



# Shaking Table Tests on Deficient RC Frames Strengthened with FRPs and Pos-Tensioned Metal Straps

#### Dr Iman Hajirasouliha

Lecturer, Department of Civil Engineering, The University of Nottingham, UK

**Lead User: Professor Kypros Pilakoutas** 

Department of Civil & Structural Engineering, The University of Sheffield, UK

Main Partners: Istanbul Technical University, Technical University "Gheorghe Asachi" of Iasi, University of East London, University of Girona, The University of Nevada, Cyprus University of Technology



#### **Outline**



- Introduction
- Strengthening Using FRPs
- Strengthening Using PTMS
- Efficiency of PTMS technique
- BANDIT Project





#### Introduction



#### Severe damage and extensive mortality





In the past 10 years loss of human life due to earthquakes was around 73,000/per year



#### Introduction



#### Date Location Magnitude **Fatalities** 9.0 March 11, 2011 28,050 Japan Feb 22, 2011 6.3 **New Zealand** 65 Feb 27, 2010 Chile 8.8 723 Jan 12, 2010 Haiti 7.0 230,000 May 12, 2008 Eastern Sichuan, China 7.9 87652 6.3 May 26, 2006 Java, Indonesia 5,749 Oct 8, 2005 **Pakistan** 7.6 > 86,000 Dec 26, 2004 Sumatra, Indonesia 9.3 283,106 Dec 26, 2003 Bam, Iran 6.6 31,000 May 21, 2003 Boumerdes, Algeria 6.8 2,266 Jan 26, 2001 India 7.9 > 13,000

#### **Recent Major Earthquakes**



Bam- 2003 Earthquake





#### **Strengthening Using FRP Composites**













**Design according to old practice** 





#### Damage in the joints









#### **Strengthening Programme**









#### **Analytical Model in Drain 3dx**



Group 1: Column 1

Group 2: Column 2

Group 3: Beam

**Group 4 : Column Joint 1** 

Group 5: Column Joint 2

Connection Hinge







#### **Analytical Model in Drain 3dx**







#### **Nonlinear Dynamic Analysis**





Iman Hajirasouliha





#### **Evaluation of FRP Strengthening**



Six Design Earthquakes (Soil type C)





#### **Evaluation of FRP Strengthening**



$$DI = 100 \cdot \left(\frac{T_{sec} - T_{initial}}{T_{100} - T_{initial}}\right)$$

rtoor displacement

**Global Damage Index (DI)** 





#### **Evaluation of FRP Strengthening**



**Global Damage Index (DI)** 





#### **Post Tension Metal Straps (PTMS)**



Strapping device used in the packaging industry



Axial Compressive Tests (Moghaddam et. al.)





