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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Bilal Tanatar

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

iii



ABSTRACT

MONODROMY GROUPS OF REAL ENRIQUES
SURFACES

Sultan Erdoğan Demir

P.h.D. in Mathematics

Supervisor: Assoc. Prof. Dr. Alexander Degtyarev

September, 2012

In this thesis, we compute the monodromy groups of real Enriques surfaces.

The principal tools are the deformation classification of such surfaces and a mod-

ified version of Donaldson’s trick, relating real Enriques surfaces and real rational

surfaces.

Keywords: real Enriques surface, deformation, monodromy group.
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ÖZET

GERÇEL ENRIQUES YÜZEYLERİNİN MONODROMİ
GRUPLARI

Sultan Erdoğan Demir

Matematik, Doktora

Tez Yöneticisi: Doç. Dr. Alexander Degtyarev

Eylül, 2012

Bu tezde gerçel Enriques yüzeylerinin monodromi gruplarını hesapladık. Kul-

lanılan temel araçlar, bu yüzeylerin deformasyon sınıflandırmaları ve gerçel En-

riques yüzeyleri ile gerçel rasyonel yüzeyleri ilişkilendiren Donaldson metodunun

modifiye versiyonudur.

Anahtar sözcükler : gerçel Enriques yüzeyi, deformasyon, monodromi grubu.
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Chapter 1

Introduction

Federigo Enriques, one of the founders of the theory of algebraic surfaces, con-

structed some Enriques surfaces to give first examples of irrational algebraic sur-

faces on which there are no regular differential forms. Enriques surfaces are

important in the theory of surfaces, both algebraic and analytic. They form

one of the four classes of Kodaira dimension 0. From the algebraic point of

view, Enriques surfaces are irrational and have no holomorphic differential forms.

From the topological point of view, they are the simplest examples of smooth 4-

manifolds which have even intersection form and whose signature is not divisible

by 16.

An Enriques surface is a complex analytic surface with fundamental group Z2

and having a K3-surface as its universal cover. The orbit space of any fixed point

free holomorphic involution on a K3-surface is an Enriques surface. An Enriques

surface is called real if it is supplied with an anti-holomorphic involution, called

complex conjugation. The real part of a real Enriques surface E is the fixed point

set of its complex conjugation, and is denoted by ER.

The complex Enriques surfaces form a single deformation family. They are all

diffeomorphic to each other. Nikulin started the topological study of real Enriques

surfaces [19]. Degtyarev and Kharlamov completed the topological classification

of the real parts [5]. They also gave a more refined classification of the so called
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half decomposition. ER splits naturally into disjoint union of two halves, denoted

by ER = E
(1)
R t E

(2)
R . The half decomposition is a deformation invariant of the

surface. Both of the classifications are finite.

Finally, the classification of real Enriques surfaces up to deformation was given

by Degtyarev, Itenberg and Kharlamov in [3] where one can find a complete list

of deformation classes, the invariants necessary to distinguish them, and detailed

explanations of the invariants. They proved that the deformation class of a

real Enriques surface is determined by the topology of its complex conjugation

involution.

Deformation classification can be regarded as the study of the set of con-

nected components, (i.e., π0) of the moduli space. In this thesis, we attempt

to understand its fundamental group (i.e., π1). More precisely, for each con-

nected component of the moduli space, we study the canonical representation of

its fundamental group in G, where G is the group of permutations of the com-

ponents of the real part of the surfaces in that component of the moduli space.

In other words, we discuss the monodromy groups of real Enriques surfaces, i.e.,

the subgroups of G realized by ‘auto-deformations’ and/or automorphisms of the

surfaces.

The similar question for various families of K3-surfaces has been extensively

covered in the literature. The monodromy groups have been studied for nonsin-

gular plane sextics by Itenberg [13] and for nonsingular surfaces of degree four in

RP3 by Kharlamov [14]-[16] and Moriceau [18].

A real Enriques surface is said to be of hyperbolic, parabolic, or elliptic type

if the minimal Euler characteristic of the components of ER is negative, zero, or

positive, respectively. In the deformation classification, hyperbolic and parabolic

cases are treated geometrically (based on Donaldson’s trick [11]) whereas the ellip-

tic cases are treated arithmetically (calculations using the global Torelli theorem

for K3-surfaces cf. [1]). There also is a crucial difference between the approaches

to surfaces of hyperbolic and parabolic types. In the former case, natural com-

plex models of the so called complex DPN -pairs are constructed, and a real

structure descends to the model by naturality. In the latter case, it is difficult
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to study complex DPN -pairs systematically and real models of real DPN -pairs

are constructed from the very beginning. We study the surfaces of hyperbolic

and parabolic types in this work. Thus, we deal with an equivariant version of

Donaldson’s trick for Enriques surfaces modified by Degtyarev and Kharlamov

[7], which transforms a real Enriques surface to a real rational surface with a

nonsingular real anti-bicanonical curve on it.

We analyze this construction and adopt it to the study of the monodromy

groups. In particular, we discuss the conditions necessary for an additional auto-

morphism of the real rational surface to define an automorphism of the resulting

real Enriques surface. The principal result of this thesis can be roughly stated

as follows (for the exact statements see Theorems 5.2.1, 5.2.2, 5.2.3, 5.2.4 and

5.2.5 ): For any real Enriques surface of hyperbolic type and for the real Enriques

surfaces of parabolic type with E
(1)
R = S1 or 2V2, with some exceptions listed ex-

plicitly in each statement, any permutation of homeomorphic components of each

half of ER can be realized by deformations and/or automorphisms. The part of

this work concerning the real Enriques surfaces of hyperbolic type is published

in [9].

The exceptions deserve a separate discussion. In most cases, the nonrealiz-

able permutations are prohibited by a purely topological invariant, the so-called

Pontrjagin-Viro form (see [2] and remarks following the relevant statements).

There are, however, a few surfaces, those with E
(1)
R = V3 t ..., for which the

Pontrjagin-Viro form is not well defined but the spherical components of E
(1)
R

cannot be permuted. The question whether these permutations are realizable

by equivariant auto-homeomorphisms of the surface remains open. Calculation

of monodromy groups for the remaining parabolic cases and elliptic cases is a

subject of future study as it seems to require completely different means.

Organization of the thesis is as follows: In Chapter 2, we remind some proper-

ties of real Enriques surfaces. In Chapter 3, we recall some real rational surfaces,

real curves on them, and a few results related to their classification up to rigid

isotopy. In Chapter 4, we describe (modified) Donaldson’s trick and the result-

ing correspondence theorem, the construction backwards, and recall some results
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concerning specific families of real Enriques surfaces. In Chapter 5, a few nec-

essary conditions for lifting automorphisms are discussed and the main result is

stated and proved in five theorems.
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Chapter 2

Real Enriques Surfaces

2.1 Notation and Conventions

By a variety , we mean a compact complex analytic manifold. Unless stated

otherwise, by a surface we mean a variety of complex dimension 2.

Throughout the text, we identify the 2-homology and 2-cohomology groups

of a closed smooth 4-manifold X via Poincaré duality isomorphism. Recall that

both H2(X)/Tors and H2(X)/Tors are unimodular lattices, the pairing being

induced by the intersection index.

Let X be a topological space. We denote Z-Betti number of X by bi(X) =

rkHi(X) and Z2-Betti number of X by βi(X) = dimHi(X;Z2). The corre-

sponding total Betti numbers are denoted by b∗(X) = Σi>0 bi(X) and β∗(X) =

Σi>0 βi(X).

By a real variety (a real surface, a real curve) we mean a pair (X, conj), where

X is a complex variety and conj : X → X an anti-holomorphic involution, called

the complex conjugation or the real structure. The real part of X is Fix conj, the

fixed point set of conj, and is denoted by XR.

A real curve C with the real structure conj : C → C is said to be of type I, if
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C/ conj is orientable; otherwise it is of type II.

For any real variety X, one has the following Smith inequality :

β∗(XR) 6 β∗(X), and β∗(XR) = β∗(X) (mod 2).

It follows that β∗(XR) = β∗(X) − 2d for some nonnegative integer d. In this

case X is called an (M−d)-variety. If X is a complex surface with a real structure,

it is called an (M − d)-surface.

To describe the topological type of a closed (topological) 2-manifold M we

use the notation M1 tM2 t . . ., where M1,M2, . . . are the connected components

of M , each component being either S = S2, or Sg = ]g(S
1 × S1), or Vp = ]pRP2.

(p and g are positive integers.)

2.2 Real Enriques Surfaces

Definition 2.2.1. An analytic surface X is called a K3-surface if π1(X) = 0 and

c1(X) = 0.

Definition 2.2.2. An analytic surface E is called an Enriques surface if π1(E) =

Z2 and the universal covering X of E is a K3-surface.

Note that the classical definition of an Enriques surface is the requirement that

c1(E) 6= 0 and 2c1(E) = 0, and the relation to K3-surfaces above follows from

the standard classification. Note also that all Enriques surfaces are algebraic.

In order to picture an Enriques surface see the following example:

Example 2.2.1 (See [3]). Let s : P1 → P1 be a holomorphic involution and

C ⊂ P1 × P1 be a nonsingular curve of bidegree (4, 4) such that (s× s)(C) = C.

Let X be the double covering of P1 × P1 branched over C. In this setting, X is

a K3-surface. If the fixed point set Fix s× s does not intersect the curve C then

s × s lifts to a fixed point free holomorphic involution t : X → X and the orbit

space X/t is an Enriques surface.
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All complex K3-surfaces form a single deformation family; they are all dif-

feomorphic to a degree 4 surface in P3. Similarly, all complex Enriques surfaces

form a single deformation family and are all diffeomorphic to each other.

Definition 2.2.3. A real Enriques surface is an Enriques surface E supplied with

an anti-holomorphic involution conj : E → E, called complex conjugation. The

fixed point set ER = Fix conj is called the real part of E.

A real Enriques surface E is a smooth 4-manifold, its real part ER is a closed

2-manifold with finitely many components.

Two real Enriques surfaces are said to have the same deformation type if they

can be included into a continuous one-parameter family of real Enriques surfaces,

or, equivalently, if they belong to the same connected component of the moduli

space of real Enriques surfaces . Contrary to the complex case, the moduli space

of real Enriques surfaces is not connected. There are more than 200 distinct

deformation types.

Fix a real Enriques surface E with real part ER and denote by p : X → E

its universal covering and by τ : X → X, the deck translation of p, called the

Enriques involution.

Theorem 2.2.1 (See [6]). There are exactly two liftings t(1), t(2) : X → X of conj

to X, which are both involutions. They are anti-holomorphic, commute with each

other and with τ , and their composition is τ . Both the real parts X
(i)
R = Fix t(i),

i = 1, 2, and their images E
(i)
R = p(X

(i)
R ) in E are disjoint, and E

(1)
R tE

(2)
R = ER.

Due to this theorem, ER canonically decomposes into two disjoint parts, called

halves. Both the halves E
(1)
R and E

(2)
R consist of whole components of ER, and

X
(i)
R is an unbranched double covering of E

(i)
R , i = 1, 2. This decomposition is a

deformation invariant of pair (E, conj). We use the notation ER = {half E
(1)
R } t

{half E
(2)
R } for the half decomposition.

The study of real Enriques surfaces is equivalent to the study of real K3-

surfaces equipped with a fixed point free holomorphic involution commuting with

the real structure.
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Recall that the topology of a real structure or, more generally, of a Klein

action (i.e., a finite group action on a complex analytic variety by both holomor-

phic and anti-holomorphic maps) is invariant under equivariant deformations. It

is proved that for real Enriques surfaces the converse also holds. The deforma-

tion type of a real Enriques surface E is determined by the topology of its real

structure [3]. Moreover, the latter is determined by the induced (Z2×Z2)-action

in the homology H2(X;Z) of the covering K3-surface.

A topological type of real surfaces is a class of surfaces with homeomorphic

real parts. To describe the topological types of the real part the notion of topo-

logical Morse simplification is used. A topological Morse simplification is a Morse

transformation of the topological type which decreases the total Betti number.

Therefore, a topological Morse simplification is either removing a spherical com-

ponent (S → ∅) or contracting a handle (Sg+1 → Sg or Vp+2 → Vp). The complex

deformation type of surfaces being fixed, a topological type is called extremal if

it cannot be obtained from another one (in the same complex deformation type)

by a topological Morse simplification.

A real Enriques surface E with the maximal total Z2-Betti number β∗(ER) =

16 is called an M−surface. A topological invariant, so called Pontrjagin-Viro

form, is well defined on real Enriques M -surfaces. It defines a decomposi-

tion of each half E
(i)
R into two quarters, called complex separation. Denote by

ER = {(Q(1)
1 )t (Q

(1)
2 )}t{(Q(2)

1 )t (Q
(2)
2 )}, the decomposition of the real part into

quarters. Details on Pontrjagin-Viro form can be found in [2].

