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1. Earthquakes and Devastating Effects

Adapazari EQ, 1999, M7.9 death
toll:45000

Haiti EQ, 2010, M7.0 death toll:316000

Courtesy of Ayhan Irfanoglu

Van EQ, 2011, M7.0 death toll:604

Courtesy of National Turk Courtesy of Abdurrahman Antakyali

Tohoku Japan EQ, 2011, M9.0 death toll:22000

Courtesy of Reuters



2. Reducing the Seismic Risk

Learning from Earthquakes: Damaged and undamaged structures

Understanding earthquakes and its effects on our built environment:
Analytically and Experimentally

Finding solutions and remediation

Testing the solutions
Analytically and Experimentally

Learning from Earthquakes: Damaged and undamaged structures

Understanding earthquakes and its effects on our built environment:
Analytically and Experimentally

Finding solutions and remediation

Testing the solutions
Analytically and Experimentally

 Large-Scale Earthquake Engineering Testing Facilities are efficient in
testing more real field problems and the solutions for mitigation



3. Earthquake Engineering Measurement Facility at
Northeastern University, Boston MA

1-D Shaking Table (MTS)

 1.5 x 2.0 m

 0-50 Hz

 25 kN load capacity
 ± 12.7 cm lateral displacement
capacity
NI-DAQ data acquisition card
LAbVIEW data processing
software

 1.5 x 2.0 m

 0-50 Hz

 25 kN load capacity
 ± 12.7 cm lateral displacement
capacity
NI-DAQ data acquisition card
LAbVIEW data processing
software



3. Earthquake Engineering Measurement Facility at
Northeastern University, Boston MA

Crossbow Accelerometers
(1g, 2g, 4g)

Linear Variable Displacement
Transducer (LVDT) P and S wave

measurement equipment

Compression
Fitting with

Septum

Pore Pressure
Transducer

PDCR 81 Miniature Pore Pressure Transducer Bender Elements and Bender Disks
for S and P Wave Measurements



Cyclic Simple Shear Liquefaction Box (CSLLB)

3. Earthquake Engineering Measurement Facility Cont’d

Size: 19x30x45 cm



Fixed to an outsider beam

2 rotating (RW) and 2 fixed
walls (FW)

Flexible sealant btw the RW,
FW and the bottom plate

 up to 1% strains

Cyclic Simple Shear Liquefaction Box (CSLLB)

3. Earthquake Engineering Measurement Facility Cont’d

Fixed to an outsider beam

2 rotating (RW) and 2 fixed
walls (FW)

Flexible sealant btw the RW,
FW and the bottom plate

 up to 1% strains



Elevation Model
Shear Strains @A-A, B-B, C-C Soil Sections
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3. Earthquake Engineering Measurement Facility Cont’d

Cyclic Simple Shear
Liquefaction Box (CSLLB)
Modal analysis

Elevation Model
Shear Strains @A-A, B-B, C-C Soil Sections

( Free Surface )

0

5

10

15

20

25

30

35

40

45

50
0.0% 1.0% 2.0% 3.0%

Shear Strains

D
is

ta
nc

e 
fr

om
 th

e 
or

ig
in

 in
 y

-d
ir

ec
tio

n,
 c

m

B-B (G-c-E-F)
A-A (G-c-E-F)
C-C (G-c-E-F)

