

COMMISSION OF THE EUROPEAN COMMUNITIES FP7- INFRASTRUCTURES-2008-1 SP4-Capacities

SERIES

SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES

"Shaking table test design to evaluate earthquake capacity of a 3-storey building specimen composed of cast-in-situ concrete walls"

Salvador Ivorra

sivorra@ua.es

Tomaso Trombetti

tomaso.trombetti@unibo.it

Dora Foti d.foti@poliba.it

Cristina Mihaela Campian

cristina.campian@bmt.utcluj.ro

PRESENTATION LAYOUT

- Construction system
- Scientific background related to sandwich panels
- Experimental tests performed during the years and their interpretation
- Shaking table tests
 - · Design
 - Transportation phase
 - · Tests
 - · Preliminary interpretation of the results of the shaking-table tests

THE CONSTRUCTION SYSTEM

THE CONSTRUCTION SYSTEM

THE MODULAR PANELS

peculiar design of the edges to allow the continuity of the horizontal reinforcement

THE CONSTRUCTION SYSTEM

THE CAST IN SITU SANDWICH CONCRETE WALLS

THE PECULARITIES OF THE STRUCTURAL SYSTEM

- 1. Squat Wall
- 2. Cellular Behaviour
- 3. Sandwich wall

PREVIOUS EXPERIMENTAL TESTS TO SERIES PROJECT

- Uniaxial compression tests
- Diagonal compression tests
- Slip tests between the two r.c. layers
- Out-of-plane bending test
- Pseudo-static tests with horizontal loads
- Shaking table test (december 2011)

UNIBO in LAPS lab (BOLOGNA) 2002-2003

> UNIBO in EUCENTRE lab (PAVIA) 2005-2008

SERIES PROJECT

UNIAXIAL TESTS

GOAL

To study the **uniaxial behaviour** of single cast in situ sandwich squat concrete wall and to evaluate **the effect of a prescribed eccentricity**

UNIAXIAL TESTS

Panel reinforcement

Test layout

UNIAXIAL TESTS: COMPARISON OF THE RESULTS

Panel 2, e=0

The eccentricity strongly influences both:

 $F_{max} \rightarrow$ the failure load

 $V_{max} \rightarrow$ the maximum deflection of the panel at the middle length section

Out-of plane bending test

Novembr 2003

Analtyical-experimental correlations

- Ec = 300000 kg/cm^2
- Ultimate strengths

	$M_{\it Rd}$	$M_{\it R,act}$	$M_{\it D, exp}$
	[kNm]	[kNm]	[kNm]
Parete P1 (4+10+4)	7.44	11.50	19.45
Parete P2 (4+6+4)	5.58	8.62	11.85

	Taglio resistente teorico,	Taglio resistente sperimentale,
	$V_{ m R,act}$ [kN]	$V_{ m exp}$ [kN]
Parete P1 (4+10+4)	20.59	21.25
Parete P2 (4+6+4)	17.36	13.25

PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOADS SINGLE WALLS

GOAL

Obtaining a **full characterization** of the **pseudo-static behaviour under cyclic horizontal loads** of single cast in situ sandwich squat concrete wall.

PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL

LOADS

- A total of 6 tests, on two different typology of walls, were performed:
 - 4 tests for wall type A: 3 m x 3 m square wall with no openings;
 - **2 tests for wall type B**: 3 m x 3 m square wall with a 1 m x 1m square central opening;
- Three different values of the vertical loads applied:
 - 50 kN;
 - 100 kN;
 - · 250 kN;
- 3 complete cycles applied at each step, increasing levels of imposed horizontal deformations for a given constant vertical

load, have been applied

	Test	Date	Specimen Typology	Vertical Load [kN]	Specimen Weight [kN]
ľ	1	22-12-05	A	50	20
	2	20-01-06	A	100	20
Ī	3	02-02-06	В	50	20
	4	08-02-06	В	100	20
	5	09-02-07	A	100	20
	6	15-02-07	A	250	20

PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOADS

Reinforcement for Wall **Type A**- Wall without opening

PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOADS

Reinforcement for Wall Type B- Wall with opening

TYPE A:

