

Seismic Rehabilitation of Concrete Buildings by Converting Frame Bays into RC Walls

Michael N. Fardis, Antonis Schetakis, Elias Strepelias

University of Patras, Greece

Strategies for seismic retrofit

Addition of new concrete walls

- ➤ Most effective for the reduction of deformation demands in the rest of the structure & avoidance of member strengthening.
- ➤ Often by filling bay of existing frame, encapsulating its beams & columns.

> "Collector elements" may need to be provided for the transfer of inertia forces from floors to the new wall.

Most serious problem of added walls: Foundation

(transfer of large M with low N, w/o large uplift & base rotation that may weaken the role of the wall)

Possible solutions:

- Large & heavy footing, encapsulating those of neighbouring vertical elements.
- Connection to other footings via strong & stiff tie-beams.
- Micropiles or tiedowns to the soil.

Uplift of footing of new walls should be modelled in nonlinear analysis

Example of building with 2 strong walls added in the transverse direction

Footings of strong walls to avoid uplift

X-section of new wall w/ detail of boundary element encapsulating the edge of an existing cross-wall.

Note large thickness of new wall

Desirable & most economic solution for the new wall

- ➤ The flange width of the new wall is equal to the minimum width of beams or columns in the existing frame
- ➤ Objective: fully monolithic behaviour of the new wall with the beams and the columns of the existing frame

Connection of new "web" to existing frame for monolithic behaviour

Dowels along the perimeter, at the wall centreline, transfer the web shear

1) Orthodox solution: Direct connection of web bars to frame via overlapping with starter bars anchored in the frame + dowels Dowel depth: 8 in frame or wall

2) Indirect connection of web bars to the frame – dowels double as anchorage Dowel depth: 8 in frame, length in wall = lapping of web bars (but max distance between spliced bars violated)

Design shear for dimensioning the dowels

- Calculate max moment of wall at the base, maxM_w
- 1. either from the "overturning" moment of its footing, $_0$ =0.5BN, the footing height and the wall "shear span" L_s =M/V \sim H $_w$ /2:

$$M_{wo} = _0/(1+h/L_s)$$

- 2. or from the moment capacity at the base, M_{Rwd}, for the new web reinforcement and the reinforcement of the 2 existing columns.
- ► If M_{wo} < M_{Rwd} max M_w = M_{wo} , no plastic hinge develops at the base. Design shear at the wall base: V_d =max M_w/L_s .
- ► If $M_{wo} > M_{Rwd}$ max $M_w = M_{Rwd}$, a plastic hinge forms at the base. The design shear at the base includes the shear magnification factor for higher modes (Keinzel): $V_d = [1+0.1(qS_e(T_c)/S_e(T_1))2]$ max M_w/L_s
 - S_e(T): elastic spectral value, T₁: building fundamental period,
 - T_c: T at upper limit of the spectrum constant-acceleration range,
 - q: calculated from yield & ultimate wall chord rotations: q ~ u/v.

Dimensioning of dowels in shear

- Shear resistance of one dowel (design value)
- 1. working as dowel only (solution 1)

$$F(s) \approx F_{0,\text{max}} \sqrt{1 - \frac{s}{s_{\text{max}}}} = 1.6A_s \sqrt{f_{cd}f_{yd}} \sqrt{1 - \frac{s}{s_{\text{max}}}}$$
 s: slippage, $s_{\text{max}} \sim 0.1d_b$

2. transferring the tension resistance of web bars (diameter d_{bw}) to the existing frame (solution 2) through tensile stress $_s=f_{yd}(d_{bw}/d_b)^2$

$$F_{\text{max}} = F_{0,\text{max}} \sqrt{1 - \left(\frac{\sigma_s}{f_{yd}}\right)^2} = F_{0,\text{max}} \sqrt{1 - \left(\frac{d_{bw}}{d_d}\right)^4}$$

➤ If slippage is large, the design shear resistance of the two existing columns is activated (and added to the total capacity of the dowels)

Nonlinear modelling of footing uplift

Nonlinear spring constitutive law

Application to prototype building of 4 frames, converting the central bay of exterior frames into walls (~SERFIN)

