Workshop SERIES – Istanbul, February 8-9, 2012 # Contribution of the spandrels and of the perpendicular walls to the seismic performance of masonry walls H. Degée¹, L. Lascar², L. Vasseur², A. Plumier¹ - ¹ University of Liège - ² Wienerberger • Typical Belgian masonry construction (like UK and NL) ## Seismicity level of Belgium Confined masonry (Common in seismic regions) **Unreinforced masonry** (Standard in Belgium) ## Eurocode 8 verification methodology (version from Belgian National Annex) • Simple masonry buildings (independent of configuration in elevation) | Acceleration $\gamma_1 a_g S$ | 0.075 g | 0.09 g | 0.12 g | 0.15 g | 0.18 g | | | | |-------------------------------|---|--------------------------------------|-----------------------------|---------------------------|-----------------------------|--|--|--| | Number of levels | Minimal cross-sectional area of shear walls | | | | | | | | | | | (percentage of the total floor area) | | | | | | | | 1 | 1,0 (2,0) % | 1,0 (2,0) % | 1,5 (2,0) % | | 3,0 (<i>n/a</i>) % | | | | | 2 | 2,0 (2,0) % | 2,0 (2,5) % | 2,5 (2,5) % | | 7,5 (<i>n</i> /a) % | | | | | 3 | 3,0 (<i>3,0</i>) % | 3,5 (<i>5,0</i>) % | 5,5 (<i>5,0</i>) % | | n/a (<i>n/a</i>) | | | | | 4 | 5,0 (<i>5,0</i>) % | 5,5 (<i>n/a</i>) % | 8,5 (<i>n/a</i>) % | n/a (<i>n/a</i>) | | | | | | 5 | 6,5 (<i>n/a</i>) % | 8,0 (<i>n/a</i>) % | n/a (<i>n/a</i>) | • Equi | valent frame model | | | | Set of cantilevers coupled by floor diaphragms • Simple analysis model as from EC8 cantilever walls: $$=> ag, max = 0.5 m/s^2$$ ELEVATION SIDE 1 (North) #### Example "EC8 simple building" n/a = not applicable #### **Refined model:** •FE model: Calibrated on frequency analysis (No facing bricks // E* = E/2) + EC6 verification: => ag,max = 3.0 m/s² Reality!! Frame behaviour, not cantilever but not easy to quantify Tests indicate: ag,max > 4.5 m/s² => Research needs #### **Full scale tests** - Questions to be investigated by the test program: - Effect of horizontal spanning elements Coupled by «ties » No effect on bending Lower bound Infinitely rigid spandrels Upper bound Intermediate realistic situation #### **Full scale tests** - Questions investigated by the test program: - 1. Effect of horizontal spanning elements - 2. Influence of a prefabrication process prefab panels5 brick layers (for 12 t crane max load)glued on site #### **Full scale tests** - Questions investigated by the testing program: - 3. Effect of perpendicular wall on the stability of shear walls = T shape wall ### **Full scale tests** • Test set-up T shape wall Full scale tests at University of Liege • Definition of the test specimens #### **SPECIMENS WITH DOOR OPENING** Full scale tests SPECIMENS WITH DOOR OPENING Main results A3 = reference **End of test:** **Crushing of lintel** supports No ductility #### Full scale tests SPECIMENS WITH DOOR OPENING Main test results #### Full scale tests SPECIMENS WITH DOOR OPENING Main test results ### **Full scale tests** #### **SPECIMENS WITH DOOR OPENING** Main test results Murfor holds Brick walls together Good ductility Resistance governed by crushing at supports ≠ collapse ### Full scale tests SPECIMENS WITH DOOR OPENING | Test | Ultimate load
+ (kN) | Ultimate load
– (kN) | Ultimate drift +
(mm/%) | Ultimate drift –
(mm/%) | Ductility + | Ductility - | |--------------------|-------------------------|-------------------------|----------------------------|----------------------------|-------------|-------------| | A1 | 133.0 | 137.1 | 7.5 / 0.27 | 8.4 / 0.30 | 1.8 | 1.7 | | A3 Ref | 76.1 | 73.8 | 8.8 / 0.32 | 7.6 / 0.27 | 1.7 | 1.1 | | A4 Vertic bars | 100.8 | 76.3 | 8.4 / 0.30 | 7.4 / 0.26 | 1.8 | 2.6 | | B3 Ext.