A real Enriques surface E (or a half E
(i)
R ) is said to be of type I0 or Iu if

[ER] (respectively, [E
(i)
R ]) equals 0 or w2(E) (Stiefel-Whitney class) in H2(E;Z2),

respectively; otherwise it is said to be of type II.
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Chapter 3

Some Surfaces and Curves

In the proof of our results we need certain natural (in fact, anti-canonical or anti-

bicanonical) models of some rational surfaces (resulting from Donaldson’s trick,

see Section 4.1). In this chapter, we recall the basic definitions and facts about

them, and give a brief description of their properties and related results; details

and further references can be found in [3].

3.1 DPN -pairs

Definition 3.1.1. A nonsingular algebraic surface admitting a nonempty non-

singular anti-bicanonical curve (i.e., curve in the class |−2K|, where K is the

canonical class), is called a DPN-surface.

Most DPN -surfaces are rational. Recall that a (−d)-curve is a nonsingular

rational curve with self intersection −d, where d is a positive integer.

Definition 3.1.2. A pair (Y,B), where Y is a DPN-surface and B ∈ |−2KY | is

a nonsingular curve, is called a DPN-pair . A DPN-pair (Y,B) is called unnodal

if Y is unnodal (does not contain a (−2)-curve), rational if Y is rational, and real

if both Y and B are real. The degree of a rational DPN-pair (Y,B) is the degree

of Y , i.e., K2.
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Theorem 3.1.1 (See [3]). If (Y,B) is a rational DPN-pair, the double covering

X of Y ramified along B is a K3-surface.

A DPN -surface contains finitely many (−4)-curves.

Definition 3.1.3. A rational DPN -surface Y of degree d that has r many (−4)-

curves is called a (g, r)-surface, where g = d+ r + 1.

Lemma 3.1.1 (See [3]). Let Y be a (g, r)-surface. Then g ≥ 1 and any nonsin-

gular curve B ∈ |−2KY | is one of the following topological types:

1. B ∼= Sg t rS if g > 1;

2. B ∼= S1 t rS or rS if g = 1 and r > 0;

3. B ∼= 2S1 or S1 if g = 1 and r = 0.

Definition 3.1.4. A real curve B ⊂ Y with BR = ∅ is said to be not linked with

YR if for any path γ : [0, 1]→ Y \ B with γ(0), γ(1) ∈ YR, the loop γ−1 · conjY γ

is Z/2-homologous to zero in Y \B.

Definition 3.1.5. Let Y be a real surface with H1(Y ) = 0. An admissible branch

curve on Y is a nonsingular real curve B ⊂ Y such that [B] = 0 in H2(Y ), the

real part BR is empty and B is not linked with YR. An admissible DPN-pair is a

real rational DPN-pair (Y,B) with B an admissible branch curve.

Donaldson’s trick (see Section 4.1) and inverse Donaldson’s trick (see Sec-

tion 4.2) give correspondence between the deformation classes of real Enriques

surfaces with distinguished nonempty half and the deformation classes of unnodal

admissible DPN -pairs.

3.2 Geometrically ruled rational surfaces

Definition 3.2.1. A geometrically ruled rational surface is a relatively minimal

conic bundle over P1.

We use the notation Σa, for the geometrically ruled rational surface that has

a section of square (−a), where a is a nonnegative integer. Such a section is

10



unique when a > 0, it is called the exceptional section and is denoted by E0.

All these surfaces, except Σ1, are minimal. Σ0 = P1 × P1 and Σ1 is the plane

P2 blown up at one point. The classes of the exceptional section E0 and of a

generic section is denoted by e0 and e∞, respectively, so that e20 = −a, e2∞ = a,

and e0 · e∞ = 0. The class of the fiber (generatrix) will be denoted by l; one has

l2 = 0 and l · e0 = l · e∞ = 1.

Any irreducible curve in Σa with a ≥ 1, either is E0 or belongs to |xl + ye∞|,
for some nonnegative integers x and y. If a = 0 then e0 = e∞. Thus, if l1 denotes

e0 = e∞ and l2 denotes l then any irreducible curve in Σ0 belongs to |xl1 + yl2|,
for some nonnegative integers x and y.

Up to isomorphism, there exist four real structures on Σ0 = P1 × P1: one

structure with (Σ0)R = S1 (standard), one structure with (Σ0)R = S, and two

structures with (Σ0)R = ∅ (which are c0 × c1 and c1 × c1, where c0 is the usual

complex conjugation on P1 with P1
R = S1 and c1 is the quaternionic real structure

with P1
R = ∅). On Σa with a ≥ 2 even, there exists two nonisomorphic real

structures: one structure with (Σa)R = S1 (standard) and one structure with

(Σa)R = ∅. There is only one isomorphism class of real structures on Σa with

a ≥ 2 odd, with respect to which (Σa)R = V2 (standard).

3.3 (2, r)-Surfaces

Let Y be a (2, r)-surface, r ≥ 1. Then from Lemma 3.1.1, any nonsingular anti-

bicanonical curve B is of the form B ∼= S2 t rS, r ≥ 1. The anti-bicanonical

system defines a degree 2 map ϕ : Y → P3 which takes Y onto a quadric cone in

P3. The map ϕ lifts to a degree 2 map ϕ̃ : Y → Σ2 whose branch locus is a curve

U ∈ |2e∞ + 2l|. The exceptional section E0 of Σ2 and U intersect as follows:

(1) two points of transversal intersection if r = 1;

(2) one point of simple tangency if r = 2;

(3) one singular point of type Ar−2 of U if r ≥ 3.
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The pull-back ϕ̃−1(E0) consists of the fixed components of |−2KY | and, pos-

sibly, several (−1)-curves. Figure 3.1 shows its Dynkin graph. The components

of the proper transform of E0 are Ẽ0.

(2r − 1 components)r = 1 :
Ẽ0

-4

Ẽ0 Ẽ0

r ≥ 2 :
-4 -1 -4 -4 -4-1

Figure 3.1: Dynkin graph of ϕ̃−1(E0)

Let Q = ϕ̃(B), where B is a nonsingular curve in |−2KY |. Then Q consists of

E0 and a generic section F ∈ |e∞|. The curve U +F has at most simple singular

points. If Y is unnodal, then U is transversal to F and singularities of U , if any,

are at its intersection with E0.

Conversely, if U ∈ |2e∞ + 2l| a curve and F ∈ |e∞| is a nonsingular section

such that U + F + E0 has at most simple singular points, then the DPN -double

(Y,B) (i.e., the resolution of singularities of the double covering of Σ2 branched

over U , where the rational components of B correspond to E0 and the irrational

component of B corresponds to F ) of (Σ2;U, F + E0) is a (2, r)-surface, r ≥ 1,

and the composition Y → Σ2 → P3 is the anti-bicanonical map.

Theorem 3.3.1 (See [3]). Let Y be a (2, r) surface described as above. If Y is

real then its model ϕ̃ : Y → Σ2 is real with respect to a standard real structure

on Σ2. If, in addition, Y contains a nonsingular real curve B ∈ |−2KY | with

BR = ∅ and r is odd, then the two branches of U intersecting E0 are conjugate

to each other.

The deformation classification of real (2, r)-surfaces is reduced to the rigid

isotopy classification of suitable pairs (see Section 3.6.5).

3.4 (3, 2)-Surfaces

In this section, we briefly consider two different models of (3, 2)-surfaces that we

use in the proof of main results. Details and further explanations can be found

in [3].
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3.4.1 Model (I)

Let (Y,B) be an unnodal real rational DPN -pair of degree 0 with B ∼= S3 t 2S

such that YR is connected. Suppose that BR = ∅ and the rational components

of B are real. Then Y blows down over R to Σ0 (with the real structure c0 × c1,
see Section 3.2). The image of B is the transversal union of smooth components

C ′, C ′′ and C ′′′, where C ′, C ′′ ∈ |l2| are two distinct real generatrices and C ′′′ ∈
|4l1 + 2l2|. Denote it by Q = C ′ + C ′′ + C ′′′.

3.4.2 Model (II)

Let (Y,B) be an unnodal real rational DPN -pair of degree 0 with B ∼= S3 t 2S

and BR = ∅. Let X be the covering K3-surface. Suppose that [B] = 0 in

H2(X). Then there is a regular degree 2 map φ : Y → Σ4 branched over a

nonsingular real curve U ∈ |2e∞|. The irrational component of B is mapped to

a real curve F ∈ |e∞| and each rational component is mapped isomorphically to

the exceptional section E0 of Σ4. The rational components of B are conjugate in

this model. B is an admissible branch curve if and only if UR is contained in a

connected component of (Σ4)R\((E0)R t FR).

3.5 DPN -pairs with B̃ ∼= 2S1 or B̃ ∼= S1trS, r > 0

Let (Ỹ , B̃) be a DPN -pair with B̃ ∼= 2S1 or B̃ ∼= S1 t rS, r > 0. Then |−K| or

the moving part of |−2K| is an elliptic pencil f̃ : Ỹ → P1 without multiple fibers

if B̃ ∼= 2S1 or B̃ ∼= S1 t rS, r > 0, respectively. The genus 1 components of B̃

are fibers of f̃ . If B̃ ∼= S1 t rS, r > 0, then the rational components of B̃ belong

to a single fiber of f̃ . Let f : Y → P1 be the associated relatively minimal pencil,

obtained by contracting all the (−1)-curves in the fibers of f̃ (simply called the

minimal pencil of Ỹ ). If B̃ ∼= 2S1 then the pencil f̃ is relatively minimal. Assume

that (Ỹ , B̃) is real. Then the pencils f̃ : Ỹ → P1 and f : Y → P1 are also real.

Let B denote the image of B̃ in Y . Then B is also a real anti-bicanonical curve.

13



The pencil f : Y → P1 is one of the following real fibrations:

(A) Y is the double covering of Σ0 with the standard real structure branched

over a nonsingular real curve U ∈ |2l1 + 4l2|. The real part UR consists of

four ovals and YR covers their interior. The fibers of f are mapped to the

generatrices in |l1|.

(B) Y is the minimal resolution of the double covering of Σ2 with the standard

real structure branched over the disjoint union of the exceptional section

E0 and a real curve C ∈ |3e∞| with at most simple singularities. The fibers

of f are mapped to the generatrices of Σ2.

(C) Y is the minimal resolution of the double covering of P2 branched over a

real quartic U with at most simple singularities. The fibers of f are mapped

to the lines through a fixed point O ∈ P2 \ U .

Y admits model (A) if and only if it is minimal over R. Model (B) exists

if and only if Y contains a real (−1)-curve. This (−1)-curve is mapped to the

exceptional section E0 of Σ2. Model (C) exists if and only if Y contains two

conjugate (−1)-curves. These (−1)-curves are mapped to the fixed point O.

There are elliptic pencils admitting both models (B) and (C). In that case model

(C) is used if and only if Y does not contain a real (−1)-curve.

In all the models Y is the minimal resolution of the double covering of a real

surface Z branched over a real curve U . Let P denote the image of B̃ in Z. The

minimal pencil f defines a ruling (rational pencil) on Z. The two distinguished

fibers of f containing B, denote by F ′ and G′, are mapped to the distinguished

fibers of the ruling of Z, denote by F and G. Then P = F +G.

Denote by c : Z → Z the real structure on Z. Consider the double covering

X → Ỹ branched over B̃ obtained as the fiberwise product of Ỹ → Z and the

double covering of Z branched over P . Since ZR 6= ∅, the real structure c on Z

lifts to two real structures on Y and four real structures in X. Denote the latter

by c±±. Then UR divides ZR into two parts, denoted by Z±U = Z±, with common

boundary UR. They are the images of the fixed point sets of the two lifts of c to Y .
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Similarly, PR divides ZR into two parts, denoted by Z±P , with common boundary

PR. Let Zεδ = ZεU ∩ ZδP for ε, δ = ±. Since ZR, U , and P are nonempty, c±±

are involutions on X. There is a natural one-to-one correspondence between c±±

and the regions Z±± so that Fix c±± projects onto Z±±. Denote by q the deck

translation of the covering X → Ỹ , and by p : X → X the lift of the deck

translation of the covering Y → Z such that Fix p projects onto U . Index c±±

so that c±δ = p ◦ c∓δ, cε± = q ◦ cε∓ for ε, δ = ±, and c++ is fixed point free.

