

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

Ph.D. Thesis by

Sanem SARIEL, M.Sc.

Department : Computer Engineering

Programme: Computer Engineering

JUNE 2007

AN INTEGRATED PLANNING, SCHEDULING AND EXECUTION
FRAMEWORK FOR

MULTI-ROBOT COOPERATION AND COORDINATION

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

Ph.D. Thesis by

Sanem SARIEL, M.Sc.

(504022202)

Date of submission : 4 May 2007

Date of defence examination: 22 June 2007

Supervisors (Chairman): Prof. Dr. Nadia ERDOĞAN

Assoc. Prof. Dr. Tucker BALCH
(Georgia Institute of Technology)

Members of the Examining Committee Prof.Dr. Emre HARMANCI

Prof.Dr. Levent AKIN (BÜ.)

Prof.Dr. Coşkun SÖNMEZ (YTÜ.)

Assoc. Prof. Dr. Sabih ATADAN

Assist. Prof. Dr. Feza BUZLUCA

JUNE 2007

AN INTEGRATED PLANNING, SCHEDULING AND EXECUTION
FRAMEWORK FOR

MULTI-ROBOT COOPERATION AND COORDINATION

Dedicated to the memory of my father,
Pilot, Mehmet Sarıel...

ii

PREFACE

I first came to focus on distributed intelligence and multi-entity cooperation
in 2002, and I am always impressed by the way a group or community
constitute a great power morally or physically and get around difficulties by
acting together, as we observe in nature and in our daily affairs. Working on
robots and investigating of intelligence, particularly distributed intelligence, have
been my research objectives since my early years at Istanbul Technical University.

Prof. Tucker Balch helped make many of my research dreams come true. He
has my deepest appreciation for believing in my research, continually supporting
me, and advising me in the way I could improve myself. It has been a pleasure
to work with him in the BORG Laboratory at Georgia Institute of Technology.

In conducting this PhD research and writing this thesis book, I have been very
fortunate to have Prof. Nadia Erdoğan as my co-advisor. I’m deeply indebted
to her for helping me advance my research. In many cases her affectionate
encouragement helped me keep my motivation up.

I feel lucky to have met many great scientists, especially those who greatly
support and encourage young researchers in their research. I am grateful to Prof.
Martin Savelsbergh, Prof. Pınar Keskinocak, Prof. Sven Koenig, Prof. Michail
Lagoudakis and Prof. Ashok Goel for their valuable comments on my research.

I would also thank Prof. Emre Harmancı, Prof. Levent Akın, Prof. Tevfik
Akgün, Prof. Bilge Günsel and Prof. Turgay Altılar for the continuous moral
support they provided during my research studies at Georgia Tech.

Many thanks to young geniuses: Ram Ravichandran, Keith O’hara, Arya Irani,
Victor Bigio, Ananth Ranganathan, Adam Feldman, Michael Kaess, Matt
Powers, Sang Min Oh and all the members of the robotic-discussion-group for
the valuable discussions on robot research and for their friendship.

Pınar Taşkıran, Sibel Yaman, Faik Başkaya, Can Envarlı and Ping Wang have
always been very supportive especially when I felt lonely during this long journey.
My special thanks go to them.

I specifically thank Jacquelyn Berry and Zuhal Yılmazer for their precious efforts
in official tasks and for their valuable friendship.

I am deeply grateful to A. Çağatay Talay for his friendship, continuous support
and encouragement throughout this research and his willingness to take over all
my administrative burdens while I was in Atlanta.

iii

I would finally thank my mother, Necla Sarıel, and my sister, Selen Sarıel. This
PhD thesis research could not have been conducted and completed without their
continuous support, love and patience.

Finally, this PhD book has come to a conclusion. However, I would like to
emphasize what my advisors always mention:
“This is not the end of my research. It’s just the beginning...”