Nonlinear static analysis with fixed or uplifting footings

16

Nonlinear static analysis with fixed or uplifting footings (1.5x1.5x0.8m under columns, 1.5x4.0x0.8m under walls, w/ or w/o 0.25x0.6m tie-beam)

Green circle: "Damage :imitation" per EC8-3

Yellow circle: "Significant damage" per C8-3

Red circle: "Near Collapse" in bending per EC8-3

Purple square: "Near Collapse" in shear per EC8-3

Flexural damage index for Significant Damage - Nonlinear dynamic analysis, 0.25g - fixed footings (average over 14 records)

Flexural damage index for Significant Damage - Nonlinear dynamic analysis, uplifting footings w/ tie-beams (av/ge over 14 records, 0.25g)

Flexural damage index for Significant Damage - Nonlinear dynamic analysis, uplifting footings, no tie-beams (av/ge over 14 records, 0.25g)

Shear damage index for Significant Damage - Nonlinear dynamic analysis, fixed footings (av/ge over 14 records, 0.25g)

Shear damage index for Significant Damage - Nonlinear dynamic analysis, **uplifting** footings **w/ tie-beams** (av/ge over 14 records, 0.25g)

Shear damage index for Significant Damage, nonlinear dynamic analysis, uplifting footings, no tie-beams (av/ge over 14 records, 0.25g)

Conclusions from analysis with fixed or uplifting footings, with or w/o tie-beams

- ➤ Rocking of the foundation is beneficial for the walls, but increases the demand on columns, particularly at the base
- Damage index values are smaller at the base of the walls without tie-beams
- Columns: the maximum damage index values are at the base of the exterior columns in building with tie-beams or at the interior frames in building without tie-beams
- Uplifting does not have a major effect on beams.

Seismic assessment and retrofit of 2 real irregular buildings

2-storey building with inclined roofs

7-storey building with 2 set-backs

25

7-storey building

Shear & flexural damage index of vertical elements - as-built building for Significant Damage, nonlinear dynamic analysis (av/ge over 14 records 0.25g

Seismic retrofit of 7-storey building with new walls

SERIES workshop "Role of research infrastructures in seismic rehat

Foundation of new walls

30

Static eccentricity between C.M. and C.S.

- No improvement (the contrary).
- ➤ But, although as-built building is torsionally flexible (torsional mode T > 1st translational mode T), the retrofitted one is not!

Shear & flexural DI of **vertical elements** in retrofitted building for Significant Da<u>mage, nonlinear dynamic analysis</u> (**fixed** footings, av/ge over 14 records 0.25g)

Shear & flexural DI of **vertical elements** in retrofitted building, Significant Damage, nonlinear dynamic analysis (**uplifting** footings, av/ge over 14 records 0.25g)

Flexural DI in **beams** of retrofitted building for Significant Damage, nonlinear dynamic analysis (fixed v uplifting footings, av/ge over 14 records, 0.25g)

Conclusions from retrofitted 7-storey building with fixed or uplifting footings

Fixed footings

- ➤ New walls 2, 3, the elevator wall & some columns of the setbacks, don't meet the flexure limit at Significant Damage LS.
- New wall 1 fails in shear.
- More damage in beams compared to the as-built building.

Uplifting footings

- ➤ Although column DI-values increase, "Significant Damage" LS is met, except for few columns at the setbacks.
- ➤ Wall DI-values drop < 1.0, except for elevator shaft wall (DI=1.08)
- > Elevator wall & few columns of top floor ~fail to meet shear LS.
- > Flexural damage in beams increases significantly.