Then Z++ = ∅, i.e., UR ⊂ Z−P and PR ⊂ Z−U , and the real structure on Ỹ is

the descend of c+−. Therefore, the projection Ỹ → Z establishes a one-to-one

correspondence between the components of ỸR and those of Z+ = Z+−.

3.6 Rigid Isotopies

A rigid homotopy of real algebraic curves on W is a path Qs of real curves on

W such that each member of the path consists of a fixed number of smooth

components and have at most type A singular points.

Theorem 3.6.1 (See [3]). Let Q1 and Q2 be two real anti-bicanonical curves on

a real rational surface W with at most simple singularities. If Q1 and Q2 can

be connected by a rigid homotopy equisingular in a neighborhood of WR, then the

DPN-resolutions of (W,Q1) and (W,Q2) (resolutions of singularities of Qi’s so

that the resulting pairs are DPN-pairs) are deformation equivalent in the class of

real DPN-pairs.

An isotopy is a homotopy from one embedding of a manifoldM into a manifold

N to another embedding such that, at every time, it is an embedding. An isotopy

in the class of nonsingular (or, more generally, equisingular, in some appropriate

sense) embeddings of analytic varieties is called rigid. We are mainly dealing with

rigid isotopies of nonsingular curves on rational surfaces. Clearly, such an isotopy

is merely a path on the space of nonsingular curves.

An obvious rigid isotopy invariant of a real curve C on a real surface Z is its

real scheme, i.e., the topological type of the pair (ZR, CR).
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The deformation classification of real Enriques surfaces and hence the mon-

odromy problem of those leads to a variety of auxiliary classification problems

for curves on surfaces and surfaces in projective spaces. Below we recall the basic

definitions and facts about them, and give a brief account of the related results.

Details and further references can be found, e.g., in [3].

3.6.1 Real Schemes

The real point set CR of a nonsingular curve C in P2
R is a collection of circles

A embedded in P2
R, two- or one-sidedly. In the former case the component is

called an oval. Any oval divides P2
R into two parts; the interior of the oval,

homeomorphic to a disk and the exterior of the oval, homeomorphic to the Möbius

band. The real point set of a nonsingular curve of even degree consists of ovals

only. The real point set of a nonsingular curve of odd degree contains exactly

one one-sided component. The relation to be in the interior of defines a partial

order on the set of ovals, and the collection A equipped with this partial order

determines the real scheme of C. The following notation is used to describe real

schemes: If a real scheme has a single component, it is denoted by 〈J〉, if the

component is one-sided, or by 〈1〉, if it is an oval. The empty real scheme is

denoted by 〈0〉. If 〈A〉 stands for a collection of ovals, the collection obtained

from it by adding a new oval surrounding all the old ones is denoted by 〈1〈A〉〉.
If a real scheme splits into two subschemes 〈A1〉, 〈A2〉 so that no oval of 〈A1〉
(respectively, 〈A2〉) surrounds an oval of 〈A2〉 (respectively, 〈A1〉), it is denoted

by 〈A1 t A2〉. If a real scheme contains n disjoint copies of 〈1〉 it is denoted by

〈n〉.

Theorem 3.6.2 (See [17]). A nonsingular real quartic C in P2 is determined up

to rigid isotopy by its real scheme. There are six rigid isotopy classes, with real

schemes 〈α〉, α = 0, ..., 4 and 〈1〈1〉〉. The M-quartic 〈4〉 and the nest 〈1〈1〉〉 are

of type I; the other quartics are of type II.

Lemma 3.6.1 (See [3]). Let C be a nonsingular real quartic with the real scheme

〈α〉, α = 2, 3, 4 in P2. Then any permutation of the ovals of C can be realized by

a rigid isotopy.
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3.6.2 Cubic sections on a quadratic cone

Let C ∈ |ne∞| be a nonsingular real curve in Z = Σ2 with its standard real

structure. Each connected component of CR is either an oval or homologous

to (E0)R. The latters, together with (E0)R, divide ZR into several connected

components Z1, ..., Zk. Fixing an orientation of the real part of a real generatrix

of Σ2 determines an order of the components Zi, and the real scheme of C can be

described via 〈 A1|...|Ak〉, where | stands for a component homologous to (E0)R

and Ai encodes the arrangement of the ovals in Zi (similar to the case of plane

curves), for each i ∈ {1, 2, ..., k}.

Theorem 3.6.3 (See [3]). A nonsingular real curve C ∈ |3e∞| on Σ2 is deter-

mined up to rigid isotopy by its real scheme. There are 11 rigid isotopy classes,

with real schemes 〈α|0〉, 1 ≤ α ≤ 4, 〈0|α〉, 1 ≤ α ≤ 4, 〈0|0〉, 〈1|1〉, and 〈|||〉.

By analyzing the proof of Theorem 3.6.3, one can easily see that the curves

with real schemes 〈α|0〉 and 〈0|α〉, 1 ≤ α ≤ 4, are isomorphic up to a real

automorphism of Σ2. Furthermore, a stronger statement holds.

Refinement 3.6.1 (of Theorem 3.6.3). Any two pairs (U ,O), where the real

scheme of U is 〈α|0〉 with 0 ≤ α ≤ 3 and O is a distinguished oval of U , are

rigidly isotopic. For an alternative proof of Theorem 3.6.3 and the last assertion,

one can use the theory of the trigonal curves, see [4].

3.6.3 Real root schemes

Let Z = Σk, k ≥ 0, with the standard real structure. Since we use Σ0, Σ2 and

Σ4 in this work we will consider only the cases when k is even. For k odd and

further details, see [3]. Consider a real curve U ∈ |2e∞ + pl|, p ≥ 0, and a

real curve Q = E0 ∪ F , where E0 is the exceptional section and F ∈ |e∞| is a

generic real section of Z. The complement ZR \ QR consists of two connected

orientable components. Fix one of them and let Z− denote its closure. Fix an

orientation of FR ⊂ ∂Z−. Assume that U does not contain any generatrix of Z,
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is transversal to F and UR lies entirely in Z−. Fix an auxiliary real generatrix

L of Z transversal to U ∪ E0. Consider a real coordinate system (x, y) in the

affine part Z \ (E0∪L) whose x-axis is F . Choose the positive direction of the y-

axis so that the upper half-plane lies in Z−. In these coordinates U has equation

a(x)y2+b(x)y+c(x) = 0, where a(x), b(x) and c(x) are real polynomials of degree

p, p+ k and p+ 2k, respectively. Let ∆(x) = b2(x)− 4a(x)c(x) and let µ(x) and

ν(x) denote the multiplicity of a point x ∈ F in a(x) and ∆(x), respectively.

Consider the sets

AR = {x ∈ FR | µ(x) ≥ 1}, A = {x ∈ F | µ(x) ≥ 1},

DR = {x ∈ FR | ∆(x) ≥ 0}, Dr = {x ∈ F | ν(x) ≥ r}, r ≥ 1, D = D2 ∪ DR.

The multiplicity functions µ and ν are invariant under complex conjugation.

Identify F with the base B ∼= P1 of the ruling of Z. Thus, BR receives an

orientation, A and D can be regarded as subsets of B, and, µ and ν are functions

defined on B.

The root marking of (U,Q) is the triple (B,D,A) equipped with the complex

conjugation in B, the orientation of BR, and the multiplicity functions µ and ν.

An isotopy of root markings is an equivariant isotopy of triples (B,D,A) followed

by a continuous change of the orientation of BR, µ, and ν restricted to D. A root

scheme is an equivalence class of root markings up to isotopy. The real root

marking of (U,Q) is the triple (BR,DR,AR) equipped with the orientation of BR,

and the multiplicity functions µ and ν. A real root scheme is an equivalence class

of real root markings up to isotopy.

Theorem 3.6.4 (See [3]). Let Z = Σ4 (with the standard real structure), let

U ∈ |2e∞| be a nonsingular real curve on Z, let F ∈ |e∞| be a generic real

section transversal to U , and let E0 be the exceptional section. If UR belongs to

the closure of one of the two components of ZR \ ((E0)R ∪ FR), then, up to rigid

isotopy and automorphism of Z, the pair (U, F ) is determined by its real root

scheme or, equivalently, by the real scheme of U . The latter consists either of

a = 0, ..., 4 ovals (i.e., components bounding disks) or of two components isotopic

to FR.
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Theorem 3.6.5 (See [3]). Let Z be Σ0 with the standard real structure. Then

up to rigid isotopy and automorphism of Z there is a unique nonsingular real

M-curve U ∈ |2l1 + 4l2| on Z.

Table 3.1: Real root schemes of some curves U ∈ |2e∞ + pl| on Σ2k

Real root scheme {E(1)
R } t {E

(2)
R }s s s s s s s s {(V4 t S) t (∅)} t {(2S) t (2S)}s s s s s s s s {(V3 t V1) t (∅)} t {(2S) t (2S)}s c s s s s s s s {(V3 t S) t (∅)} t {(V1 t S) t (2S)}c×2 s s s s s s {(V3 t S) t (V1)} t {(2S) t (S)}c×3 s s s s s {(V3 t S) t (S)} t {(V1 t S) t (S)}c×4 s s s s {(V3 t V1 t S) t (S)} t {(S) t (S)}

Comments: The first column indicates the real root schemes of pairs (U,F ) and the
second column indicates the quarter decomposition of the real part ER of the real
Enriques surfaces obtained from (Σ2k;U,E0 ∪ F ). For the first row p = 0 and k = 2
and for the others p = 2 and k = 1. In the schemes, s represents a real root of ∆ and c
represents a real root of a (necessary 2-fold), that corresponds to the real intersection
point of U and E0. The number over a c -vertex indicates the multiplicity of the
corresponding root in ∆ (when greater than 1). The segments s s correspond to
ovals of UR. Only extremal root schemes are listed; the others are obtained by removing
one or several segments s s .

3.6.4 Dividing curves

Let U, F, G be as in Section 3.6.3. Then U is a dividing curve if and only if one

of the followings holds:

(1) ∆ has no imaginary roots of odd multiplicity, or

(2) DR = BR, i.e., the projection UR → BR is generically two-to-one.

Suppose that U is a dividing curve. Denote by U+ and U−, the components of

U \UR, and by F+ and F−, the components of F \FR. Suppose also that U ◦F = 0

mod 4 (i.e., 2k + p = 0 mod 4). Then Card(U+ ∩ F+) - Card(U− ∩ F+) mod 4

is independent of the choice of U± and F±. Denote this number by P . In fact,

P ∈ 2Z/4Z.
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3.6.5 Suitable pairs

On Σ2: Let U ∈ |2e∞+2l| be a reduced (not containing any multiple component)

real curve on Σ2 with the standard real structure. Assume that U is nonsingular

outside of E0 and does not contain E0 as a component. Then U and E0 intersect

with multiplicity 2. The grade of U is said to be 1 if it intersects E0 transversally

at two points, 2 if it is tangent to E0 at one point, and r if it has a single singular

point of type Ar−2, r ≥ 3, on E0. A curve U as above is called suitable if either

its grade is even, or its grade is odd and the two branches of U at E0 are conjugate

to each other. A pair (U, F ) is called a suitable pair if U is a suitable curve and

F ∈ |e∞| is a nonsingular real section transversal to U such that UR belongs to

the closure of a single connected component of (Σ2)R \ ((E0)R ∪ FR). The grade

of a suitable pair (U, F ) is the grade of U . The condition that UR should belong

to the closure of a single connected component of (Σ2)R \ ((E0)R∪FR) guarantees

that the real DPN -double (Y,B) of (Σ2;U,E0 ∪ F ), where (U, F ) is a suitable

pair, corresponds to a real Enriques surface by inverse Donaldson’s trick (see

Section 4.2).

All the pairs (U, F ) satisfying the hypothesis of the following theorem are

suitable.

Theorem 3.6.6 (See [3]). Let Z = Σ2 (with the standard real structure), let

U ∈ |2e∞ + 2l| be a reduced real curve on Z, nonsingular outside the exceptional

section E0 and not containing E0 as a component, and let F ∈ |e∞| be a generic

real section transversal to U . If UR belongs to the closure of a single connected

component of ZR\((E0)R∪FR), then, up to rigid isotopy and automorphism of Z,

the pair (U, F ) is determined by its real root scheme or, equivalently, by the type

of the singular point of U (if any) and the topology of the pair (ZR, UR ∪ (E0)R).

In Table 3.1, we list the extremal real root schemes of some pairs (U, F )

mentioned in Theorem 3.6.4 and Theorem 3.6.6 that are used in the proof of the

main results. The complete lists can be found in [3].

Each real root marking gives rise to a connected family of pairs (U,Q) such

that there is a bijection between the ovals of each curve U and the segments of
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the real root marking. Recall that these curves are defined by explicit equations.

