SCR NOx İndirgeme Prensibi Use ammonia (NH₃) to reduce NOx to N₂ under oxidizing conditions - Ammonia can be derived from a number of sources (e.g. urea, ammonium carbamate, liquid ammonia etc) - NO₂ promotes SCR activity: $$2NH_3$$ + NO + NO_2 \rightarrow $2N_2$ + $3H_2O$ VERY FAST REACTION - Proven in stationary source applications for 30 yrs - Has been introduced for Euro IV and Japan 05 vehicles ## **SCR** - Ammonia containing compounds added to diesel exhaust to reduce NO_x to N₂. - e.g., $NH_3 + NO + 1/4O_2 \Rightarrow N_2 + 3/2H_2O$ - Excess ammonia is often needed resulting in NH3 escaping or "slip" - This ammonia must be removed by a secondary step. - NH₃ slip is currently not regulated in US, however for sociability and environmental reasons, Cummins chose to use Ammonia Oxidation (AMOX) Catalyst* device to ensure that ammonia slip to ambient is minimal - An AMOX catalyst can be used to convert the NH₃ slip to N₂ + H₂O - Candidate catalysts: zeolite-based and alumina-supported metal or metal oxide catalysts - Temperature and water content play a big role in the functioning and aging of these catalysts ^{*} Also called Selective catalytic oxidation (SCO) or Ammonia Slip catalyst