WALLS WITHOUT OPENINGS

WALL TYPE A: RESULTS

WALL TYPE A: RESULTS

	TEST 1 N=50 kN		TEST 2 N=100 kN			TEST 3 N=250 kN			
Drift [%]	F _{Tmax}	F _{Cmax}	F _{Mmax} [kN]	F _{Tmax}	F _{Cmax} [kN]	F _{Mmax} [kN]	F _{Tmax}	F _{Cmax} [kN]	F _{Mmax} [kN]
0.10	125.6	154.3	139.9	128.5	141.2	134.9	138.1	152.3	145.1
0.20	197.1	232.8	214.9	199.1	204.5	201.8	221.8	231.2	226.5
0.40	288.4	286.6	287.4	270.2	279.6	274.9	304.5	316.1	310.3
0.60	289	285.3	287.1	327.2	326.1	326.7	354.2	359.6	356.9
0.75	253.7	291.4	272.5	339.2	334.1	336.7	371.5	360.9	366.2
1.00	294.5	291.7	293.1	336.7	301.2	319.0	371.7	335.5	353.6

WALL TYPE A: STIFFNESS

N (kN)	K theory, gross section	K theory, uncracked	K theory, fully cracked	KO experimental, tangent (initial)
50	1	1.04	0.11	0.14
100	1	1.04	0.12	0.16
100	1	1.04	0.12	0.14
200	1	1.04	0.12	0.15

- ullet K₀ is completely different from (much lower than) the K _{theory,uncracked}
- K₀ is closer to the K_{theory,fully cracked} rather than to the K _{theory,uncracked}
- K₀ is larger than K_{theory,fully cracked}

WALL TYPE B:RESULTS

CRACKING PATTERNS

OBSERVATIONS DESUMED FORM THE RESULTS

The results obtained from the pseudo-static tests with cyclic horizontal load upon six 2-dimensional (3.0 m b 3.0 m) elements with and without opening, have shown that the tested walls are characterized by:

- absence of a real and authentic failure: "virtual collapse"=>no real collapse of the specimen has been reached, but a visible lateral strength reduction of the specimen has been observed;
- residual bearing capacity with respect to the vertical loads;
- high values (about 300 kN) of the maximum horizontal load applied to the specimens;
- cracking patterns indicating a typical "bending" mode of failure;
- a maximum lateral force which is not significantly influenced by the vertical load applied;
- no significant differences between the walls with and without opening.

PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOADS:

H-SHAPED STRUCTURE

THE H-SHAPED STRUCTURE

THE H-SHAPED STRUCTURE

Vertical load 30 t

Ciclic horizontal load:

50 t

THE H-SHAPED STRUCTURE: STIFFNESS

K theory, gross section	K theory, uncracked	K theory, fully cracked	KO experimental, tangent (initial)
kN/m	kN/m	kN/m	kN/m
324820	342376	20338	36242
1	1.05	0.06	0.11

- K₀ is completely different from (much lower than) the K theory, uncracked
- K₀ is closer to the K_{theory,fully cracked} rather than to the K _{theory,uncracked}
- K₀ is larger than K_{theory,fully cracked}

THE H-SHAPED STRUCTURE: STRENGTHS

	R _{analytical,d} [kN] design values	R _{analytical,mean} [kN] mean values	R _{experimental}
Forza di primo snervamento	$F_{1yd} = 174 \text{ kN}$	$F_{1y,act} = 236 \text{ kN}$	$F_{1y, D, exp} = 217 \text{ kN}$
Forza ultima	$F_{Rd} = 367 \text{ kN}$	$F_{R,act} = 471 \text{ kN}$	$F_{u, D, exp} = 465.8 \text{ kN}$
Flessione	$M_{Rd} = 1679 \text{ kN m}$	$M_{R,act} = 2159 \text{ kN m}$	$M_{D, exp} = 2273 \text{ kN m}$
Taglio	$V_{Rd} = 448.1 \text{ kN}$	$V_{\scriptscriptstyle R,act} = 607.0 \; \mathrm{kN}$	$V_{D,\rm exp} = 465.8 \text{ kN}$
Scorrimento alla base	$S_{Rd}^* = 442.6 \text{ kN}$	$S_{R,act}^* = 535.1 \text{ kN}$	$S_{D,\rm exp} = 465.8 \text{ kN}$
Scorrimento delle connessioni	$S_{Rd, \text{ connessioni}} = 556 \text{ kN}$	$S_{R,act, \text{ connessioni}} = 740 \text{ kN}$	$S_{D,\rm exp} = 465.8 \text{ kN}$

detalis given in next slide

THE H-SHAPED STRUCTURE: ANALITYCAL STRENGTHS OF THE SINGLE WALLS

Parallel wall – First yielding for bending in the floor

$$M_{y1} = \left(\frac{\rho b y_{y1}}{2} f_{ym}\right) \cdot \left(\frac{h}{2} - \frac{y_{y1}}{3}\right) + \left(\frac{b(h - y_{y1})^{2}}{2 y_{y1}} \frac{f_{ym}}{n}\right) \cdot \left(\frac{h}{6} + \frac{y_{y1}}{3}\right) + A_{s,catena} f_{ym} (h - 2c) = 125 \text{ t m}$$