Refinement 3.6.2 (of Theorems 3.6.4, 3.6.5, and 3.6.6). Theorems 3.6.4, 3.6.5,

and 3.6.6 can be refined as follows:

(1) Each isotopy of real root markings is followed by a rigid isotopy of curves

that is consistent with the bijection between ovals and segments.

(2) Any symmetry of a real root marking (not necessarily preserving the ori-

entation of BR) is induced by an automorphism of Σ2k, k ≥ 0, preserving

appropriate pairs (U, F ) and consistent with the bijection between ovals and

segments.

On Σ0 or P2: Let Z be either P2, or Σ0 with the standard real structure. A

suitable pair on Z is a pair (U, P ) of signed real curves (see Section 3.5 for signing),

where P = F +G and

(A) U ∈ |2l1 + 4l2| is an M -curve and F, G ∈ |l1| are real lines, if Z = Σ0, or

(C) U ∈ |4l| and F, G ∈ |l| are real lines, if Z = P2

such that

(1) U is nonsingular;

(2) F and G are transversal to U ;

(3) U and P are signed so that Z++ = Z+U ∩ Z+P = ∅.

All M -curves on Σ0 are dividing, and the condition (3) above implies that UR

belongs to the closure of one of the two components of ZR \ (FR∪GR). Therefore

the suitable pairs on Σ0 satisfy the conditions of the following theorem.

Theorem 3.6.7 (See [3]). Let Z = Σ0 (with the standard real structure), U ∈
|2l1 + 4l2| a nonsingular real M-curve, and F,G ∈ |l1| two real generatrices so

that U is transversal to F and G and UR belongs to the closure of one of the two

components of ZR \ (FR ∪ GR). Then up to rigid isotopy and automorphism of

Z the triple (U ;F,G) is determined by its real root scheme, and by the value of

P = 0, 2.
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3.7 Ramified complex scheme

Let U ⊂ P2 be a real nonsingular curve with even degree and G a real line such

that GR belongs to the nonorientable part of P2
R \ UR. If U is of type I, one can

sign the ovals of UR as follows. Fix a complex orientation of GR and assign to an

oval O of UR the sign + if the complex orientations of O and GR induce opposite

orientations on the interior of O, and the sign − otherwise. The signs of ovals

depend on the orientation of GR and are defined up to simultaneous change. We

always make the choice of the orientation of GR in such a way that the number

of ovals marked with a + sign is not less than the number of ovals marked with

a − sign.

Let (U,G) be as above and assume that G has at most simple tangency points

with U . The ramified complex scheme of (U,G) is the real scheme of U equipped

with the following additional structures:

(1) each oval of U is marked with as many asterisks (∗) as it has tangency

points with G;

(2) if U is of type I, the ovals are marked with the signs ± defined above.

The suitable pairs on P2 satisfies the conditions of the following theorem.

Theorem 3.7.1 (See [3]). Let U be a nonsingular real quartic P2 and F, G a

pair of real lines transversal to U , and UR belongs to the closure of one of the two

components of PR \ (FR∪GR). Then the triple (U, F,G) is determined up to rigid

isotopy by the ramified complex scheme of (U,G).
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Chapter 4

Reduction to DPN -pairs

4.1 Donaldson’s trick

At present, we know the classification of real Enriques surfaces up to deformation

equivalence (which is the strongest equivalence relation from the topological point

of view). In the deformation classification, the equivariant version of Donaldson’s

trick is used. It employs the hyper-Kähler structure to change the complex struc-

ture of the covering K3-surface X so that t(1) is holomorphic, and t(2) and τ are

anti-holomorphic, where t(1), t(2) and τ are as in Theorem 2.2.1. Furthermore,

Y = X̃/t(1) is a real rational surface, where the real structure is the common

descent of τ and t(2), and B ∼= Fix t(1) is a real nonsingular anti-bicanonical curve

on Y . As a result, the problem about real Enriques surfaces is reduced to the

study of real nonsingular anti-bicanonical curves on real rational surfaces.

Theorem 4.1.1 (See [7]). Donaldson’s trick establishes a one-to-one correspon-

dence between the set of deformation classes of real Enriques surfaces with dis-

tinguished nonempty half (i.e., pairs (E,E
(1)
R ) with E

(1)
R 6= ∅) and the set of

deformation classes of pairs (Y,B), where Y is a real rational surface and B ⊂ Y

is a nonsingular real curve such that

(1) B is anti-bicanonical,

(2) the real point set of B is empty, and
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(3) B is not linked with the real point set YR of Y .

One has E
(2)
R = YR and E

(1)
R = B/t(2).

In the above theorem, the first condition on B guarantees that the double

covering X of Y branched over B is a K3-surface; and the other two conditions

ensure the existence of a fixed point free lift of the real structure on Y to X. The

statement deals with deformation classes rather than individual surfaces because

the construction involves a certain choice (that of an invariant Kähler class).

4.2 Inverse Donaldson’s trick

Since we want to construct deformation families of real Enriques surfaces with

particular properties, we are using Donaldson’s construction backwards. Strictly

speaking, Donaldson’s trick is not invertible. However, it establishes a bijection

between the sets of deformation classes (see Theorem 4.1.1); thus, at the level of

deformation classes one can speak about ‘inverse Donaldson’s trick’.

Before explaining the construction, recall some properties of K3-surfaces

(see [1] for further details). All K3-surfaces are Kähler. All nontrivial holo-

morphic forms on a K3-surface are proportional to each other and trivialize the

canonical bundle (i.e., K = 0 for K3-surfaces). They are called fundamental

holomorphic forms. Any fundamental holomorphic form ω satisfies the relations

ω2 = 0, ω · ω̄ > 0, and dω = 0. The converse also holds: given a C-valued

2-form satisfying the above relations, there exists a unique complex structure in

respect to which the form is holomorphic (and the resulting variety is necessarily

a K3-surface).

Let a be a holomorphic involution of a K3-surface X equipped with the com-

plex structure defined by a holomorphic form ω. Then, analyzing the behavior

of ω in a neighborhood of a fixed point, one can easily see that, if the fixed point

set Fix a of a is nonempty then it consists either only of isolated points or only

of curves. If the fixed point set Fix a of a consists of only isolated points then

a∗ω = ω. If Fix a is empty or consists of curves only then a∗ω = −ω.
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Let conj be a real structure on X. Then conj∗ω = λω for some λ ∈ C∗.
Clearly, w can be chosen (uniquely up to real factor) so that conj∗ω = −ω. We

always assume this choice and we denote by Reω and Imω the real part (ω+ω)/2

and the imaginary part (ω − ω)/2 of ω, respectively.

Let Y be a real rational surface with a real nonsingular anti-bicanonical curve

B ⊂ Y such that BR = ∅ and B is not linked with the real point set YR of Y .

Let X be the (real) double covering K3-surface branched over B, p̃ : X → Y

the covering projection and φ : X → X the deck translation of p̃. Then φ is a

holomorphic involution with nonempty fixed point set. There exist two liftings

c(1), c(2) : X → X of the real structure conj : Y → Y to X, which are both

anti-holomorphic involutions. They commute with each other and with φ, and

their composition is φ. Because of the requirements on B, at least one of these

involutions is fixed point free. Assume that it is c(1).

Pick a holomorphic 2-form µ with the real and imaginary parts Reµ, Imµ,

respectively, and a fundamental Kähler form ν. Due to the Calabi-Yau theorem,

there exists a unique Kähler-Einstein metric with fundamental class [ν], see [12].

After normalizing µ so that (Reµ)2 = (Imµ)2 = ν2, we get three complex struc-

tures on X given by the forms:

µ = Reµ+ i Imµ, µ̃ = ν + iReµ, and Imµ+ iν.

In fact, Reµ, Imµ, and ν define a whole 2-sphere of complex structures on X, but

we are only interested in the three above. Let X̃ be the surface X equipped with

the complex structure defined by µ̃. Since c(1) is an anti-holomorphic involution

of X, the holomorphic form µ and the fundamental Kähler form ν can be chosen

so that (c(1))∗µ = −µ and (c(1))∗ν = −ν. Then (c(1))∗µ̃ = −µ̃ and, hence, c(1) is

holomorphic on X̃. Since φ is a holomorphic involution of X commuting with c(1),

φ∗µ = −µ and ν can be chosen φ∗-invariant so that φ∗µ̃ = µ̃, i.e., the involution

φ is anti-holomorphic on X̃. Then E = X̃/c(1) is a real Enriques surface (the real

structure being the common descent of φ and c(2)) and the projection p : X̃ → E

is a real double covering. Hence, we have YR = E
(2)
R and B/c(2) = E

(1)
R . The maps

φ = t(1), c(1) = τ and c(2) = t(2), where t(1), t(2) and τ are as in Theorem 2.2.1.

Theorem 4.2.1 (See [3]). Inverse Donaldson’s trick establishes a surjective map
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from the set of deformation classes of unnodal admissible DPN-pairs to the set of

deformation classes of real Enriques surfaces with distinguished nonempty half.

4.3 Deformation classes

Definition 4.3.1. A deformation of complex surfaces is a proper analytic sub-

mersion p : Z → D2, where Z is a 3-dimensional analytic variety and D2 ⊂ C a

disk. If Z is real and p is equivariant, the deformation is called real. Two (real)

surfaces X ′ and X ′′ are called deformation equivalent if they can be connected by

a chain X ′ = X0, ..., Xk = X ′′ so that Xi and Xi−1 are isomorphic to (real) fibers

of a (real) deformation.

Theorem 4.3.1 (See [3]). With few exceptions listed below the deformation class

of a real Enriques surface E with a distinguished half E
(1)
R is determined by the

topology of its half decomposition. The exceptions are:

(1) M−surfaces of parabolic and elliptic type, i.e., those with ER = 2V2 t 4S,

V2 t 2V1 t 3S, or 4V1 t 2S; the additional invariant is the Pontrjagin-Viro

form;

(2) surfaces with ER = 2V1t4S; the additional invariant is the integral complex

separation;

(3) surfaces with a half E
(1)
R = 4S other than those mentioned in (1), (2); the

additional invariants are the types, Iu, I0, or II, of E
(1)
R in E and X/t(2);

(4) surfaces with ER = {V10} t {∅}, {V4 t S} t {∅}, {V2 t 4S} t {∅}, and

{2S} t {2S}; the additional invariant is the type, Iu or I0, of ER in E;

(5) surfaces with ER = 2V1 t 3S; the additional invariant is the type, Iu or II,

of ER in E;

(6) surfaces with ER = {S1} t {S1}; the additional invariant is the linking

coefficient form of E
(1)
R .

The Pontrjagin-Viro form and the linking coefficient form are not introduced

here. A complete list of deformation classes, as well as detailed explanations of

these forms can be found in [3].
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4.4 Real Enriques Surfaces with disconnected

E
(1)
R = Vd t ..., d ≥ 4

The following theorem gives the deformation classification of real Enriques sur-

faces with disconnected half E
(1)
R = Vd t ..., d ≥ 4.

Theorem 4.4.1 (See [3]). With one exception, a real Enriques surface with dis-

connected E
(1)
R = Vd t ..., d ≥ 4, is determined up to deformation by the topology

of (E
(1)
R , E

(2)
R ). In the exceptional case ER = {V4 t S} t {∅} there are two de-

formation classes which differ by the type, Iu or I0, of ER. The topological types

of (E
(1)
R , E

(2)
R ) are the extremal types listed below and all their derivatives (E

(1)
R , ·)

obtained from the extremal ones by sequences of topological Morse simplifications

of E
(2)
R :

E
(1)
R = V11 t V1; E

(2)
R = ∅;

E
(1)
R = V9 t V1; E

(2)
R = ∅;

E
(1)
R = V7 t V1; E

(2)
R = ∅;

E
(1)
R = V5 t V1; E

(2)
R = S;

E
(1)
R = V5 t S; E

(2)
R = V1;

E
(1)
R = V4 t V1; E

(2)
R = V1;

E
(1)
R = V5 t V1 t S; E

(2)
R = ∅;

E
(1)
R = V4 t 2V1; E

(2)
R = ∅;

E
(1)
R = V4 t S; E

(2)
R = V2, 4S, or S1.

For the monodromy problem, we need to consider only the following extremal

types from the above list (as in the other cases there are no homeomorphic com-

ponents):

(1) E
(1)
R = V4 t 2V1; E

(2)
R = ∅;

(2) E
(1)
R = V4 t S; E

(2)
R = 4S.

Below we give a brief account of the results regarding the first case.

Theorem 4.4.2 (See [3]). Let Q1 and Q2 be two real curves on Σ0 (with the

real structure c0 × c1) so that both are as in Model I (Section 3.4.1). Then the
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DPN-resolutions of (Σ0, Q1) and (Σ0, Q2) are deformation equivalent in the class

of admissible DPN-pairs.