#### **Efficiency of the PTMS technique**



Enhancement of strength

Improving of stress-strain characteristics

Enhancement of energy dissipation and hence, member ductility







Strengthening of RC elements



**PTMS** for strengthening of Columns

**PTMS for strengthening of Beams** 





#### **Efficient and simple!**







#### **Strengthening of Connections**







#### **Strengthening of Connections**







#### **Efficiency for connections**







| Confinement model          | Confined concrete strength                                                                                                                                                                                                                                                                                                                          | Strain at peak stress                                                                                                                                                                                                                          |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Richart et al. [1]         | $f'_{\rm cc} = f'_{\rm co}[1 + 4.1f_{\rm le}]$                                                                                                                                                                                                                                                                                                      | $\varepsilon_{\rm cc} = \varepsilon_{\rm co} \left( 1 + 20.5 \frac{f_{\rm i}}{f_{\rm co}'} \right)$                                                                                                                                            |
| [21]                       | $f'_{\rm cc} = f'_{\rm co} \left[ 1 + 3.7 \left( \frac{f_{\rm le}}{f'_{\rm co}} \right)^{0.86} \right]$                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |
| Sheikh and Uzumeri [8]     | $f_{\rm cc}' = k \cdot f_{\rm co}'; \ k = 1.0 + \frac{b_{\rm c}^2}{140P_{\rm acc}} \left[ \left( 1 - \frac{ns_1^2}{5.5b_{\rm c}^2} \right) \left( 1 - \frac{s}{2b_{\rm c}} \right)^2 \right] \sqrt{\rho_{\rm s} f_{\rm sh}}$                                                                                                                        | $\varepsilon_{\rm cc} = 80 \text{K} f_{\rm c}' \times 10^{-6}$                                                                                                                                                                                 |
| Park et al. [22]           | $f_{ m cc}' = f_{ m co}' \left(1 + 2 rac{f_{ m l}}{f_{ m c}'} ight)$                                                                                                                                                                                                                                                                               | $ \varepsilon_{\rm cc} = \varepsilon_{\rm co} \left( 1 + 2 \frac{f_{\rm i}}{f_{\rm c}'} \right) $                                                                                                                                              |
| Ahmad and Shah [11]        | $f'_{cc} = f'_{co} \left[ 1 + 4.2556 \left( \frac{f_1}{f'_{co}} \right) \right]  \text{if } \frac{f_1}{f'_{co}} < 0.68$ $f'_{cc} = f'_{co} \left[ 1.7757 + 3.1171 \left( \frac{f_1}{f'_{co}} \right) \right]  \text{if } \frac{f_1}{f'_{co}} > 0.68$                                                                                                |                                                                                                                                                                                                                                                |
| Fafitis and Shah [23]      | $f'_{\rm cc} = f'_{\rm co} + \left(1.15 + \frac{3048}{f'_{\rm c}}\right) f_{\rm l}$                                                                                                                                                                                                                                                                 | $\varepsilon_{\rm cc} = 14.61 \times 10^{-7} f_{\rm co}' + 0.0296 \frac{f_{\rm co}}{f_{\rm co}'} + 0.00195$                                                                                                                                    |
| Saatcioglu and Razvi [10]  | $f'_{\rm cc} = f'_{\rm co} + 6.7(f_{\rm le})^{0.83}$                                                                                                                                                                                                                                                                                                | $ \varepsilon_{\rm cc} = \varepsilon_{\rm co} \left( 1 + 33.5 \left( \frac{f_{\rm lc}}{f_{\rm co}'} \right)^{0.83} \right) $                                                                                                                   |
| Mander et al. [4]          | $f'_{cc} = f'_{co} \left[ 2.254 \sqrt{1 + 7.94 \frac{f_1}{f'_{co}}} - 2 \frac{f_1}{f'_{co}} - 1.254 \right]$                                                                                                                                                                                                                                        | $ \varepsilon_{\rm cc} = \varepsilon_{\rm co} \left[ 1 + R \left( \frac{f_{\rm cc}}{f_{\rm co}} - 1 \right) \right] $                                                                                                                          |
| Karabinis and Kiousis [24] | $f_{\rm cc}' = f_{\rm co}' + 4.269 f_{\rm l}^{0.587}$                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                |
| Hoshikuma et al. [25]      | $f'_{\rm cc} = f'_{\rm co} \left( 1 + 7.6 \frac{f_{\rm ley}}{f_{\rm co}} \right)$                                                                                                                                                                                                                                                                   | $arepsilon_{ m cc} = 0.002 + 0.066 rac{f_{ m le}}{f_{ m co}}$                                                                                                                                                                                 |
| Bousalem and Chikh [26]    | $f_{\rm cc}' = f_{\rm co}' \left( 1 + 0.8  \frac{f_{\rm ley}}{\sqrt{f_{\rm co}}} \right)$                                                                                                                                                                                                                                                           | $\varepsilon_{\rm cc} = \varepsilon_{\rm co} \left( 1 + 5.4  \frac{f_{\rm le}}{\sqrt{f_{\rm co}'}} \right)$                                                                                                                                    |
| Cusson and Paultre [12]    | $f_{\rm cc}' = f_{\rm co}' \left( 1 + 2.1 \left( \frac{f_{\rm lc}}{f_{\rm co}'} \right)^{0.7} \right)$                                                                                                                                                                                                                                              | $\varepsilon_{\rm cc} - \varepsilon_{\rm co} = 0.21 \left(\frac{f_{\rm le}}{f_{\rm co}}\right)^{1.7}$                                                                                                                                          |
| Attard and Setunge [27]    | $\frac{f_{cc}}{f_c} = \left(\frac{f_1}{f_c} + 1\right)^k;  k = 1.25\left(1 + 0.062\frac{f_{le}}{f_{co}}\right)(f_{co}) - 0.21$                                                                                                                                                                                                                      | $ \varepsilon_{\rm cc} = \varepsilon_{\rm co} \Big( 1 + (17 - 0.06 f_{\rm co}) \Big( \frac{f_{\rm le}}{f_{\rm co}} \Big) \Big) $                                                                                                               |
| CEB model code 90 [28]     | $\begin{split} f_{\mathrm{cc}}' &= f_{\mathrm{co}}' \left( 1 + 5 \left( \frac{f_{\mathrm{ley}}}{f_{\mathrm{co}}'} \right) \right) \alpha \omega_{\mathrm{w}} \leq 0.1 \\ f_{\mathrm{cc}}' &= f_{\mathrm{co}}' \left( 1.125 + 2.5 \left( \frac{f_{\mathrm{ley}}}{f_{\mathrm{co}}'} \right) \right)  \alpha \omega_{\mathrm{w}} \geq 0.1 \end{split}$ | $ \varepsilon_{\rm cc} = \varepsilon_{\rm co} \left( 1 + 5 \left( \frac{f_{\rm ley}}{f_{\rm co}'} \right) \right)^2  \varepsilon_{\rm cc} = \varepsilon_{\rm co} \left( 1.125 + 2.5 \left( \frac{f_{\rm ley}}{f_{\rm co}'} \right) \right)^2 $ |