Parallel wall - Ultimate strength for bending in the floor

$$M_{Rd, \text{ parete //}} = \left(f_{ym} \cdot \rho \cdot b \cdot y_{u,sb}\right) \cdot \left(\frac{h}{2} - \frac{y_{u,sb}}{2}\right) + \left(f_{cm} \cdot b \cdot 0, 8(h - y_{u,sb})\right) \cdot \left(0, 1h + 0, 4y_{u,sb}\right) + A_{s,catena} f_{ym} \left(h - 2c\right) = 153 \text{ t m}$$

Parallel wall - Shear strength in the wall

$$T_{Rd} = \min(T_{Rcd}, T_{Scd}) = 61 \text{ t} \qquad T_{Rsd} = 0,9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{ym} \cdot (\cot \theta + \cot \alpha) \cdot \sin \alpha \qquad T_{Rcd} = 0,9 \cdot d \cdot b \cdot \alpha_c \cdot f'_{cm} \cdot \frac{(\cot \theta + \cot \alpha)}{(1 + \cot^2 \theta)}$$

Perpendicular wall - Shear strength

$$N_{Rd, \text{ plrete } \perp} = \sigma_{\text{max}} \cdot b \cdot \ell_{\perp} \square 20 \text{ t}$$

$\sigma_{\text{max}} = 12 \text{ kg/cm}^2$

Maximum admissible strength (for traction) for "steel-concrete" material considering a diffuse reinforcement of 1+162.5/5cm

Parallel wall - Base shear strength

$$S_{Rd,parete//} = \mu \cdot N_{Ed} + A_{s,riprese//} \cdot \frac{f_{ym}}{\sqrt{3}} = 75 \text{ t}$$

THE H-SHAPED STRUCTURE: ANALITYCAL STRENGTHS OF THE SINGLE WALLS

$$M_{y1,structure} = N_{Rd, parete \perp} \cdot h_{//} = 64 \text{ tm}$$

$$M_{u,structure} = N_{Rd, parete \perp} \cdot h_{//} + M_{u,parete //} = 217 \text{ tm}$$

$$T_{u,structure} = T_{Rd,parete//} = 61 \text{ t}$$

$$S_{u,structure} = S_{Rd,parete//} = 75 \text{ t}$$

THE 3-STOREY BUILDING AND THE SHAKING-TABLE TESTS

DESIGN PHASE

- Shaking table: a single degree-of-freedom
- Rigid platform: 5.6mx7.0 m
- Payload range between 700 to 1400 kN
- Peak acceleration with a maximum payload: 1.8g.
- Maximum force is 2100 kN and the
- Maximum overturning moment: 4000 kNm.
- Maximum admissible height: 9 m.

DIMENSIONS OF THE 3-STOREY BUILDING

Loads

Solaio di Copertura						
Permanenti	2	235 kg/m ²	A _{copertura}	21	m ²	
Extra	2	285 kg/m²	W _{copertura}	10.9	t	
		Solaio di Pian	o Secondo			
Permanenti	3	329 kg/m ²	A _{piano 2}	19	m ²	
Balcone	2	212 kg/m ²	A _{balcone piano 2}	1.93	m ²	
Extra	2	224 kg/m²	W _{piano 2}	10.9	t	
		Solaio di Pia	no Primo			
Permanenti	3	329 kg/m ²	A _{piano 1}	19	m ²	
Balcone	2	215 kg/m ²	A _{balcone piano 2}	1.86	m ²	
Extra	2	224 kg/m²	W _{piano 1}	10.9	t	

Structure weight

• Elevation weight during the transportation phase (only elevation without extra):

$$W_{\text{elevazione nuda}} = 51 \text{ t}$$

Total weight of the structure during the transportation phase (elevation without extra + foundation):

$$W_{\text{struttura nuda}} = 51 + 14 = 65 \text{ t}$$

• Elevation weight during the test (elevation with extra):

$$W_{\text{elevazione in fase di prova}} = 66 \text{ t}$$

Total weight of the structure during the test (elevation with extra + foundation):

$$W_{\text{struttura in fase di prova}} = 66 + 14 = 80 \text{ t}$$

Additional loads

Massa totale x piano INTERMEDIO pari a 4257kg 11.824 mq utili, pari a 224 kg/mq massa in getto CA C15/20 H15 cm

massa prefabbricata in CA dim. 200x120x50 cm

peso 3000 kg / CAD

Intermediate floors:

Shot-crete in concrete (s=**15 cm**)

Material parameters adopted for the design phase

- ✓ WALLS: C25/30 concrete applied as "spritz beton"; (shotcrete)
- ✓ FLOORS: C25/30 concrete applied with a traditional concreting;
- ✓ INTEGRATIVE REINFORCEMENT: B450C steel;
- ✓ REINFORCEMENT IN THE PANELS : zinc-plated steel with the same characteristics of B450C.