The above theorem is proved by making use of Theorem 3.6.1 and showing

that Q1 and Q2 are rigidly homotopic. Thus, a generic rigid homotopy of Qs

defines a deformation of the DPN -resolutions (Ys, Bs) of the pairs (Σ0, Qs), hence,

a deformation of the covering K3-surfaces. Choosing a continuous family of

invariant Kähler metrics leads to a deformation of the corresponding real Enriques

surfaces obtained by inverse Donaldson’s trick. Therefore, we have the following

stronger result.

Refinement 4.4.1 (of Theorem 4.4.2). Let Q be a real curve on Σ0 (with the

real structure c0× c1) as in Model I. Then a generic rigid homotopy of Q defines

a deformation of the appropriate real Enriques surfaces with E
(1)
R = V4t 2V1.

The results below are related to the second case.

Theorem 4.4.3 (See [3]). Let F ∈ |e∞| and U ∈ |2e∞| be nonsingular real

curves on Z = Σ4 with standard real structure. Suppose that UR is contained in a

connected component of ZR\((E0)RtFR). Then the DPN-double of (Z;U,E0∪F )

is determined up to deformation in the class of admissible DPN-pairs by the real

root scheme of the pair (U, F ).

Proof of the above theorem is based on showing that a generic rigid isotopy

of the pairs (Us, Fs), where Us ∈ |2e∞| and Fs ∈ |e∞| for each s, defines a defor-

mation of the DPN -doubles (Ys, Bs) of (Σ4;Us, E0 ∪ Fs). A deformation of the

(Ys, Bs) defines a deformation of the covering K3-surfaces. Choosing a continu-

ous family of invariant Kähler metrics gives a deformation of the corresponding

real Enriques surfaces obtained by inverse Donaldson’s trick, which implies the

following stronger result.

Refinement 4.4.2 (of Theorem 4.4.3). Let F ∈ |e∞| and U ∈ |2e∞| be nonsin-

gular real curves on Z = Σ4 with standard real structure such that UR is contained

in a connected component of ZR\((E0)R t FR). Then a generic rigid isotopy of

pairs (U, F ) defines a deformation of the appropriate real Enriques surfaces with

E
(1)
R = V4 t S and E

(2)
R 6= ∅.

28



4.5 Real Enriques Surfaces with disconnected

E
(1)
R = V3 t ...

The following theorem gives the deformation classification of real Enriques sur-

faces with disconnected half E
(1)
R = V3 t ...

Theorem 4.5.1 (See [3]). A real Enriques surface with disconnected E
(1)
R =

V3 t ... is determined up to deformation by the topology of (E
(1)
R , E

(2)
R ). The

topological types of (E
(1)
R , E

(2)
R ) are the extremal types listed below and all their

derivatives (E
(1)
R , ·) obtained from the extremal ones by sequences of topological

Morse simplifications of E
(2)
R :

E
(1)
R = V3 t V1; E

(2)
R = V2 or 4S;

E
(1)
R = V3 t S; E

(2)
R = V3 or V1 t 3S;

E
(1)
R = V3 t V1 t S; E

(2)
R = 3S;

E
(1)
R = V3 t 2S; E

(2)
R = V1 t 2S;

E
(1)
R = V3 t V1 t 2S; E

(2)
R = 2S;

E
(1)
R = V3 t 3S; E

(2)
R = V1 t S;

E
(1)
R = V3 t V1 t 3S; E

(2)
R = S;

E
(1)
R = V3 t 4S; E

(2)
R = V1;

E
(1)
R = V3 t V1 t 4S; E

(2)
R = ∅.

The deformation classification of these surfaces is reduced to that of real (2, r)-

surfaces, r ≥ 1 with a real nonsingular anti-bicanonical curve B ∼= S2 t rS (see

Section 3.3) and, hence, to the rigid isotopy classification of suitable pairs (see

Section 3.6.5).

Lemma 4.5.1 (See [3]). There is a natural surjective map from the set of rigid

isotopy classes of suitable pairs of grade r onto the set of deformation classes of

real Enriques surfaces with E
(1)
R = V3t r

2
S, if r is even, or E

(1)
R = V3tV1t r−1

2
S,

if r is odd.

Proof of the above lemma is based on showing that a generic rigid isotopy

of suitable pairs (Us, Fs) defines a deformation of the DPN -doubles (Ys, Bs) of
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(Σ2;Us, E0 ∪ Fs), so a deformation of the covering K3-surfaces. Then it remains

to choose a continuous family of invariant Kähler metrics, to obtain a deformation

of the corresponding real Enriques surfaces obtained by inverse Donaldson’s trick

which implies the following stronger result.

Refinement 4.5.1 (of Theorem 4.5.1). A generic rigid isotopy of suitable pairs

(U, F ) of grade r defines a deformation of the real Enriques surfaces with E
(1)
R =

V3 t r
2
S, if r is even, or E

(1)
R = V3 t V1 t r−1

2
S, if r is odd.

4.6 Real Enriques Surfaces with E
(1)
R = S1

The following theorem gives the deformation classification of real Enriques sur-

faces with E
(1)
R = S1.

Theorem 4.6.1 (See [3]). With the exception of the few cases listed below a real

Enriques surface with E
(1)
R = S1 is determined up to deformation by the topology

of (E
(1)
R , E

(2)
R ). The exceptional cases are:

(1) surfaces with ER = {S1} t {4S}: there are two deformation classes, which

differ by the type, Iu or I0, of ER or, equivalently, by the type Iu or I0, of

E
(2)
R in X/t(1);

(2) surfaces with ER = {S1} t {S1}: there are two deformation classes, which

differ by the linking coefficient form of E
(1)
R ;

(3) surfaces with ER = {S1}: there are two deformation classes, which differ

by the types of ER in E and X/t(2); the pair of types takes values (Iu, I0)

and (I0, Iu).

The topological types of (E
(1)
R , E

(2)
R ) are the extremal types listed below and,

with the exception of {S1}t {5S}, all their derivatives (E
(1)
R , .) obtained from the

extremal types by sequences of topological Morse simplifications of E
(2)
R :

E
(1)
R = S1; E

(2)
R = V10, V4 t S, 2V2, V2 t 4S, or S1;
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The deformation classification of these surfaces is reduced to that of DPN -

pairs (Ỹ , B̃ ∼= 2S1) where the genus 1 components of B̃ are conjugate. In the

notation of Section 3.5, (Ỹ , B̃) is the DPN -pair resulting from Donaldson’s trick,

X is the covering K3-surface of Ỹ branched over B̃ and the maps q = t(1),

c+− = t(2) and τ = c++, where t(1), t(2) and τ are as in Theorem 2.2.1.

Theorem 4.6.2 (See [3]). If E
(1)
R = S1 and Ỹ is unnodal, Ỹ admits one of the

following models:

(1) model (B), if E
(2)
R is nonorientable;

(2) model (A) or (C) with U an M-curve, if E
(2)
R = 4S;

(3) model (C) otherwise.

In all the cases, the branch curve U is nonsingular and the distinguished fibers

F and G are conjugate and transversal to U ; in model (C) the part Z+ ⊂ P2
R is

orientable.

Theorem 4.6.3 (See [3]). The set of deformation classes of real Enriques surfaces

E with E
(1)
R = S1 is the image under a natural surjective map from the union of

the sets of rigid isotopy classes of the following objects:

(A) nonsingular real M-curves U ∈ |2l1 + 4l2| on Z = Σ0 with ZR = S1;

(B) nonsingular real curves in |3e∞| on Z = Σ2 with ZR = S1;

(C) triples (U,O, ε), where U is a nonsingular real quartic in Z = P2, signed so

that Z− = Z−U is nonorientable, O is a point in Z− \ U , and ε a choice of

sign of P such that Z++ = ∅.

In case (C) the condition Z++ = ∅ implies Z+P = ∅ whenever UR 6= ∅. Thus,

ε matters only if UR = ∅

Proof of this theorem is based on showing that a generic rigid isotopy of

the objects in (A)-(C) defines a deformation of the DPN -pairs (Ỹ , B̃) which are

obtained from the corresponding models (A)-(C), so a deformation of the covering

K3-surfaces. Choosing a continuous family of invariant Kähler metrics gives

a deformation of the corresponding real Enriques surfaces obtained via inverse

Donaldson’s trick. Hence we have the following result.
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Refinement 4.6.1 (of Theorem 4.6.3). A generic rigid isotopy of the objects in

(A)-(C) defines a deformation of the appropriate real Enriques surfaces E with

E
(1)
R = S1.

(A) nonsingular real M-curves U ∈ |2l1 + 4l2| on Z = Σ0 with ZR = S1;

(B) nonsingular real curves in |3e∞| on Z = Σ2 with ZR = S1;

(C) triples (U,O, ε), where U is a nonsingular real quartic in Z = P2, signed so

that Z− = Z−U is nonorientable, O is a point in Z− \ U , and ε a choice of

sign of P such that Z++ = ∅.

4.7 Real Enriques Surfaces with E
(1)
R = 2V2

The following theorem gives the deformation classification of real Enriques sur-

faces with E
(1)
R = 2V2.

Theorem 4.7.1 (See [3]). With one exception below a real Enriques surface with

E
(1)
R = 2V2 is determined up to deformation by the topology of (E

(1)
R , E

(2)
R ). The

exceptional case is:

◦ M-surfaces with ER = 2V2t4S: a surface is determined by the decomposition

ER = E
(1)
R t E

(2)
R , the complex separation, and the value of the Pontrjagin-

Viro form on the characteristic class of a component V2.

The topological types of (E
(1)
R , E

(2)
R ) are the extremal types listed below and,

all their derivatives (E
(1)
R , .) obtained from the extremal types by sequences of

topological Morse simplifications of E
(2)
R :

E
(1)
R = 2V2; E

(2)
R = 4S, or S1.

The deformation classification of these surfaces is reduced to that of DPN -

pairs (Ỹ , B̃ ∼= 2S1) where the genus 1 components of B̃ are real.
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Theorem 4.7.2 (See [3]). If E
(1)
R = 2V2 and Ỹ is unnodal, then Ỹ admits model

(A) or (C) so that both the distinguished fibers F and G (images of genus 1

components of B̃ in Σ0 or P2, respectively) are real and transversal to the branch

curve U . In model (C) the part Z+ ⊂ P2
R covered by ỸR is orientable.

Theorem 4.7.3 (See [3]). The set of deformation classes of real Enriques surfaces

E with disconnected E
(1)
R = V2 t ... is the image under a natural surjective map

from the union of the sets of equivalence classes of suitable pairs (U, P ) on Z = Σ0

or P2, considered up to rigid isotopy and real automorphism of Z.

Proof of this theorem is based on showing that a generic rigid isotopy of suit-

able pairs (U, P ) on Z = Σ0 or P2 defines a deformation of the DPN -pairs (Ỹ , B̃)

which are obtained from the corresponding models (A) and (C), so a deformation

of the covering K3-surfaces. Choosing a continuous family of invariant Kähler

metrics gives a deformation of the corresponding real Enriques surfaces obtained

via inverse Donaldson’s trick. Hence we have the following result.

Refinement 4.7.1 (of Theorem 4.7.3). A generic rigid isotopy of suitable pairs

(U, P ) on Z = Σ0 or P2 defines a deformation of the corresponding real Enriques

surfaces E with disconnected E
(1)
R = V2 t ...
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Chapter 5

Main Results

5.1 Lifting Involutions

Let Z be a simply connected surface and π : Y → Z a branched double covering

with the branch divisor C. Then, any involution a : Z → Z preserving C as a

divisor admits two lifts to Y , which commute with each other and with the deck

translation of the covering. If Fix a 6= ∅, then both lifts are also involutions. Any

fixed point of a in Z \C has two pull-backs on Y . One of the lifts fixes these two

points and the other one interchanges them.

In this section we will use the notation of Section 4.2.

Lemma 5.1.1. Let Z = Σ4 (with the standard real structure), and U ∈ |2e∞| a

nonsingular real curve. Let a : Z → Z be an involution preserving U and such

that Fix a ∩ U 6= ∅. Then a lifts to four distinct involutions on the covering

K3-surface X and at least one of the four lifts defines an automorphism of an

appropriate real Enriques surface obtained from X by inverse Donaldson’s trick.

