.

b. Write a function called selectPrimes(arr, n) that prints the prime numbers in an integer array (arr) with n elements.

The following program that uses these functions should give the output provided on the right:

main(){

 int a[]={-5,6,21,23,11,-9};

 if(isPrime(11))

printf("11 is prime!\n");

 else

 printf("11 is not prime!\n");

 if(isPrime(98))

 printf("98 is prime!\n");

 else

 printf("98 is not prime!\n");

 selectPrimes(a,6);

 return 0;

}

3. A complex number can be represented by the following structure:

struct stComplex{

 double re, im;
};

typedef struct stComplex Complex;

Using this structure you are required to implement the following.

a. Write a function called abs(c) that returns the absolute value of a complex number, c. Note that the absolute value of a number c = x + j y is defined as
[image: image1.wmf]2

2

y

x

c

+

=

.

b. Write a function called mul(c1, c2) that returns the multiplication of two complex numbers, c1 and c2.

c. Write a function called max(arr, n) that returns the complex number with the maximum absolute value in an array of n complex numbers.

d. Write a function called absValues(arr, n) that finds the absolute values of all elements in an array of n complex numbers. The function should create an array of n real numbers dynamically to store the absolute values and return a pointer to this dynamically created array.

e. Using some of these functions, write a program that reads an array of complex numbers until 0+0j is entered as an element. The function should then print the element of the array with maximum absolute value. If the user enters a complex number with real or imaginary part greater than zero the user should be warned to enter the number again. The maximum number of elements that can be entered should be determined by a compiler constant MAX_ELEMS. A possible program output is given below:

* Text in bold represent input entered by the user.

Enter number 1:

(use space between real and imaginary parts)

1.0 1.0

Enter number 2:

(use space between real and imaginary parts)

1.0 3.0

Enter number 3:

(use space between real and imaginary parts)

-3.0 4.0

Enter number 4:

(use space between real and imaginary parts)

11.0 2.0

Invalid entry!

Please try again.

Enter number 4:

(use space between real and imaginary parts)

1.0 2.0

Enter number 5:

(use space between real and imaginary parts)

0.0 0.0

Element with maximum absolute value is -3.00 + j 4.00

Program Output:

11 is prime!

98 is not prime!

The prime numbers in the array are

-5

23

11

(40 pts)

void sftx(Vector2D *pv, double r){

 pv->x += r;

}

main()

{

 Vector2D vA={"A",2.0, 1.0},

 vB={"B",-1.0, 3.0};

 Vector2D *pv;

 int i=5, j=3, k, n;

 char str[]="Hello World!";

 FILE *fp;

 fp=fopen("fall2003.txt","w");

 fprintf(fp,"%s\n",str);

 k = i / j;

 n = i + i % j * 3.3;

 fprintf(fp,"k = %3d\n",k);

 fprintf(fp,"n = %3d\n",n);

 *str = 'A';

 *(str+8) = 'e';

 for(i=0; str[i]!='\0'; i++){

 fprintf(fp,"i = %3d\n",i);

 if(i%2 != 0)

 str[i] = ' ';

 else

 fprintf(fp,"str[%d] = %c\n",i,str[i]);

 }

 printf("str = %s\n",str);

 prVec(vA);

 prVec(vB);

 if(isBig(vB))

 vB.y = 2.0;

 printf("inP = %5.2lf\n",inP(vA,vB));

 pv=add(vA,vB);

 prVec(*pv);

 sftx(&vA, 1.0);

 prVec(vA);

 fclose(fp);

 free(pv);

 return 0;

}

#include <stdio.h>

#include <stdio.h>

#include <string.h>

#define MAX_NAME_LEN 10

#define BIG_THRESHOLD 5.0

typedef char NameArray[MAX_NAME_LEN];

struct stVec{

 NameArray name;

 double x,y;

};

typedef struct stVec Vector2D;

void prVec(Vector2D v){

 printf("%s = %5.2lf i + %5.2lf j\n",

 v.name, v.x, v.y);

}

double inP(Vector2D v1, Vector2D v2){

 return v1.x*v2.x + v1.y*v2.y;

}

Vector2D *add(Vector2D v1, Vector2D v2){

 Vector2D *pv;

 pv=(Vector2D *) malloc(sizeof(Vector2D));

 strcpy(pv->name, v1.name);

 strcat(pv->name, "+");

 strcat(pv->name, v2.name);

 pv->x = v1.x + v2.x;

 pv->y = v1.y + v2.y;

 return pv;

}

int isBig(Vector2D v){

 if(inP(v,v) > BIG_THRESHOLD){

 printf("%s is BIG!\n",v.name);

 return 1;

 }

 else{

 printf("%s is not BIG!\n",v.name);

 return 0;

 }

}

(30 pts)

(30 pts)

_1134990060.unknown