Strength in the design phase:

Average compression stength in concrete :

$$f_{cm} = 30 \text{ MPa}$$

Average yielding strength in steel:

$$f_{ym} = 500 \text{ MPa}$$

Average yielding strength in zinc-plated steel:

$$f_{ym} = 500 \text{ MPa}$$

Analytical evaluation of the accelerations corresponding to possible collapse mechanisms of the structure

To evaluate the **spectral accelerations** of the different **collapse mechanisms** of the model building it has been determined:

- •The actions (i.e. demand) in the walls (parallel and perpendicular) following the application of a spectral acceleration equal to $S_a = 1g$ and
- The corresponding rstrength (i.e. capacity).

Comparing the **actions** due to 1g with the corresponding **strength**, it has been possible to find the sequence of all the possible collapse mechanisms of the structure.

Seismic loads due to Sa = 1g

$$T_{\text{Tot, base}} = T_{\text{Ed}} = m_{\text{struttura}} \cdot 1g = 66 \cdot 1 = 66 \text{ t}$$

$$M_{\text{Tot, base}} = M_{\text{Ed}} = T_{\text{Tot, base}} \cdot y_H = 66 \cdot 6.4 = 420 \text{ t m}$$

In the hypothesis of:

- Linear-elastic behavior
- Plane sections after the deformation.
- Orthigonal walls are perfectly connected

$$\rho_{//} = \frac{J_{//}}{J_{Tot}} = \frac{2.22}{7.22} = 0.31 \rightarrow 30\%$$

$$\rho_{\perp} = \frac{J_{\perp}}{J_{Tot}} = \frac{4.99}{7.22} = 0.69 \rightarrow 70\%$$

Parallel walls

$$M_{Ed.//} = 0.30 \cdot M_{Ed} = 0.30 \cdot 420 = 130 \text{ t m}$$

$$M_{Ed,\perp} = 0.70 \cdot M_{Ed} = 0.70 \cdot 420 = 291 \text{ t m}$$

$$M_{\text{Ed, parete //}} = \frac{0.30 \cdot M_{\text{Ed}}}{2} = \frac{0.30 \cdot 420}{2} = 65 \text{ t m}$$

$$N_{\text{Ed, sismico, parete } \perp} = \frac{M_{Ed, \perp}}{\ell_{\text{//}}} = \frac{291}{5.52} = 53 \text{ t}$$

$$T_{\text{Ed, parete //}} = \frac{T_{\text{Ed}}}{2} = \frac{66}{2} = 33 \text{ t}$$

walls

Strength

Parallel wall – Strength of first yielding for bending in the floor

$$M_{y1} = \left(\frac{\rho b y_{y1}}{2} f_{ym}\right) \cdot \left(\frac{h}{2} - \frac{y_{y1}}{3}\right) + \left(\frac{b(h - y_{y1})^{2}}{2 y_{y1}} \frac{f_{ym}}{n}\right) \cdot \left(\frac{h}{6} + \frac{y_{y1}}{3}\right) + A_{s,catena} f_{ym} (h - 2c) = 149 \text{ t m}$$

Parallel wall – Ultimate strength for bending in the floor

$$M_{Rd, \text{ parete //}} = \left(f_{ym} \cdot \rho \cdot b \cdot y_{u,sb}\right) \cdot \left(\frac{h}{2} - \frac{y_{u,sb}}{2}\right) + \left(f_{cm} \cdot b \cdot 0, 8(h - y_{u,sb})\right) \cdot \left(0, 1h + 0, 4y_{u,sb}\right) + A_{s,catena} f_{ym}(h - 2c) = 181 \text{ t m}$$

Parallel wall – Shear strength in the floor

$$T_{Rd} = \min(T_{Rcd}, T_{Scd}) = 60 \text{ t} \quad T_{Rsd} = 0,9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{ym} \cdot (\cot \theta + \cot \alpha) \cdot \sin \alpha \quad T_{Rcd} = 0,9 \cdot d \cdot b \cdot \alpha_c \cdot f'_{cm} \cdot \frac{(\cot \theta + \cot \alpha)}{(1 + \cot^2 \theta)}$$