Proof: For a nonsingular real curve F ∈ |e∞| in Z, if UR is contained in

a connected component of ZR\((E0)R t FR) then the DPN -double (Y,B) of

(Z;U,E0 ∪ F ) is as follows: Y is a real unnodal (3, 2)-surface, and, B is an

admissible branch curve with two rational components which are conjugate to
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each other and [B] = 0 in H2(X) where X is the covering K3-surface of Y

branched over B (see Model II in Section 3.4.1). Any point p ∈ Fix a ∩ U has a

unique pullback p̃ ∈ Y which is a fixed point of both lifts of a to Y . Any point

p′ ∈ Fix a \U , in a small neighborhood of p, has two pullbacks p1 and p2 in Y . If

a1 is the lift of a to Y that permutes p1 and p2, then p̃ is an isolated fixed point

of a1 (note that we do not assert that all fixed points of a1 are isolated). Choose

F ∈ |e∞| and the point p ∈ Fix a ∩ U in such a way that B is a1-invariant and

p̃ /∈ B. Let X be the double covering of Y branched over B and let a2 be the

lift of a1 to X that fixes the two pullbacks of p̃. Then, the pullbacks of p̃ are

isolated fixed points of a2. Since X is a K3-surface, Fix a2 consists of isolated

points only, and (a2)
∗µ = µ. We can choose for ν a generic fundamental Kähler

form preserved by φ, c(1), c(2), and a2. Then, we have (a2)
∗µ̃ = µ̃, i.e., a2 is also

holomorphic on X̃. With the projection p : X̃ → E, a2 defines an automorphism

ã of E.. �

Lemma 5.1.2. Let Z = Σ2 (with the standard real structure), let U ∈ |2e∞+ 2l|
be a suitable curve on Z, and let a : Z → Z be an involution preserving U such

that Fix a ∩ U 6= ∅. Then, a lifts to four distinct involutions on the covering

K3-surface X and at least one of the four lifts defines an automorphism of an

appropriate real Enriques surface obtained from X by inverse Donaldson’s trick.

Proof: For a nonsingular real section F ∈ |e∞| in Z, if (U, F ) is a suitable

pair then the DPN -double of (Z;U,E0 ∪ F ) is (Y,B) where Y is a (2, r)-surface

and B is an admissible branch curve on Y (see Section 3.3). Thus, for any such

curve F , we can make choices of the points p ∈ Fix a∩U and p′ ∈ Fix a \U , and

the lift a1 of a to Y in the same way that we did in the proof of Lemma 5.1.1

so that p̃ ∈ Y will be an isolated fixed point of a1. Choose F ∈ |e∞| and the

point p ∈ Fix a ∩ U in such a way that B is a1-invariant and does not contain p̃.

Then the result follows by making the same choices for the rest as in the proof

of Lemma 5.1.1. �

Lemma 5.1.3. Let Z be a real quadric cone in P3, let C ′ ⊂ Z be a nonsingular

real cubic section disjoint from the vertex, and let a : Z → Z be an involution

preserving C ′ and such that Fix a ∩ C ′ 6= ∅. Then a lifts to four distinct involu-

tions on the covering K3-surface X and at least one of the four lifts defines an
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automorphism of an appropriate real Enriques surface obtained from X by inverse

Donaldson’s trick.

Proof: According to Section 3.5, the minimal resolution of the double covering

of Z, branched at the vertex and over C ′, is a surface Y admitting an elliptic

fibration as in model (B). The pullback p̃ ∈ Y of any point p ∈ Fix a ∩ C ′ is a

fixed point of both lifts of a to Y . Let p′ ∈ Fix a \C ′ be in a small neighborhood

of p. Then p′ has two pullbacks p1 and p2 in Y . Let a1 be the lift of a to Y

that permutes p1 and p2. Then p̃ is an isolated fixed point of a1. We can lift a1

and p̃ on Y to Ỹ and denote them by a′1 and p̃′, where Y → P1 is the minimal

pencil of Ỹ → P1. The lift p̃′ is an isolated fixed point of a′1. Pick an a′1-invariant

admissible branch curve B̃ ⊂ Ỹ with p̃′ /∈ B̃. Denote by X the double covering

of Ỹ branched over B̃ and by a2, the lift of a′1 to X that fixes the two pullbacks

of p̃′. Then the pullbacks of p̃′ are isolated fixed points of a2. Since X is a K3-

surface, Fix a2 consists of isolated points only, and (a2)
∗µ = µ. Making a similar

choice for the Kähler form as in the proof of Lemma 5.1.1 gives the result. �

Lemma 5.1.4. Let Z = Σ0 (with the standard real structure), U ∈ |2l1 + 4l2|
a nonsingular real curve on Z, and a : Z → Z be an involution preserving U

such that Fix a∩U 6= ∅. Then a lifts to four distinct involutions on the covering

K3-surface X and at least one of the four lifts defines an automorphism of an

appropriate real Enriques surface obtained from X by inverse Donaldson’s trick.

Proof: Proof is very similar to the previous ones. Choose the lift of a to Y and

the lift of that to the covering K3-surface X in such a way that it has isolated

fixed points on X. Choose a generic fundamental Kähler form preserved by φ,

c(1), c(2), and the lift of a so that the lift of a is also holomorphic with respect to

the new complex structure. Then the projection to Enriques surface defines an

automorphism of the Enriques surface. �

Lemma 5.1.5. Let U be a nonsingular real quartic on Z = P2, and F and G be

a pair of real lines transversal to U such that UR belongs to the closure of one of

the two components of ZR \ (FR∪GR). Let a : Z → Z be an involution preserving

U and the pair (F,G) such that Fix a ∩ U 6= ∅. Then a lifts to four distinct
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involutions on the covering K3-surface X and at least one of the four lifts defines

an automorphism of an appropriate real Enriques surface obtained from X by

inverse Donaldson’s trick.

Proof: Proof is similar to the previous ones. It is based on choosing one of the

four lifts that has isolated fixed points on X and choosing a generic fundamental

Kähler form preserved by φ, c(1), c(2) and the lift of a, so that the lift of a is

also holomorphic with respect to the new complex structure. Then its projection

defines an automorphism of the corresponding Enriques surface. �

5.2 Main Theorems

The following theorem is obtained during author’s master study. For the sake of

completeness, the result is added to the thesis. See [8] for a proof.

Theorem 5.2.1. With one exception, any permutation of the homeomorphic

components of the half E
(2)
R of a real Enriques surface with a distinguished half

E
(1)
R = Vd+2, d ≥ 1, can be realized by deformations and automorphisms. In the

exceptional case ER = {V3} t {V1 t 4S}, the realized group is Z2 × Z2 ⊂ S4.

Remark 5.2.1. In the exceptional case, E is an M -surface. Pontrjagin-Viro

form is well defined. The decomposition of the second half into quarters is E
(2)
R =

(V1t2S)t(2S). Obviously, one cannot permute the spheres belonging to different

quarters (even topologically), and Theorem 5.2.1 states that a permutation of

the spherical components can be realized if and only if it preserves the quarter

decomposition.

Theorem 5.2.2. With one exception, any permutation of homeomorphic com-

ponents of both halves of a real Enriques surface with a disconnected half E
(1)
R =

Vd t ..., d ≥ 4, is realizable by deformations and automorphisms if and only if it

preserves the half decomposition. In the exceptional case ER = {V4 t S} t {4S},
the realized group is D8 ⊂ S4.

Remark 5.2.2. In the exceptional case, E is an M -surface on which the

Pontrjagin-Viro form is well defined. The quarter decomposition of E
(2)
R is
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(2S) t (2S). A permutation of the spherical components is not realizable if it

does not preserve the quarter decomposition. Theorem 5.2.2 states that a per-

mutation of the components can be realized if and only if it preserves the quarter

decomposition.

Proof: The problem reduces to a question about appropriate (g, r)-surfaces,

g ≥ 3 and r ≥ 1 (see [3] for the models of (g, r)-surfaces). We construct a partic-

ular surface (within each deformation class) that has a desired automorphism or

‘auto-deformation’. Among the extremal types listed in Theorem 4.4.1, we need

to consider only the following types and all their derivatives (E
(1)
R , ·) obtained

from the extremal ones by sequences of topological Morse simplifications of E
(2)
R :

(1) E
(1)
R = V4 t 2V1; E

(2)
R = ∅;

(2) E
(1)
R = V4 t S; E

(2)
R = 4S.

Case (1): ER = {V4 t 2V1} t {∅}: In this case, the homeomorphic components

are in E
(1)
R = B/t(2) so we need to deal with B. By Donaldson’s trick, we

obtain a DPN -pair (Y,B), where Y is a real (3, 2)-surface with empty real part

and B ∼= S3 t 2S is an admissible branch curve on Y such that the rational

components of B are real. According to Model (I) in Section 3.4.1, Y blows down

to Σ0 = P1×P1 with the real structure c0×c1. The image of B is Q = C ′1+C ′′1 +C ′′′1

where C ′, C ′′ ∈ |l2| are two distinct real generatrices and C ′′′ ∈ |4l1 + 2l2|. By

Theorem 4.4.2, there is only one rigid homotopy class of such curves Q ⊂ Σ0 and

if Q′ is rigidly homotopic to Q then the DPN -resolutions of the pairs (Σ0, Q
′)

and (Σ0, Q) are deformation equivalent in the class of admissible DPN -pairs.

Using Refinement 4.4.1, it suffices to connect Q with itself by a path that

realizes the permutation of C ′ and C ′′, and such that the members Qs of the

path split into sums C ′s + C ′′s + C ′′′s of distinct real smooth irreducible curves

such that C ′s, C
′′
s ∈ |l2| and C ′′′s ∈ |4l1 + 2l2|. Identify the real part of the base

P1
R
∼= S1 = R/2π. Let Q = A0 +Aπ +A, where Aα is the generatrix of Σ0 over α.

Then, the family {Qt} = {At + Aπ+t + A; t ∈ [0, π]}, defines a path that realizes

the permutation of the generatrices A0 and Aπ.

38



Case (2): We consider the 3 subcases:

ER = {V4 t S} t {iS}, i = 2, 3, 4.

The corresponding DPN -pair resulting from Donaldson’s trick is (Y,B), where Y

is a real (3, 2)-surface with YR = iS, and B ∼= S3t2S is an admissible branch curve

such that [B] = 0 in H2(X) where X is the covering K3 -surface. According to

Model (II) in Section 3.4.2, there is a real regular degree 2 map φ : Y → Σ4 (with

the standard real structure), branched over a nonsingular curve U ∈ |2e∞|. The

irrational component of B is mapped to a real curve F ∈ |e∞| and each rational

component is mapped isomorphically to the exceptional section E0 of Σ4. By

Theorem 3.6.4, up to rigid isotopy and automorphism of Σ4, the pair (U, F ) is

determined by its real root scheme. By Theorem 4.4.3, the real DPN -double of

(Σ4;U,E0 + F ) is determined up to deformation in the class of admissible DPN -

pairs by the real root scheme of the pair (U, F ). In view of Refinement 4.4.2

and Lemma 5.1.1, it suffices to realize permutations of certain ovals of U by rigid

isotopies of the pair (U, F ) and/or involutive automorphisms of Σ4 preserving U .

In the latter case, the set of fixed points should have nonempty intersection with

the branch locus U .

The real root scheme of (U, F ) is a disjoint union of i segments (cf. the first

row of Table 3.1 for i = 4), and it has a representative (real root marking) with

the desired symmetry group (i.e., S2, S3 and D8 for i = 2, 3 and 4 respectively),

generated by rotations and reflections of FR ∼= S1. By Refinement 3.6.2, these

symmetries realize permutation of the corresponding ovals. Furthermore, the

fixed point set of a reflection symmetry consists of two distinct points on S1,

which correspond to two distinct real generatrices of Z. Since U ∈ |2e∞|, it

intersects the set of the fixed points of the induced involution and one can apply

Lemma 5.1.1. For i = 4, the reason, why other permutations are not allowed is

explained in Remark 5.2.2. �

Theorem 5.2.3. For the real Enriques surfaces with disconnected E
(1)
R = V3t ...,

none of the permutations of the components of the half E
(1)
R is realizable by de-

formations or automorphisms. With the exceptions listed below, any permutation

of homeomorphic components of the half E
(2)
R can be realized by deformations and

automorphisms. The exceptional cases are:
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(1) surfaces with ER = {V3 t V1} t {4S} : the realized group is D8;

(2) surfaces with ER = {V3 t S} t {V1 t 3S} : the realized group is S2;

(3) surfaces with ER = {V3 t V1 t S} t {3S} : the realized group is S2;

(4) surfaces with ER = {V3 t 2S} t {V1 t 2S} : the realized group is trivial.