June 2007 Sanem SARIEL

iv

CONTENTS

ABBREVIATIONS ix

LIST OF TABLES xi

LIST OF FIGURES xi

LIST OF SYMBOLS xiv

SUMMARY xvi

ÖZET xix

1. INTRODUCTION 1
1.1. Open Issues in Multi-Robot Coordination Research 2
1.2. A Brief Overview of the Proposed Approach 2
1.3. Contributions of the Thesis 3

1.3.1. DEMiR-CF 3
1.3.2. Formulation of the Cooperative Mission Achievement and

Coordinated Task Selection Problems 5
1.3.3. Integration of Task Allocation, Execution and Contingency

Handling into a Single Framework 5
1.3.4. Real-world Suitability with Limited Assumptions 6
1.3.5. Investigation and Generation of Novel Solutions for Different

Application Problems 6
1.3.6. Combination of The Methods from Different Disciplines 6

2. PROBLEM STATEMENT AND MOTIVATION 7
2.1. Multi-Robot Mission Achievement 7
2.2. Real-Time Issues and Requirements for Multi-Robot Task

Achievement 9
2.3. Multi-Robot Cooperation vs. Coordination 10
2.4. Formulation of the Cooperative Mission Achievement Problem 10

3. BACKGROUND AND RELATED WORK 13
3.1. A Brief Review on the Classification of Earlier Multi-Robot Systems 13
3.2. Organization and Control Hierarchy 14

3.2.1. Centralized Approaches 14
3.2.2. Decentralized Approaches 14

3.3. Task Representation for Coordination 15
3.4. Task Allocation and Coordination Type Based on the Mission

Structure 16
3.4.1. Tight/Loose Coordination 17

v

3.4.2. Allocation of Tasks with Dependencies 17
3.4.3. Combinatorial Effects on Task Assignment 18

3.5. Instantaneous Task Assignment/Scheduling 18
3.6. Reallocation and Dynamic Task Switching 19
3.7. Bounds on the Solution Quality 20
3.8. Organizational Requirements on Multi-Robot Task Execution and

Coordination 20
3.8.1. Coalition Formation 21

3.9. Communication and Coordination Tools 22
3.9.1. Negotiations 22
3.9.2. Auctions 23
3.9.3. Contract-Net-Protocol 23

3.10.Failure Detection and Recovery 25
3.11. Interleaving Planning and Execution 26
3.12.Application Domains 27
3.13.Multi-Robots vs. Multi-Agents 28
3.14. Summary and Discussion 29

4. DEMiR-CF: DISTRIBUTED AND EFFICIENT
MULTI-ROBOT - COOPERATION FRAMEWORK 30
4.1. Integrated Modules of DEMiR-CF 30
4.2. Mission Representation 33
4.3. Inputs and Outputs of DEMiR-CF 35
4.4. Dynamic Priority-based Task Selection Scheme 36

4.4.1. Rough Schedule Generation Scheme 38
4.4.2. DPTSS Algorithm 39

4.5. Cost Evaluation for Rough Schedule Generation and Dynamic Task
Selection 40

4.5.1. Cost Function Design Criteria 41
4.5.1.1. Independent Tasks with Combinatorial Structures 41
4.5.1.2. Interrelated Tasks with Multi-Robot Requirements 42

4.6. Task Allocation 43
4.6.1. Distributed Task Allocation Scheme 43
4.6.2. Communication in DEMiR-CF 44
4.6.3. Roles 45

4.7. Coalition Maintenance/Dynamic Task Switching Scheme 47
4.8. Plan B Precautions: A System-wide Contingency Handling

Mechanism 49
4.8.1. Representation of The System Model In Each Robot’s World

Knowledge 49
4.8.2. Plan B Precaution Routines 52

5. EMPIRICAL EVALUATION OF DEMiR-CF ON THE
MULTIPLE TRAVELING ROBOT PROBLEM 54
5.1. MTRP Problem Statement 54

5.1.1. Remarks on the MTRP Characteristics 55
5.1.2. Operations Research Methods for the MTRP 57

5.1.2.1. Integer Programming Formulation 57
5.1.2.2. Branch and Bound Approach 58

vi

5.1.2.3. Heuristics 58
5.1.3. Robotic Research Methods for the MTRP 58

5.1.3.1. Prim Allocation Method 59
5.1.3.2. Other solutions for the MTRP 60

5.1.4. Cooperation Objectives 60
5.1.5. Application Domains for the MTRP 61
5.1.6. Communication Requirements 63
5.1.7. Formation of the Mission Structure for the MTRP 63