Perpendicular wall – Tensile strength

$$N_{Rd, \text{ parete } \perp} = \sigma_{\text{max}} \cdot b \cdot \ell_{\perp} = 6 \frac{\text{kg}}{\text{cm}^2} \cdot 8 \text{ cm} \cdot 412 \text{ cm} \square 20 \text{ t}$$

$\sigma_{\text{max}} = 6 \text{ kg/cm}^2$

Maximum admissible strength (in traction) for "steel-concrete" material considering a diffuse reinforcement of $1+1 \phi 2.5/10 \text{cm}$

Parallel wall - Shear strength at the base

$$S_{Rd,parete//} = \mu \cdot N_{Ed} + A_{s,riprese//} \cdot \frac{f_{ym}}{\sqrt{3}} = 75 \text{ t}$$

Comparison of the actions due to 1g and corresponding strength

Perpendicular wall – Tensile strength vs. Tensile action

$$\frac{N_{\rm Rd, parete \perp} + N_{\rm Ed, statico, parete \perp}}{N_{\rm Ed, sismico, parete \perp}} = \frac{20 + 12}{53} = 0.61$$

Parallel wall – First yielding strength for bending in the floor vs. bending action in the floor

$$\frac{M_{Rd, \text{ parete //}}}{M_{Ed, \text{ parete //}}} = \frac{149}{65} \neq 2.30$$

Parallel wall – Ultimate strength for bending in the floor vs. bending action in the floor

$$\frac{M_{Rd, \text{ parete } //}}{M_{Ed, \text{ parete } //}} = \frac{181}{65}$$

Parallel wall – Shear strength in the floor vs. shear action in the floor

Se
$$\theta = 22^{\circ} \rightarrow \frac{T_{Rd, \text{ parete //}}}{T_{Ed, \text{ parete //}}} = \frac{60 \text{ t}}{33 \text{ t}} = 1.82$$

Parallel wall – Shear strength at the base vs. shear action

$$\frac{T_{Rd, \text{ parete }//}}{T_{Ed, \text{ parete }//}} = \frac{75 \text{ t}}{33 \text{ t}} = 2.28$$

POSSIBLE COLLAPSE MECHANISMS

 Tensile yielding of the perpendicular walls

$$S_a = 0.61g$$
 $PGA = 0.24g$
 $FS_F = 3.2$ $FS_M = 7.4$

3. Ultimate bending conditions (in the plane) of the parallel walls

$$S_a = 1.28g$$
 $PGA = 0.51g$

$$FS_F = 1.5$$
 $FS_M = 1.1$

2. Yielding in the plane of the parallel walls

$$S_a = 1.13g$$
 $PGA = 0.45g$
 $FS_F = 1.8$ $FS_M = 1.4$

$$S_a = 1.82g PGA = 0.73g$$

$$FS_F = 1.1$$
 $FS_M = 0.7$

5. Base **displacement** of the **parallel** walls

$$S_a = 2.28g$$
 $PGA = 0.91g$
 $FS_F = 0.9$ $FS_M = 0.5$

CONSTRUCTION PHASE

CONSTRUCTION PHASES

ACTUAL STRENGTHS OF THE MATERIALS USED FOR THE CONSTRUCTION OF THE BUILDING

 f_t/f_y

1.22 1.20 1.21 1.21 1.27 1.22

Zinc-plated steel

Tabella 1: parametri caratteristici tratti dai test di trazione dei fili di diametro 2.5 mm

rabena r. para	near	caranc	115tici ti ti	uar test	ar a azron	c del im c	ii didiii	110 2.0 11
Campione	φ _{nom}	A ₀	Fy	f _v	Ft	f_t	I _o	ı
	mm	mm ²	N	Мра	N	/ Mpa	mm	mm
Trafilcoop -1.1	2.5	4.91	2182.50	444.5	2746.2	542.3	100	118.5
Trafilcoop -1.2	2.5	4.91	2218.34	451.8	2662.2	542.2	100	118.0
Trafilcoop -1.3	2.5	4.91	2249.76	458.2	2722.10	554.4	100	118.5
Trafilcoop -1 medie			2216.87	451.5	2710.16	546.3		
Trafilcoop -2.1	2.5	4.91	2186.17	445.3	2778.1	565.9	100	119.5
Trafilcoop -2.2	2.5	4.91	2288.06	466.0	2791.33	568.5	100	118.5
Trafilcoop -2.3	2.5	4.91	2247.80	457.8	2764.82	563.1	100	120.0
Trafilcoop -2 medie			2240.67	456.4	2778.08	565.8		
Trafilcoop -3.1	2.5	4.91	2168.89	441.7	2758.25	561.9	100	120.0
Trafilcoop -3.2	2.5	4.91	2215.56	451.35	2661.7	542.2	100	118.0
Trafilcoop -3.3	2.5	4.91	2310.84	470.76	2701.7	550.4	100	118.5
Trafilcoon -3 medie			2281.83	464.85	2685.0	547.0		