In both cases CFRPs are added to fix the local shortfalls

Cost of retrofitting 7-storey building for fixed footings

Cost of added walls:	Wall	Starter bars plus dowels	Dowels doubling as starter bars
	1	13600 €	9300 €
@ 90€/m³ concrete	2	12700 €	8400 €
@ 1€/kg steelepoxy grouting: @ 9€/ 20mm of	dowel 3	26200 €	19500 €
@ 7€/ 12mm	dowel Total	52500 €	37200 €

Cost of adding CFRPs: @ 40€/m² CFRP ply

Vertical element	Story	DI to be made <1.0	required v	provided CFRP	Cost €	
Column 156	7 th - base	1.18	0.08mm	1 ply 0.12mm	20	
Column 157	7 th - base	1.29	0.14mm	2 plies 0.24 mm	40	
Column 157	7 th - top	1.57	0.24mm	2 plies 0.24 mm	40	
Column 132	6 th - base	1.13	0.73mm	6 plies 0.72mm	260	
Elevator wall	1 st	1.40	1 ply, 150m	m strips / 125mm	1150	
Elevator wall	2 nd	1.16	1 ply, 100m	m strips / 200mm	370	
Total					1880	>

Cost of retrofitting 7-storey building for uplifting footings

Cost of added walls the same as for fixity

Cost of adding CFRPs, @ 40€/m² CFRP ply

Vertical element	Story	DI to be made <1.0	required v	provided CFRP	Cost €
Column 163	7 th – base	1.71	0.52mm	4 plies 0.48mm	100
Column 163	6 th – top	1.06	0.05mm	1 ply 0.12mm	30
Column 161	6 th – base	1.21	0.184mm	2 plies 0.24mm	50
Column 161	7 th – base	1.22	0.19mm	2 plies 0.24mm	50
Column 161	7 th – top	1.26	0.22mm	2 plies 0.24mm	50
Column 127	6 th – base	1.14	0.58mm	5 plies 0.60mm	200
Column 154	7 th – base	1.70	0.51mm	4 plies 0.48mm	200
Column 154	6 th – top	1.40	0.33mm	3 plies 0.36mm	80
Column 157	7 th – base	1.54	0.24mm	2 plies 0.24mm	40
Elevator wall	1 st	1.15	1 ply, 100m	nm strips / 200mm	500
Elevator wall	2 nd	1.10	1 ply, 100m	m strips / 300mm	250
Total					1550

2-storey building

1st-storey slab – C.M. and C.S.

Shear & flexural damage index in retrofitted building for Significant Damage, nonlinear dynamic analysis (fixed footings, av/ge over 14 records, 0.25g)

Conclusions from retrofitted 2-storey building with fixed or uplifting footings

- Flexural damage indices at column bases are reduced compared to as-built, but the "Significant Damage" Limit State still not met.
- Adding new walls does not prevent failure of the interior large wall.
- Flexural damage indices in beams increase compared to the as-built
- Retrofit with new walls at the perimeter is insufficient. Additional retrofit of other members w/ FRP jackets is necessary; it turns out to be very cost-effective.

Cost of retrofitting 2-storey building (considered with uplifting footings)

Cost of adde	ed walls:	Wall S	Starter bars plus dowe	els Dowels	doubling as start	er bars
	a wans.	1	6730 €		4550 €	
@ 90€/m³ conci	rete	2	2470 €		2230 €	
@ 1€/kg steel	3) 0 <i>6</i> / 2000 m day	3	1720 €		1640 €	
epoxy grouting @	⊉ 9€/ 20mm do\ ⊉ 7€/ 12mm dov	Δ	1230 €		1230 €	
<i>₩ /</i> €		Total	12150 €		9650 €	
Coot of odd	/ertical element	Story	DI to be made <1.0	required v	provided CFRP	Cost €
Cost of addi CFRPs:	Column 7	1 st - base	1.11	0.184mm	2 plies 0.24mm	60
@ 40€/m² CFRP p	Column 7	2 nd - base	e 1.23	0.364mm	3 plies 0.36mm	90
	Column 17	1 st - base	1.01	0.005mm	1 ply 0.12mm	25
	Column 11	1 st - base	1.04	0.02mm	1 ply 0.12mm	25
	Column 9	1 st - base	1.03	0.016mm	1 ply 0.12mm	25
	Column 39	1 st - base	1.04	0.02mm	1 ply 0.12mm	25
	central wall	1 st - base	1.49	1 ply, 100m	m strips / 125mm	2200
	central wall	2 nd - base	e 1.09	1 ply, 50mr	n strips / 250mm	400
	Total					2850

Thank you!