Remark 5.2.3. The exceptional surfaces are M -surfaces. Pontrjagin-Viro form

is well defined on them. The quarter decompositions of those surfaces are as

follows:

(1) ER = {(V3 t V1) t (∅)} t {(2S) t (2S)};
(2) ER = {(V3 t S) t (∅)} t {(V1 t S) t (2S)};
(3) ER = {(V3 t S) t (V1)} t {(2S) t (S)};
(4) ER = {(V3 t S) t (S)} t {(V1 t S) t (S)}.

One cannot permute homeomorphic components without preserving the quarter

decomposition. The above theorem states that a permutation of homeomorphic

components of E
(2)
R can be realized if and only if it preserves the quarter decom-

position.

Proof: For these surfaces, the DPN -pair resulting from Donaldson’s trick is

(Y,B), where Y is a real unnodal (2, r)-surface and B ∼= S2 t rS is an admissible

branch curve on Y , r ≥ 1.

We start by proving the first part of the theorem. In view of Theorem 4.5.1,

we need to consider only the real Enriques surfaces with E
(1)
R = V3 tmV1 t nS,

m = 0 or 1 and n = 2, 3 or 4. By Donaldson’s trick we obtain real (2, r)-

surfaces with admissible branch curves B ∼= S2 t rS, where r = m+ 2n, (as

E
(1)
R = B/t(2)). According to the models of (2, r)-surfaces (Section 3.3), the

Dynkin graph (Figure 3.1) of the pullback of the exceptional section E0 con-

tains m+ 2n copies of (−4)-curves that correspond to the spherical components

of B. Since the map ϕ is anti-bicanonical, our model is canonical and both the

Dynkin graph and the corresponding Coxeter diagram on the covering K3-surface

are rigid. The only map that can realize a permutation of the spherical compo-

nents of B is the deck translation of the covering ϕ which changes the order of

the curves in the Dynkin graph. But since the spherical components permuted
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by the deck translation are identified by the map t(2) on the covering K3-surface

and E
(1)
R = B/t(2), the result follows.

Proof of the second part is based on suitable pairs. Theorem 3.6.6 states that,

up to rigid isotopy and automorphism of Σ2, a suitable pair (U, F ) is determined

by its real root scheme. In view of Refinement 4.5.1 and Lemma 5.1.2, it is

enough to realize the permutations of certain ovals by rigid isotopies of the pair

(U, F ) and/or involutive automorphisms of Σ2 preserving U , where in the latter

case the set of fixed points should intersect U . Proof is very similar to that of

Theorem 5.2.2, case 2. Among the extremal types listed in Theorem 4.5.1, we

need to consider only the following types and all their derivatives (E
(1)
R , ·) obtained

from the extremal ones by sequences of topological Morse simplifications of E
(2)
R :

(1) E
(1)
R = V3 t V1; E

(2)
R = 4S;

(2) E
(1)
R = V3 t S; E

(2)
R = V1 t 3S;

(3) E
(1)
R = V3 t V1 t S; E

(2)
R = 3S;

(4) E
(1)
R = V3 t 2S; E

(2)
R = V1 t 2S;

(5) E
(1)
R = V3 t V1 t 2S; E

(2)
R = 2S.

The extremal real root schemes of the pairs (U, F ) for these cases are listed

in Table 3.1; the others are obtained from the extremal ones by removing several

segments not containing a ◦ -vertex.

Case (1): We have three subcases:

ER = {V3 t V1} t {iS}, i = 2, 3, 4.

Corresponding surface is a (2, 1)-surface. According to the models of (2, r)-

surfaces and Theorem 3.6.6, U ∈ |2e∞ + 2l| is a nonsingular real curve which

has two conjugate transversal intersection points with E0. For each i, there is

only one rigid isotopy class of the pair (U, F ) which is determined by the real root

scheme of the pair (See Table 3.1 for the extremal one). The real root scheme

of the pair (U, F ) consists of i disjoint closed arcs on FR ∼= S1 which correspond

to spherical components of E
(2)
R . The real root scheme of (U, F ) has a repre-

sentative (real root marking) with the desired symmetry group (i.e., S2, S3 and
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D8 for i = 2, 3 and 4 respectively), generated by rotations and reflections of S1.

By Refinement 3.6.2, these symmetries realize permutation of the corresponding

ovals. In the case of automorphisms, induced by reflection symmetries, we ob-

serve that the fixed point set consists of a pair of generatrices and intersects U ;

hence, Lemma 5.1.2 applies. For the case i = 4, Remark 5.2.3 tells us why other

permutations are not realizable.

Case (2): We have two subcases:

ER = {V3 t S} t {V1 t iS}, i = 2, 3.

Corresponding surface is a (2, 2)-surface. According to the models of (2, r)-

surfaces and Theorem 3.6.6, U ∈ |2e∞ + 2l| is a nonsingular real curve which

is tangent to E0 at one point. For both i = 2, 3, there is only one rigid isotopy

class of the pair (U, F ) which is determined by the real root scheme of the pair

(see Table 3.1 for the extremal one). The real root scheme of the pair (U, F )

consists of i+ 1 disjoint closed arcs on FR ∼= S1 one of which has a distinguished

point that corresponds to the tangency of U and E0. The real root scheme of

(U, F ) has a representative (real root marking) with the desired symmetry group

S2 for both cases generated by reflections of S1. By Refinement 3.6.2, these sym-

metries realize permutation of the corresponding ovals. As in the first case, fixed

point set of reflections intersects U ; hence, Lemma 5.1.2 applies. For the case

i = 3, Remark 5.2.3 tells us why other permutations are not realizable.

Case (3): We have two subcases:

ER = {V3 t V1 t S} t {iS}, i = 2, 3.

Corresponding surface is a (2, 3)-surface. According to the models of (2, r)-

surfaces and Theorem 3.6.6, U ∈ |2e∞ + 2l| has an A1 type singularity at E0.

For both i, there is only one rigid isotopy class of the pair (U, F ) which is de-

termined by the real root scheme of the pair (See Table 3.1 for the extremal

one). The real root scheme of the pair (U, F ) consists of i disjoint closed arcs on

FR ∼= S1 and a distinguished point on their complement that corresponds to the

singularity of U . The real root scheme of (U, F ) has a representative (real root

marking) with the desired symmetry group S2 for both cases generated by reflec-

tions of S1. By Refinement 3.6.2, these symmetries realize permutation of the
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corresponding ovals. As in the first case, fixed point set of reflections intersects

U ; hence, Lemma 5.1.2 applies. For the case i = 3, Remark 5.2.3 tells us why

other permutations are not realizable.

Case (4): ER = {V3 t 2S} t {V1 t 2S}
The permutation of the spherical components of E

(2)
R is not realizable in this case

as explained in Remark 5.2.3.

Case (5): ER = {V3 t V1 t 2S} t {2S}
Corresponding surface is a (2, 5)-surface. According to the models of (2, r)-

surfaces and Theorem 3.6.6, U ∈ |2e∞ + 2l| has an A3 type singularity at E0.

There is only one rigid isotopy class of the pair (U, F ) which is determined by

the real root scheme of the pair (See Table 3.1). The real root scheme of the pair

(U, F ) consists of 2 disjoint closed arcs on FR ∼= S1 and a distinguished point on

their complement that corresponds to the singularity of U . The real root scheme

of (U, F ) has a representative (real root marking) with the desired symmetry

group S2 generated by a reflection of S1. By Refinement 3.6.2, this symmetry

realizes permutation of the corresponding ovals. As in the previous cases, fixed

point set of the reflection intersects U ; hence, Lemma 5.1.2 applies. �

Theorem 5.2.4. With two exceptions, any permutation of the homeomorphic

components of the half E
(2)
R of a real Enriques surface with a distinguished half

E
(1)
R = S1, can be realized by deformations and automorphisms. The exceptional

cases are:

(1) surfaces with ER = {S1} t {V2 t 4S}: the realized group is Z2 × Z2;

(2) surfaces E of type Iu with ER = {S1} t {4S}: the realized group is D8.

Remark 5.2.4. The exceptional surfaces are M -surfaces. Corresponding quarter

decompositions are as follows:

(1) ER = {(S1) t (∅)} t {(V2 t 2S) t (2S)};
(2) ER = {(S1) t (∅)} t {(2S) t (2S)};

One cannot permute homeomorphic components without preserving the quarter

decomposition. The above theorem states that a permutation of homeomorphic

components of E
(2)
R can be realized if and only if it preserves the quarter decom-

position.
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Proof: Following the deformation classification, we construct a particular sur-

face (within each deformation class) and ‘auto-deformations’ and/or automor-

phisms on it that realizes the monodromy groups. We proceed case by case:

Case (1): E
(2)
R = 2V2. This case will be treated in the next theorem.

Case (2): Derivatives of E
(2)
R = V2 t 4S:

Subcase (1): E
(2)
R = V2 t iS, i = 2, 3, 4.

The corresponding DPN -pair (Ỹ , B̃) resulting from Donaldson’s trick admits a

minimal elliptic pencil f : Y → P1 as in model (B) of Section 3.5. The curve

C ∈ |3e∞| is a real nonsingular curve in Σ2 ⊂ P3 × P1 such that CR consists of i

ovals and a component homologous to (E0)R. Image of B̃ consists of two conjugate

generatrices of Σ2 with empty real part. Equivalently, the anti-bicanonical system

|−2KY | defines a degree 2 map ϕ : Y → Z where Z is the irreducible singular

quadric cone in P3. The branch locus of ϕ consists of the vertex V of Z and

a nonsingular cubic section C ′ disjoint from V whose real part C ′R consists of

i ovals and a component noncontractible in ZR \ {V }. The real part YR is the

minimal resolution of the double covering of the domain D consisting of i disks

bounded by the ovals of C ′R and of the part of ZR bounded by the noncontractible

component of C ′R and V . Rigid isotopy class of C ′ is induced by that of C. From

Theorem 3.6.3 and Refinement 3.6.1, for each i = 2, 3 and 4, there is one rigid

isotopy class of C ′ up to isomorphism.

Clearly, a rigid isotopy of C ′ in Z defines a deformation of Y , and an auto-

involution of Z, preserving C ′ and having nonempty fixed point set, lifts to an

involution on Y . Thus, in view of Refinement 4.6.1 and Lemma 5.1.3, it suffices

to realize certain permutations of the ovals of a particular curve (in each rigid

isotopy class) C ′ by rigid isotopies and/or involutive automorphisms of Z (in the

latter case taking care that the fixed point set of the involution intersects C ′).

For each i = 2, 3 and 4, let C ′ and Z be constructed (due to S. Finashin, see [10])

as follows: Let Z be the quadric cone that is the double covering of the plane

branched over L3 and L4 if i = 2, L1 and L3 if i = 3, and, L1 and L2 if i = 4 (see

Figure 5.1). Let C ′ be the pull-back of the cubic curve, which is symmetric with

respect to the line L, and is obtained by a perturbation of the lines P , Q and R

44



(dotted lines, see Figure 5.1). For i = 2, the symmetry of the cone with respect

to the yz-plane permutes the ovals of C ′. For i = 3, it suffices to permute one

pair of ovals, see Refinement 3.6.1, and the symmetry of the cone with respect to

the yz-plane does permute the opposite ovals of C ′. For i = 4, the symmetries of

the cone with respect to the yz-plane and xz-plane permutes the opposite ovals of

C ′. Fixed point set of each symmetry intersects C ′. Thus, we obtain the groups

S2, S3 and Z2 × Z2 ⊂ S4 for i = 2, 3 and 4, respectively. For i = 4, the fact that

other permutations cannot be realized is explained in Remark 5.2.4.

L4
L1 L2 L3

L

P

Q

R

y

z

x

Figure 5.1: Elements of the construction of a quadric cone Z ⊂ P3 and a sym-
metric cubic section C ⊂ Z (left), and an example of the maximal case (right)

Subcase (2): E
(2)
R = 4S

There are two deformation classes of these surfaces obtained from model (A) and

model (C) of Section 3.5 that differ by the type Iu or I0 of ER, respectively:

(A): The corresponding DPN -pair (Ỹ , B̃) resulting from Donaldson’s trick ad-

mits a minimal elliptic pencil f : Y → P1 where Y is the double covering of

Σ0 branched over a nonsingular real M -curve U of bi-degree (4, 2). The image

of B̃ consists of two conjugate generatrices of bi-degree (0, 1). The real part UR

has four ovals and YR covers their interior. From Theorem 3.6.5, U is unique

up to rigid isotopy and automorphism of Σ0. In view of Refinement 4.6.1 and

Lemma 5.1.4, it is enough to realize the permutation of the certain ovals by rigid

isotopies of U and/or involutive automorphisms of Σ0 preserving U . Its real root
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scheme is a disjoint union of 4 segments, and it has a representative (real root

marking) with the symmetry group D8, generated by rotation and reflection sym-

metries of S1. By Refinement 3.6.2, these symmetries realize permutation of the

corresponding ovals. Furthermore, the fixed point set of a reflection symmetry

consists of two distinct points on S1, which correspond to two distinct real gen-

eratrices of Σ0. Since U ∈ |2l1 + 4l2|, it intersects the set of the fixed points of

the induced involution and one can apply Lemma 5.1.4. The reason, why other

permutations are not allowed is explained in Remark 5.2.4.