5.2. Applying DEMiR-CF to the MTRP 64
5.2.1. The Dynamic Priority Based Task Selection Scheme 64

5.2.1.1. Selecting is Eliminating the Other: Incremental Allocation
through Unconditional Commitments 64

5.2.1.2. Cost Estimation and Evaluation 65
5.2.1.3. Dynamic Task Selection and Distributed Target Allocation 66

5.2.2. Failure Detection and Recovery 68
5.3. Bounds on the Solution Quality 69

5.3.1. Analysis of the Approach 69
5.4. Implementation Details 70
5.5. MTRP Experiments 71

5.5.1. Experiment 1: Evaluation of the FAC Heuristic Cost Function 73
5.5.2. Experiment 2: Performance Comparison of DEMiR-CF and the

Prim Allocation Approach with the Optimum 73
5.5.3. Experiment 3: Real-Time Dynamic Simulation Experiments 76
5.5.4. Experiment 4: Real-Time, Real-World and Dynamic

Environment Experiments 80
5.6. Summary and Discussion 84

6. EMPIRICAL EVALUATION OF DEMiR-CF ON NAVY
MISSIONS 86
6.1. Naval Mine Countermeasure Missions 86
6.2. Applying DEMiR-CF to the Naval MCM 87

6.2.1. Task Representation for The MCM 87
6.2.2. Exploration for Detection and Classification of MLO Locations 88
6.2.3. Identification of Mine-like Objects 89

6.3. Experimental Results on the Naval MCM 90
6.4. A NAVY Homeland Security Application 94
6.5. Summary and Discussion 98

7. EMPIRICAL EVALUATION OF DEMiR-CF ON RESOURCE
CONSTRAINED AND INTERRELATED TASKS 99
7.1. Complex Multi-Robot Mission Problem Statement 99
7.2. Applying DEMiR-CF to Complex Missions 100

7.2.1. Dynamic Priority-based Task Selection Scheme and Online
Scheduling 100

7.2.1.1. DPTSS Algorithm 103
7.2.2. Distributed Task Allocation Scheme 104
7.2.3. Cost/Bid Evaluation and Tie Breaking Rules 104
7.2.4. Analysis of the Approach 105

7.3. Complex Mission Experiments 105

vii

7.4. Summary and Discussion 110

8. DISCUSSION AND CONCLUSION 111
8.1. Future Work 115

BIBLIOGRAPHY 116

APPENDIX 123

A.TSP HEURISTICS 124

B.TSPLIB INSTANCES 126

BIOGRAPHY 131

viii

ABBREVIATIONS

ALWSE-MC : Autonomous Littoral Warfare Systems Evaluator-Monte Carlo
AUV : Autonomous Underwater Vehicle
CA : Christofides Algorithm
CC : Closest Cost
CNP : Contract-Net-Protocol
CDP : Cooperative Distributed Planning
CIH : Cheapest Insertion Heuristic
CMAP : Cooperative Mission Achievement Problem
CTSP : Coordinated Task Selection Problem
DAG : Directed Acyclic Graph
DEMiR-CF : Distributed and Efficient Multi-Robot - Cooperation Framework
DPTSS : Dynamic Priority-Based Task Selection Scheme
ECT : (Smallest) Earliest Completion Time
EDD : Earliest Due Date
EST : (Smallest) Earliest Starting Time
FAC : Farthest Addition Cost
FIH : Farthest Insertion Heuristic
FIPA : Foundations of Intelligent Physical Agents
FSM : Finite State Machine
GRR : Greatest Resource Requirements
GRPW : Greatest Rank Positional Weight
IP : Integer Programming
KQML : Knowledge Query Manipulation Language
LCT : (Smallest) Latest Completion Time
LIS : Least Immediate Successors
LPT : Longest Processing Time
LST : (Smallest) Latest Starting Time
LTS : Least Total Successors
MCM : Mine CounterMeasure
MILP : Mixed Integer Linear Program
MIS : Most Immediate Successors
MLO : Mine-like Object
MPCP : Multiagent Plan Coordination Problem
MRTA : Multi-Robot Task Allocation
MSLK : Minimum Slack
MTS : Most Total Successors
MTSP : Multiple Traveling Salesman Problem
MTRP : Multiple Traveling Robot Problem
NDP : Negotiated Distributed Planning
NIH : Nearest Insertion Heuristic
NMH : Nearest Merger Heuristic
NNH : Nearest Neighborhood Heuristic