Test: 550 MPa
Desingned: 500 MPa

NI EN ISO 15030-1)

1	, nominale	barra	barra	(mm²)	sezione	per unità	Snervamento	Rottura			е	Identificazione
["	" (mm)	(mm)	equipesante	1	(%)	di lungh.	/ f _y \	ft	f _t /f _y	A _{gt}	Raddrizz.	e
L			(mm)			(kg/m)	(N/mm²)	(N/mm ²)		(%)		Scheda
Ľ	8	500	8,04	50,75	1,01	0,398	561	696	1,24	11,7	SF	a: Stefana 042/08-CA
12	2 8	500	8,05	50,90	1,31	0,400	559	694	1,24	11,3	SF	a: Stefana 042/08-CA
Ľ	3 8	500	8,05	50,85	1,21	0,399	540	695	1,29	12,3	SF	a: Stefana 042/08-CA
Ľ	10	500	9,98	78,11	-0,49	0,613	540	653	1,21	6,8	SF	a: Feralpi Sid. 022/10-CA
_5	10	500	9,95	77,73	-0,99	0,610	543	644	1,19	6,9	SF	a: Feralpi Sid. 022/10-CA
E	10	500	9,98	78,14	-0,46	0,613	540	640	1,19	7,1	SF	a: Feralpi Sid. 022/10-CA
1		500	11,99	112,84	-0,18	0,886	548	661	1,21	8,3	SF	a: Feralpi Sid. 022/10-CA
L	12	500	12,02	113,32	0,25	0,890	554	641	1,16	8,5	SF	a: Feralpi Sid. 022/10-CA
5	12	500	12,00	112,99	-0,04	0,887	564	660	1,17	7,8	SF	a: Feralpi Sid. 022/10-CA
1	0 14	500	14,01	154,17	0,20	1,210	522	617	1,18	10,4	SF	a: Feralpi Sid. 022/10-CA
1		500	14,00	153,91	0,03	1,208	510	606	1,19	8,9	SF	a: Feralpi Sid. 022/10-CA
1:	2 14	500	14,02	154,19	0,21	1,210	528	617	1,17	9,3	SF	a: Feralpi Sid. 022/10-CA
1:		500	16,00	200,99	0,02	1,578	547	620	1,13	12,0	SF	a: Alfa Acciai 007/08-CA
1.		500	16,00	201,04	0,04	1,578	551	625	1,13	11,1	SF	a: Alfa Acciai 007/08-CA
1:	5 16	500	16,00	200,99	0,02	1,578	542	615	1,14	12,6	SF	a: Alfa Acciai 007/08-CA

Concrete cubic specimens

		D	mensi	oni	Massa	Massa	Car	14 15	16 16	500	, .
N°	Contrassegno del provino	L	(mm)		provino	volumica	mass		10	500	16,0
		Lung.	Larg.	Altez.	kg	kg/m³	kN	١	M/mi	m²\	rottura
1	intonaco p.terra 06/05/11	150	150	150	7,150	2.119	6	38	28,3	34	S
2	intonaco p.terra 06/05/11	150	150	150	7,200	2.133	6	18	27,4	17	S
3	getto solaio 11/05/11	150	150	150	7,890	2.338	(87	30,5	2	s
4	getto solaio 11/05/11	150	150	150	7,820	2.317	6	87	30,5	52	S
5	tavola vib. 1° passata 13/05/11	150	150	150	7,410	2.196	7	755	33,5	57	S
6	tavola vib. 2° passata 14/05/11	150	150	150	7,290	2.160	- 6	67	29,6	35	s
7	tavola vib. 1° passata 28/05/11	150	150	150	7,300	2.163	6	377	30,0	8(s
- 8	tavola vib. 1° passata 29/05/11	150	150	150	7,340	2.175	7	′36	32,7	70	s
9	intonaco 2° mano P.T. 09/06/11	150	150	150	7,160	2.121	(357	29,2	21	S
10	intonaco 2° mano P.T. 09/06/11	150	150	150	7,230	2.142	(557	29,2	21/	s