(C): The resulting DPN -pair (Ỹ , B̃) admits a minimal elliptic pencil f : Y →
P1 where Y is the minimal resolution of double covering of P2 branched over

a nonsingular real quartic U . The image of B̃ consists of two conjugate lines

passing through a real point O in P 2
R such that none of the ovals of UR surrounds

O. The real part UR has four unnested ovals and YR covers their interior. By

Theorem 3.6.2, there is only one rigid isotopy class of U and by Lemma 3.6.1,

any permutation of the ovals of U can be realized by a rigid isotopy. From

Refinement 4.6.1, we conclude that the latter defines a deformation of Ỹ and,

via inverse Donaldson’s trick, a deformation of the corresponding real Enriques

surface that realizes the corresponding permutation of the spheres of E
(2)
R .

Subcase (3): E
(2)
R = iS, i = 2, 3.

The corresponding DPN -pair (Ỹ , B̃) resulting from Donaldson’s trick admits a

minimal elliptic pencil f : Y → P1 as in model (C) of Section 3.5. The real

part UR has i unnested ovals and YR covers their interior. By Theorem 3.6.2 and

Lemma 3.6.1, there is only one rigid isotopy class of U and any permutation of

the ovals of U can be realized by a rigid isotopy. Then by Refinement 4.6.1, the

latter results in a deformation of the corresponding real Enriques surface that

realizes the corresponding permutation of the spherical components of E
(2)
R .

Case (3): E
(2)
R = S1.

The resulting DPN -pair (Ỹ , B̃) admits a minimal elliptic pencil f : Y → P1 as in

model (C). The curve U is the nest with the real scheme 〈1〈1〉〉. Since Z− have

one orientable and one nonorientable components there are two choices of the
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position of the point O. These two choices produce two deformation classes with

the same real part. The linking coefficient form is identically zero on precisely

one of the halves [3]. So we have two deformation classes that differ by the order

of the halves. Therefore the permutation of the halves is not realizable.

�

Theorem 5.2.5. With one exception, any permutation of the homeomorphic

components of both halves of a real Enriques surface with a distinguished half

E
(1)
R = 2V2, can be realized by deformations and automorphisms. The exceptional

topological type is:

� surfaces with ER = {2V2} t {4S}.

Remark 5.2.5. In the exceptional case, there are four deformation classes with

homeomorphic real parts and on each of them the Pontrjagin-Viro form is well

defined. The quarter decompositions and the corresponding monodromy groups

are as follows:

(1) ER = {(2V 0
2 ) t (∅)} t {(2S) t (2S)}; Z2 ×D8;

(2) ER = {(V 2
2 t V −22 ) t (∅)} t {(2S) t (2S)}; D8;

(3) ER = {(V 0
2 ) t (V 0

2 )} t {(2S) t (2S)}; Z2 ×D8;

(4) ER = {(V 2
2 ) t (V 2

2 )} t {(3S) t (S)}; Z2 × S3.

Upper index of the V2 components in the first half is a topological invariant, so

called Brown invariant (details can be found in [2]), depending on the choice of

a quarter in the second half. One cannot permute homeomorphic components

without preserving the quarter decomposition and the indices. The above the-

orem states that a permutation of homeomorphic components of both halves of

ER can be realized if and only if it preserves the quarter decomposition together

with the indices.

Proof: The corresponding DPN -pairs (Ỹ , B̃ ∼= 2S1) resulting from Donald-

son’s trick admit minimal elliptic pencils f : Y → P1 of model (A) or (C). Images

of genus 1 components of B̃, F and G, are real fibers of Σ0 or P2 for model (A) or

(C), respectively. Both fibers are transversal to the nonsingular branch curve U .
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Following the deformation classification, we construct a particular surface (within

each deformation class) for each auto-deformation and automorphism that real-

izes the desired permutations of F and G, and the ovals of UR. We proceed case

by case:

Case (1): ER = {(2V 0
2 ) t (∅)} t {(2S) t (2S)}.

Case (2): ER = {(V 2
2 t V −22 ) t (∅)} t {(2S) t (2S)}.

We will treat Cases (1) and (2) together. The minimal pencil is of model (A).

The real coordinate system we use here, as well as the set DR and the polynomial

∆(x), are introduced in Section 3.6.3. The branch curve U ∈ |2l1 + 4l2| is a

real nonsingular curve on Σ0 which is defined by an equation a(x)y2 + b(x)y +

c(x) = 0 that determines its real root marking where a(x), b(x) and c(x) are real

polynomials of degree 4. The real part UR of the branch curve has four ovals.

The polynomial a(x) has two pairs of conjugate roots and DR consists of four

components.

Once we fix a(x) and ∆(x), then b(x) should satisfy the condition: b2(xn) =

∆(xn) for all roots xn of a(x), n = 1, 2, 3 and 4. At each xn we have two choices

for b(xn), differing by sign, which are ±
√

∆(xn). We have b(xn) = b(xn). If we

choose and fix a(x) and ∆(x), and if b(x) is subject to the above condition, then

c(x) is uniquely determined.

For example, take a(x) = (x2 + 1)(x2 + 4) and the roots of ∆(x) to be the

set {±1,±2,±3,±4}. Then the roots of a(x) are ±i and ±2i, and ∆(x) =

±(x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16). Note that we have two choices for the sign

of ∆(x). If we fix ∆(x), then up to rigid isotopy we can move a(x) by a path

i↔ 2i. This move defines a bijection between the two choices for b(i) and those

for b(2i). Hence, we have two coherent choices (respecting the bijection) and two

incoherent ones, the two latter resulting in deformation equivalent curves. Thus,

we have three deformation classes given by the following three bijections α, β

and γ. The signs on the left-hand side and right-hand side are the signs of b(i)

and b(2i), respectively.
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α : {+} ←→ {−}
β : {+} ←→ {+}
γ : {−} ←→ {−}

The real root scheme of U of the above example is symmetric with respect to

the y-axis, independent of the sign of ∆(x). The real generatrices F, G ∈ |l1|
can be chosen to be symmetric with respect to the x-axis. Depending on the

choice of the sign of ∆(x), the symmetry with respect to the y-axis realizes either

the permutation of the ovals in different quarters (see Figure 5.2) or fixes the

ovals of one quarter and permutes the ovals of the other one (see Figure 5.3).

The symmetry with respect to the x-axis permutes the generatrices F and G and

preserves the real root scheme.

y

1 2 3 4−1−2−3−4 x

G

F

Figure 5.2: The real root scheme of U and the generatrices F, G ∈ |l1| for the −
choice of sign of ∆(x).

−4 −3 −2 −1 1 2 3 4

y

x

G

F

Figure 5.3: The real root scheme of U and the generatrices F, G ∈ |l1| for the +
choice of sign of ∆(x).
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The deformation classes given by the bijections β and γ are equivalent up to

automorphisms given by the symmetries with respect to x- and y-axes. Thus, up

to deformation and automorphisms of Σ0, there are 2 deformation classes which

we denote by [α] and [β]. If we choose the + sign for ∆(x), then b(xn) = ±
√

∆(xn)

will be a real number so that it will be invariant under conjugation. So applying

the symmetry with respect to the y-axis does not change the deformation classes

[α] and [β]. If we choose the − sign for ∆(x), then b(xn) = ±
√

∆(xn) will

be purely imaginary so that b(xn) = −b(xn). So applying the symmetry with

respect to the y-axis does not change the deformation class [α], whereas for the

deformation class [β] it should be composed with a symmetry with respect to

x-axis in order to stay in the same deformation class. Thus, for the class [α] the

symmetries with respect to the y-axis for both choices of sign of ∆(x) realizes the

group D8 of permutation of ovals of UR, and the symmetry with respect to x-axis

realizes the group Z2 of the permutation of the generatrices F and G. Similarly,

for the class [β] the composition of the symmetries with respect to the y-axis and

the x-axis for the − choice of sign of ∆(x), and the symmetry with respect to

the y-axis for the + choice of sign of ∆(x) realizes the group D8 of permutation

of ovals of UR. The result follows from Refinement 4.7.1 and Lemma 5.1.4.

Case (3): ER = {(V 0
2 ) t (V 0

2 )} t {(2S) t (2S)}.

Admitted model is (C). The branch curve U is of type I. The real part UR

has four ovals. Two of them are marked with a + and the others with a − in

the complex scheme. From the existence of symmetric quartics or concretely by

the perturbation (2x2 + y2 − 1)(x2 + 2y2 − 1) + ε = 0, for ε > 0 small enough,

one can obtain a symmetric quartic U as in Figure 5.4. The opposite ovals of

UR are marked with the same sign. Composing the symmetries with respect to

the lines L1 and L2 (for each symmetry we make choice of the symmetry axis)

with the rigid isotopies of the pair (F,G) realize every permutation of the ovals

of UR that respect the marking and the permutation of F and G. The resulting

group is Z2×D8. Each symmetry has fixed points on U . The result follows from

Refinement 4.7.1 and Lemma 5.1.5.

Case (4): ER = {(V 2
2 ) t (V 2

2 )} t {(3S) t (S)}.
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L2

L1

F1

−

+

−

+

G1

F2 G2

Figure 5.4: The quartic U is obtained by a perturbation of two dotted ellipses.
Opposite ovals are marked with the same sign. U is symmetric with respect to
the lines L1 and L2. Up to rigid isotopy, the pair (FR, GR) can be chosen as
(F1, G1) or (F2, G2).

Resulting model is (C). The branch curve U is of type I. The real part UR

has four ovals. Three of them are marked with a + and the other one with a −
in the complex scheme. From the existence of symmetric quartics or concretely

by the perturbation of 4 double points in a symmetric non-convex position, one

can obtain a symmetric quartic U as in Figure 5.5. The oval in the center is

the one marked with a − sign. Composing the symmetries with respect to the

lines L1 and L2 (for each symmetry we make choice of the symmetry axis) with

the rigid isotopies of the pair (F,G) realize every permutation of the ovals of

UR that respect the marking and the permutation of F and G. The resulting

group is Z2×S3. Each symmetry has fixed points on UR. The result follows from

Refinement 4.7.1 and Lemma 5.1.5.
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L2

F2 G2

F1

G1

L1

−

+

++

Figure 5.5: The quartic U is obtained by a perturbation of four double points.
The oval in the center is marked with a − sign, others are marked with a + sign.
U is symmetric with respect to the lines L1 and L2. Up to rigid isotopy, the pair
(FR, GR) can be chosen as (F1, G1) or (F2, G2).

Case (5): ER = {2V2} t {iS}, i = 0, 1, 2, and 3.

The reduced model is C. The branch curve U is not of type I and is transversal

to G so the ramified complex scheme of the pair (U,G) is determined by the real

scheme of U which is 〈i〉, i = 0, 1, 2, and 3. The real part UR consists of i ovals.

From the existence of symmetric quartics one can take a symmetric representative

from the rigid isotopy class for each i (for i = 3 see Figure 5.6). Symmetries of U

with respect to appropriate symmetry axes composed with the rigid isotopies of

the pair (F,G) realize every permutation of the ovals of UR and the permutation

of F and G. Each symmetry has fixed points on U . Hence the result follows from

Refinement 4.7.1 and Lemma 5.1.5.
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L2

F2 G2

F1

G1

L1

Figure 5.6: The quartic U is obtained by a perturbation of four double points.
It is symmetric with respect to the lines L1 and L2. Up to rigid isotopy, the pair
(FR, GR) can be chosen as (F1, G1) or (F2, G2).

Case (6): ER = {2V2} t {S1}.

The resulting model is (C). The branch curve U is the nested quartic with

real scheme 〈1〈1〉〉. It is of type I and both ovals of UR are marked with + in the

complex scheme. From the existence of symmetric quartics or concretely by the

perturbation (2x2 + y2 − 1)(x2 + 2y2 − 1) = ε, for ε > 0 small enough, one can

obtain a symmetric quartic U as in Figure 5.7. Taking the symmetry with respect

to the line L realizes the permutation of F and G. This automorphism has fixed

points on UR. The result follows from Refinement 4.7.1 and Lemma 5.1.5.

�
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LF G

Figure 5.7: The quartic U is the nest that is obtained by the opposite perturbation
of the two dotted ellipses in Figure 5.4. It is symmetric with respect to L.
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