Lintels | 82.0 | 76.6 | 5.3 / 0.19 | 6.1 / 0.22 | 1.7 | 1.8 | | B4
Murfor | 76.9 | 71.2 | 7.2 / 0.26 | 8.0 / 0.29 | 2.3 | 2.6 | Full scale tests TESTS ON PREFABRICATED T-SHAPED WALLS ≠ compression stress C1 C1 0,75MPa **C2** 1,00MPa C3 1,25MPa Main test results | K . | |------| | | | | | 2500 | | | | | | | | | C 1 | | C2 | | C3 | | |---|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Characteristics values | Positive
loading | Negative
loading | Positive
loading | Negative
loading | Positive
loading | Negative
loading | | Maximum load(bi-
linearized curve)/
Maximum load from cyclic
curve | 104.4 kN
/ 118.3
kN | 125.6 kN
/ 135.2
kN | 138.8 kN
/ 158.3
kN | 158.1 kN
/ 167.8
kN | 161.7 kN
/ 180.8
kN | 172.5 kN
/ 189.8
kN | | Maximum displacement /
Maximum Drift | 6.71 mm
/ 0.24 % | 7.71 mm
/ 0.27 % | 5.22 mm
/ 0.19 % | 4.88 mm
/ 0.17 % | 4.91 mm
/ 0.17 % | 5.33 mm
/ 0.19 % | | Maximum theoretical shear resistance according to EC6 | 104.4 kN | 104.4 kN | 128.3 kN | 128.3 kN | 148.6 kN | 148.6 kN | | Ductility(based on the bi-
linear curve) | 3.43 | 3.06 | 1.99 | 2.43 | 1.84 | 2.27 | #### Full scale tests TESTS ON PREFABRICATED T-SHAPED WALLS Main test results # Vertical Joint behaviour | Joint displacement | | | | | | | | |------------------------|----------|------------|----------|------------|----------|------------|--| | | C 1 | | C2 | | С3 | | | | Characteristics values | Vertical | Horizontal | Vertical | Horizontal | Vertical | Horizontal | | | Compression stage | 0.012 mm | 0.001 mm | 0.009 mm | 0.010 mm | 0.015 mm | 0.005 mm | | | Yield strength | 0.062 mm | 0.061 mm | 0.009 mm | 0.032 mm | 0.004 mm | 0.051 mm | | | Collapse | 0.010 mm | 0.410 mm | 0.025 mm | 0.360 mm | 0.018 mm | 0.071 mm | | Vertical displacement from longitudinal shear Horizontal displacement Joint opening Elastic until shear cracking in main wall **Full scale tests** General conclusions of the 2 cyclic test series #### 1. Specimens with door opening - 1. In the standard configuration, brittle failure at the lintel support - 2. Situations improved with longer lintel supports: same failure mode, but less brittle - 3. Sub-vertical cracking → failure in compression rather than in shear - 4. Both reinforcement systems (Vertical confinement, Murfor)are efficient mainly on the deformation capacity - BUT vertical confinement is not easy to implement in practice Murfor are too thick for thin-bed mortar layers #### **Full scale tests** - 2. Tests on T-shaped wallsGeneral conclusions of the 3 test series: - 1. Prefabrication character of specimens does not influence the cracking pattern - 2. No significant joint shear or opening until significant shear cracking of the wall - 3. Ultimate drift governed by shear (similar to the case without flange) - 4. Ductility significantly increased (higher elastic stiffness for a similar ultimate drift) #### → Suggestions for practice - Use longer lintel supports - Target flexural failure modes (more ductile in case of high initial compression level) - Higher q-factor could be used if transverse walls are considered in the analysis ## 3. Seismic analysis Wall with door opening **Problem of model for the framing elements** **Problem of load redistribution** plastic redistribution or not? ### 3. Seismic analysis Wall with door opening – Influence of the framing elements # **FUTURE SHORT TERM ACTIONS** Preparation of SERIES dynamic cyclic tests on shake table in Bristol 2 of those tests are made on walls includings acoustic isolation devices by 10 mm rubber mats in order to investigate the capacity of such rubber mats to achieve seismic isolation 2 tests on T-shaped walls coupled by a spandrel SERIES Shake table tests on full-scale models in LNEC (to be scheduled) Objective: validation of theroretical/numerical model of masonry structures in real conditions, including coupling by floor slabs and/or spandrels Re-assessment of all available test results for calibration of the frame effect # **PERSPECTIVES** **Evaluation of typical Belgian real cases** **Development of simple code rules**