Test: 25 MPa (cilyndrical)

Desingned: 30 MPa

TRANSPORTATION PHASE

TRANSPORTATION PHASES

The transport of the complex structure-foundation is as in the following:

- 1. The complex structure-foundation is **uploaded in position 1** with four actuator;
- 2. The complex structure-foundation is positioned on some sliders and pulled with chains up to position 2;
- 3.in position 2 the complex structure-foundation is lowered and then re-uploaded;
- 4. The complex structure-foundation is positioned on some sliders and pulled with chains up to the shaking table (position 3).

The uploading and lowering system

The uploading and lowering system

σ_{max} = 6 kg/cm²
Maximum admissible strenght (in tension) for the "steel-concrete" material"

1+1 post-tensioned cables (N=40 t)

le
n) "Effect arch"
S22 = 5 kg/cm²
I"

Istambul (TR). - February 8-9

The uploading and lowering system

TRANSPORTATION PHASES

TESTING PHASE

Istambul (TR). - February 8-9, 2012

INSTRUMENTATION

Wall n. 2 Wall n. 4 outside outside inside Accelerometers 11 5 50 51 32 1 33 Wall n. 1 Wall n. 3 93 dal file 47 outside outside inside inside 21

INPUT: Montenegro recorded ground motion (1979) original PGA = 0.305g

TEST PROGRAM

n.	Test
1	0.05 g test
2	0.15 g test
3	0.50 g test
4	1.00 g test
5	1.20 g first test
6	1.20 g second test

EXPERIMENTAL - FREQUENCIES

	Freq.	Period
	Hz	S
Before 0.05 g test	10	0.100
	11.7	0.085
Between 0.05 g and 0.15 g tests	10	0.100
	11.7	0.085
Between 0.15 g and 0.50 g tests	10	0.100
	11.7	0.085
Between 0.50 g and 1.00 g tests	-	
	11	0.091
Between 1.00 g and the first 0.30 g white noises	-	
	10.4	0.096
Between the 0.30 g white noises and the first 1.2 g test	-	
	8.6	0.116
Between the first 1.20 g test and the 0.50 g white noises	-	
Between the 0.50 g white noises and the second 1.20 g test	-	
	8.2	0.122
After the last 1.20 g test	-	

FEEDBACK ACCELERATION AS FUNCTION OF TIME

FOUNDATION ACCELERATION AS FUNCTION OF TIME

1ST STOREY ACCELERATION AS FUNCTION OF TIME

2ND STOREY ACCELERATION AS FUNCTION OF TIME

3RD STOREY ACCELERATION AS FUNCTION OF TIME

TOTAL FORCE AS FUNCTION OF TIME

BASE SHEAR AS FUNCTION OF TIME

BASE MOMENT AS FUNCTION OF TIME

PRELIMINARY INTERPRETATION OF THE RESULTS OF THE SHAKING-TABLE TESTS

PERIODS AND FREQUENCIES

FEM analy	/cic

Elastic Modulus [kg/cm²]	Period [s]	Frequency [Hz]
E = 30 MPa	0.07	14
0.5E = 15 MPa	0.095	10.5
0.1E = 3 MPa	0.21	4.8

$$f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = C \cdot \sqrt{E_c}$$

$$\frac{f_{\rm exp}}{\sqrt{E_{\rm exp}}} = \frac{f_{SAP}}{\sqrt{E_{SAP}}}$$

$$\frac{E_{\rm exp}}{E_{SAP}} = \left(\frac{f_{\rm exp}}{f_{SAP}}\right)^2$$

$$\frac{E_{\text{exp}}}{0.1E_c} = \left(\frac{f_{\text{exp}}}{f_{SAP}}\right)^2$$

$$\frac{E_{\rm exp}}{E_c} = 0.1 \left(\frac{f_{\rm exp}}{f_{SAP}}\right)^2$$

PERIOD - FREQUENCIES

Test	Experimental frequency As given by Simone Girello	gives a nu	E _c J _{gross section}) which americal frequency = ntal frequency			
Before 0.05 g test	10.0 Hz 11.7 Hz	0.43 0.59				
Between 0.05 g and 0.15 g tests	10.0 Hz 11.7 Hz	0.43 0.59				
Between 0.15 g and 0.50 g tests	10.0 Hz 11.7 Hz	0.43 0.59	INDICATION ON GLOBAL STIFFNESS			
Between 0.50 g and 1.00 g tests	- 11.0 Hz	- 0.52	different			
Between 1.00 g and the first 0.30 g white noises	- 10.4 Hz	0.47	from the 0.15 values of			
Between the 0.30 g white noises and the first 1.2 g test	- 8.6 Hz	- 0.32	and			
Between the first 1.20 g test and the 0.50 g white noises	-	-	the H-shaped structure			
Between the 0.50 g white noises and the second 1.20 g test	- 8.2 Hz	- 0.29				
After the last 1.20 g test	-	-				

