

SCR NOx İndirgeme Prensibi

 Use ammonia (NH₃) to reduce NOx to N₂ under oxidizing conditions

- Ammonia can be derived from a number of sources (e.g. urea, ammonium carbamate, liquid ammonia etc)
- NO₂ promotes SCR activity:

$$2NH_3$$
 + NO + NO_2 \rightarrow $2N_2$ + $3H_2O$ VERY FAST REACTION

- Proven in stationary source applications for 30 yrs
- Has been introduced for Euro IV and Japan 05 vehicles

SCR

- Ammonia containing compounds added to diesel exhaust to reduce NO_x to N₂.
 - e.g., $NH_3 + NO + 1/4O_2 \Rightarrow N_2 + 3/2H_2O$
 - Excess ammonia is often needed resulting in NH3 escaping or "slip"
 - This ammonia must be removed by a secondary step.
- NH₃ slip is currently not regulated in US, however for sociability and environmental reasons, Cummins chose to use Ammonia Oxidation (AMOX) Catalyst* device to ensure that ammonia slip to ambient is minimal
- An AMOX catalyst can be used to convert the NH₃ slip to N₂ + H₂O
 - Candidate catalysts: zeolite-based and alumina-supported metal or metal oxide catalysts
 - Temperature and water content play a big role in the functioning and aging of these catalysts

^{*} Also called Selective catalytic oxidation (SCO) or Ammonia Slip catalyst