Displacement Vectors

Elevation Model

B A

AB

C

C

mailto:@A-A
mailto:@A-A


4.Projects Conducted using the EQ Eng. Experimental
Facility

1. Induced Partial Saturation (IPS) for Liquefaction Mitigation
(NSF Award #: CMS-0509894)

2. Foundation Isolation for Seismic Protection Using a Smooth
Synthetic Liner (NSF granted)

3. Soil Isolation for Seismic Protection Using a Smooth Synthetic
Liner (NSF granted)

4. Evaluation of a Mechanical Isolator for Protecting Four MFA
Sculptures Against Earthquakes in Nagoya , Japan

1. Induced Partial Saturation (IPS) for Liquefaction Mitigation
(NSF Award #: CMS-0509894)

2. Foundation Isolation for Seismic Protection Using a Smooth
Synthetic Liner (NSF granted)

3. Soil Isolation for Seismic Protection Using a Smooth Synthetic
Liner (NSF granted)

4. Evaluation of a Mechanical Isolator for Protecting Four MFA
Sculptures Against Earthquakes in Nagoya , Japan



4.Projects

Liquefaction induced bearing capacity
failure of a building after Adapazari EQ,

1999

Problem
1-Induced Partial Saturation (IPS) for Liquefaction Mitigation

'f = '0 - u = 0

ru= u/ '0
'f = '0 (1 - ru) = 0

1 - ru=0

ru = u/ '0 = 1

'f uf = u0+ ∆u

Building Response in
Air-Entrapped Sand

Building Response in Fully
Saturated Sand

Fully Saturated Sand Air-Entrapped Sand

Fully Saturated

Air-Entrapped

Liquefaction induced bearing capacity
failure of a building after Adapazari EQ,

1999 Research Goal

'f uf = u0+ ∆u



 IPS Techniques Implemented in the Laboratory

 Controllable Degree of Saturation

 Uniform Distribution of Gas Bubbles
2(NaBO3.H2O) + 2H2O             2H2O2 + 2BO3

-3 + 2Na+ + 4H+

2H2O2 2H2O + O2

Sodium Perborate
monohydrate

Hydrogen Peroxide

4.Projects
1-Induced Partial Saturation (IPS) for Liquefaction Mitigation

+

S = 40-90% Average Particle Size: 0.3-0.4 mm

Average Bubble Size: 0.18 mm

5 mm

In Water



P and S wave measurement
equipment

Integrated Experimental Setup for Evaluation of Cyclic Response of Fully and
Partially Saturated  Sands

4.Projects
1-Induced Partial Saturation (IPS) for Liquefaction Mitigation

Compression
Fitting with

Septum

Pore Pressure
Transducer

PDCR 81 Pore Pressure Transducer

Linear Variable Displacement
Transducer (LVDT)

Cyclic Simple Shear Liquefaction Box
(CSSLB)

Shaking Table

Bender Elements and Bender Disks
for S and P Wave Measurements



 rumax is reduced as S decreases
 Nmax gets larger as S decreases

 Excess Pore Water Pressures in Partially Saturated Sands

 Cyclic Simple Shear Strains with amplitudes
γ=0.01-0.3% applied on specimens with

 Dr=20-65%
 S=100-45%

4.Projects
1-Induced Partial Saturation (IPS) for Liquefaction Mitigation
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rumax Model
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4.Projects
2-Foundation Isolation for Seismic Protection Using a Smooth

GeoSynthetic Liner

Geosynthetic
Foundation Isolator

SOIL

ROCK

Geosynthetic
Foundation Isolator

SOIL

 An alternative low- cost seismic protection solution
 Within several synthetic materials tested, “geotextile/UHMWPE” found to be the most
efficient due to:

low friction coefficient (0.11) with slightly higher static friction coefficient than
dynamic friction coefficient (0.06-0.08) .
Independent of the sliding velocity, little effect of normal stress at low values (40-
100 kPA), number of cycles or sliding distance.



4.Projects
2-Foundation Isolation for Seismic Protection Using a Smooth

GeoSynthetic Liner

 A single story model tested under 3 records of 1989 Loma Prieta Earthquake
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2-Foundation Isolation for Seismic Protection Using a Smooth
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Transmitted accelerations stayed more or less around 0.1 g
The peak drift of the foundation isolated model is much smaller than the non-isolated
and remains almost constant

Peak Table Acceleration, g



Figure 1  Soil isolation for seismic protection using smooth
synthetic liner.

smooth synthetic liner

(a) Soil Isolation for buildings

(b) Soil Isolation for reclaimed  land

hydraulic fill

smooth synthetic liners

4.Projects
3-Soil Isolation for Seismic Protection Using a Smooth GeoSynthetic Liner

Figure 1  Soil isolation for seismic protection using smooth
synthetic liner.

smooth synthetic liner

(a) Soil Isolation for buildings

(b) Soil Isolation for reclaimed  land

hydraulic fill

smooth synthetic liners

 the liner is placed within the soil profile to absorb seismic energy before it arrives at the
ground
horizontal earthquake energy is dissipated through slip deformations along the liner



4.Projects
3-Soil Isolation for Seismic Protection Using a Smooth GeoSynthetic Liner

Both cylindirical and tub-shaped liners were tested and tub-shaped liner was found to be
more effective.