#### **Aims and Objectives**

- Investigate the vulnerability of substandard RC structures and contribute towards the development of appropriate assessment techniques.
- Evaluate the efficiency of different strengthening configurations (predamage condition) using Post-tensioned Metal Strapping (PTMS) technique and develop cost efficient rehabilitation strategies (postdamage condition).
- Test the effect of different deficient anchorage arrangements on the seismic behaviour of low-strength RC beam-column joints.







A substandard RC frame is designed to suffer from low strength concrete and poor detailing in joints and columns







#### **Anchorage Details**







Table 1. Mix design for low-strength concrete according to ACI procedure

| Required average compressive strength at 28 days   | 15 MPa                 |
|----------------------------------------------------|------------------------|
| Slump required                                     | 75 to 100 mm           |
| Nominal maximum size of coarse aggregate           | 20 mm                  |
| Dry rodded mass of coarse aggregate                | 1600 kg/m <sup>3</sup> |
| Fineness modulus of fine aggregate                 | 2.6                    |
| Bulk specific gravity of coarse and fine aggregate | 2.6                    |
| W/C ratio                                          | 0.82                   |
| Mixing water quantity                              | 240 kg/m <sup>3</sup>  |
| Cement content                                     | 293 kg/m <sup>3</sup>  |
| Dry bulk volume of coarse aggregate                | 0.66                   |
| Coarse aggregate content                           | 1056 kg/m <sup>3</sup> |
| Unit weight of concrete                            | 2355 kg/m <sup>3</sup> |
| Fine aggregate content                             | 766 kg/m <sup>3</sup>  |
| Results                                            |                        |
| Cement                                             | 293 kg/m <sup>3</sup>  |
| Fine aggregate                                     | 766 kg/m <sup>3</sup>  |
| Coarse aggregate                                   | 1056 kg/m <sup>3</sup> |
| Added water                                        | 240 kg/m <sup>3</sup>  |

#### Low-strength concrete















Location of acceleration transducers (left) and displacement transducers (right)



## **Reinforcement Detailing**











## **Column Foot (Base Plate)**







## **Strain-Gage Installation**







#### **Concrete Batch**









## **Transferring the Specimen**









## **Specimen on the Shaking Table**













#### **Expected Results**

- Acquire a better understanding on the seismic behaviour of typical substandard RC structures.
- Develop cost efficient rehabilitation strategies for seismic strengthening of poor quality beam-column joints using PTMS.
- Develop design guidelines for assessment and seismic strengthening of substandard building structures.



## Acknowledgment



The authors would like to acknowledge the invaluable support from **SERIES** programme and especially **Professor M.N. Fardis**.

Especial thanks to our colleagues at *CEA seismic laboratory*, in Saclay (FR) and *Philippe MONGABURE* who is coordinating this project.

## Thank you for your attention