APPROACH A

3-STOREY STUCTURE: STIFFNESS

K gross section:

$$K_{\text{gross section}} = \left(\frac{1}{K_{flex}} + \frac{1}{K_{shear}}\right)^{-1}$$

$$K_{flex} = \frac{3E_c J_{\text{gross section}}}{h^3}$$

$$K_{shear} = \frac{G_c A_{\text{gross section}}}{\chi h}$$

$$J_{\text{gross section}} = J_1 + J_2$$

$$A_{\text{gross section}} = A_1 + A_2$$

1 - concrete

3-STOREY STUCTURE: STIFFNESS

K uncracked:

$$K_{\text{uncracked}} = \left(\frac{1}{K_{flex}} + \frac{1}{K_{shear}}\right)^{-1}$$

$$K_{flex} = \frac{3E_c J_{\text{uncracked}}}{h^3}$$

$$K_{shear} = \frac{G_c A_{\text{uncracked}}}{\chi h}$$

$$J_{\text{uncracked}} = J_1 + J_2 + n(J_3 + J_4)$$

$$A_{\text{uncracked}} = A_1 + A_2 + n(A_3 + A_4)$$

3-STOREY STUCTURE: STIFFNESS

K fully cracked:

$$K_{\text{fully cracked}} = \left(\frac{1}{K_{flex}} + \frac{1}{K_{shear}}\right)^{-1}$$

$$K_{flex} = \frac{3E_c J_{\text{fully cracked}}}{h^3}$$

$$K_{shear} = \frac{G_c A_{\text{fully cracked}}}{\chi h}$$

$$K_{shear} = \frac{G_{c}A_{\text{fully cracked}}}{\chi h} \qquad J_{\text{fully cracked}} = \frac{2b_{//}x^{3}}{3} + \frac{b_{\perp}^{3}\left(h_{\perp} - 2b_{//}\right)}{12} + \\ + b_{\perp}\left(h_{\perp} - 2b_{//}\right) \cdot \left(x - \frac{b_{\perp}}{2}\right)^{2} + \frac{2nA_{s,//}h_{//}^{2}}{12} + \\ + 2nA_{s,//}\left(\frac{h_{//}}{2} - x\right)^{2} + n\left(A_{s,\perp} + A_{\text{catena}}\right)\left(h_{//} - \frac{b_{\perp}}{2} - x\right)^{2} + \\ + n\left(A_{s,\perp} + A_{\text{catena}}\right)\left(x - \frac{b_{\perp}}{2}\right)^{2}$$

 $A_{\text{fully cracked}} = b_{//} \cdot x + 2nA_{s,//} + 2nA_{s,\perp} + 2nA_{catena}$

APPROACH A: GROSS SECTION

APPROACH A: UNCRACKED SECTION

$$M_{ext}(t)$$

$$M_{\rm int}(t)$$

APPROACH A: UNCRACKED SECTION

-1.2

-1.2 -0.9 -0.6

0.3

M۵ [kN m]

1.2

x 10⁴

FULLY CRACKED SECTION APPROACH A:

APPROACH A: MODIFIED Ec GROSS SECTION

APPROACH A: MODIFIED Ec UNCRACKED

SECTION

APPROACH A: MODIFIED Es CRACKED SECTION

APPROACH B

SIGMA-STRAIN CH. 59

HP) gross section time window = $22.5 \text{ s} \div 23.0 \text{ s}$

 $= 82000 \text{ kg/cm}^2$

SIGMA-STRAIN CH. 59

HP) gross section time window = $35.0 \text{ s} \div 37.0 \text{ s}$

PRELIMINARY CONCLUSIONS

- Solution adopted for brace the structure for the lifting and transport phase is correct.
- The wall polystyrene-concrete system works correctly under seismic loads
- The 3d building in more rigid and strong than the predicted by the models (analytical and numerical) calibrated with the results of cyclic tests.

Acknowledgment: The authors acknowledge the financial support received from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 227887 for the SERIES Project