179 cm x 46 cm x 46 cm
Plexiglas tank



4.Projects
3-Soil Isolation for Seismic Protection Using a Smooth GeoSynthetic Liner
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Figure 12  Acceleration responses of tub-shaped isolated soil subjected to the Santa Cruz record scaled to 0.8g.
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Both harmonic and earthquake excitations were applied.
Under Santa Cruz record scaled up to 0.8g, when the peak acceleration of the table was
greater than 0.2g, the peak transmitted accelerations in the central region of the sand
were much smaller than the peak table accelerations



4.Projects
3-Soil Isolation for Seismic Protection Using a Smooth GeoSynthetic Liner

Significant reductions in spectral accelerations
Side effects diminished in spectral accelerations



4.Projects
3-Soil Isolation for Seismic Protection Using a Smooth GeoSynthetic Liner

Experimental results are very important to first understand the physical behaviors
however have constrains in terms of side effects or the size of the models
Analytical studies should confirm the field scale applications
Effect of H/D on transmitted accelerations determined analytically



4.Projects
4-Evaluation of a Mechanical Isolator for Protecting Four MFA Sculptures

Against Earthquakes in Nagoya , Japan
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4.Projects
4-Evaluation of a Mechanical Isolator for Protecting Four MFA Sculptures

Against Earthquakes in Nagoya , Japan
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4.Projects
4-Evaluation of a Mechanical Isolator for Protecting Four MFA Sculptures

Against Earthquakes in Nagoya , Japan

Equivalent
Sculpture

Weight

Shaking TableMechanical Isolator, MI



4.Projects
4-Evaluation of a Mechanical Isolator for Protecting Four MFA Sculptures

Against Earthquakes in Nagoya , Japan



5. Public Outreach and Educational Use of the Facility
To raise awareness and interest of Women, Minorities, Middle and High School Students
in Engineering and Earthquakes



5. Public Outreach and Educational Use of the Facility
NSF Young Scholar Program :  High school students spend 6 weeks in summer in research



5. Public Outreach and Educational Use of the Facility
In Earthquake Engineering Lectures



6. Conclusion

Earthquake Engineering Experimental Facility is essential in seismic rehabilitation since
it can

 provide high quality data that can advance fundamental knowledge of the behavior
of geotechnical and structural elements,

 validate analytical models
 help explore development of innovative, cost-effective seismic mitigation

technologies
 encourages educational and outreach activities and awareness of earthquake risk
 demonstrate the important role engineers play in seismic mitigation

Earthquake Engineering Experimental Facility is essential in seismic rehabilitation since
it can

 provide high quality data that can advance fundamental knowledge of the behavior
of geotechnical and structural elements,

 validate analytical models
 help explore development of innovative, cost-effective seismic mitigation

technologies
 encourages educational and outreach activities and awareness of earthquake risk
 demonstrate the important role engineers play in seismic mitigation
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6.Detection and Long-Term Sustainability of Entrapped
Air/Gas

 Tests performed under hydrostatic, vertical and horizontal hydraulic gradient flow.
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 Air bubbles stayed entrapped
even during long-term high
gradient flow tests.
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Motor
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Construction of
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from Mitsu Okamura, 2005
Soil Improved with Soil Compaction Pile (SCP) Technique

 Tested samples taken from SCP treated sites, after
4 yrs, 8yrs and 26 yrs.

 Evaluated degree of saturation.

 Air entrapped in the voids of granular soils
for a long time.

Evidence on long-term sustainability of air from
Mitsu Okamura's study :

6. Long-Term Sustainability of Entrapped Air/Gas
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 Tested samples taken from SCP treated sites, after
4 yrs, 8yrs and 26 yrs.

 Evaluated degree of saturation.

 Air entrapped in the voids of granular soils
for a long time.