ix

OPT : Optimal
OR : Operations Research
RCPSP : Resource Constrained Project Scheduling Problem
SA : Search Area
ScP : Scheduling Problem
SLAM : Simultaneous Localization and Mapping
SPT : Smallest Processing Time
SR : Search and Rescue
TBD : To be determined
TDL : Task Description Language
TSP : Traveling Salesman Problem
UAV : Unmanned Aerial Vehicle
UGV : Unmanned Ground Vehicle
UUV : Unmanned Underwater Vehicle

x

LIST OF TABLES

Page No

Table 4.1 Robot Team and Capabilities in the Box Mailing Mission 34
Table 4.2 Representation of the tasks of the Box Mailing Mission 35
Table 4.3 Message types in DEMiR-CF 46
Table 4.4 Precautions for contingencies and conflicts 52
Table 4.5 Model checking for tasks and system robots 53
Table 4.6 Model updates related to the messages 53

Table 5.1 FAC heuristic function performance results for the known
TSP instances 72

Table 6.1 The performance results for different message loss rates 94
Table 6.2 The cost evaluations for the application domain 97

Table 7.1 Cost evaluations for the tasks 105

xi

LIST OF FIGURES

Page No

Figure 3.1 A sample mission representation as an AND/OR task tree 16
Figure 3.2 A sample multi-agent plan representation as task graphs 17
Figure 3.3 Contract Net Protocol 24

Figure 4.1 DEMiR-CF Modules 32
Figure 4.2 Directed acyclic mission graph for the Box Mailing Mission 33
Figure 4.3 The Box Mailing Mission initial state 33
Figure 4.4 Basic steps of an auction negotiation process 44
Figure 4.5 An invalid auction cancellation 45
Figure 4.6 Coalition maintenance 48
Figure 4.7 States of the FSMs for single-robot task models 50
Figure 4.8 States of the FSMs for multi-robot task models 51

Figure 5.1 The optimal solution can be obtained by clustering the targets 55
Figure 5.2 Clustering the targets does not necessarily result in the

optimal solution 56
Figure 5.3 MSF allocations 57
Figure 5.4 Effects of the MST traversal strategy on the total cost for

the open traversal version of the TSP 59
Figure 5.5 Two different optimization objectives for the MTRP 61
Figure 5.6 Target selection strategy by the FAC Heuristic function 66
Figure 5.7 The Archimedean spiral and two simple implementations 70
Figure 5.8 The robot with correct localization finds the target 70
Figure 5.9 An implementation of the Archimedean spiral with the

corresponding robot behavior 71
Figure 5.10 Results for the ATT48 TSP instance 72
Figure 5.11 Runtime comparison of the approaches for single robot route

generation 73
Figure 5.12 Performance results of the heuristic approaches 74
Figure 5.13 Allocations generated by each approach for an instance of

15 robots and 50 targets 75
Figure 5.14 Scalability analysis for different number of robots 76
Figure 5.15 Performance results for the Contingency Handling Mechanism 77
Figure 5.16 The initial configuration of Scenario 1 78
Figure 5.17 The final configuration of Scenario 1 78
Figure 5.18 Maps and paths for Scenario 1 79
Figure 5.19 The final configuration of Scenario 2 79
Figure 5.20 Maps and paths for Scenario 2 79
Figure 5.21 The Khepera II robot visits six targets in the environment 80

xii

Figure 5.22 Three Khepera II robots divide the labor of visiting the six
targets 80

Figure 5.23 The team handles the failure of the third robot in real-time 81
Figure 5.24 Single robot cases for different initial deployment locations

of the robots 81
Figure 5.25 Scenario 1: the multi-robot case without failure 82
Figure 5.26 Scenario 2: the multi-robot case in which the third robot

fails after completing its task 83
Figure 5.27 Scenario 3: the multi-robot case in which the third robot

fails before completing its task 83
Figure 5.28 Scenario 4: the multi-robot case in which the first robot fails

before after completing its task 84
Figure 5.29 Scenario 5: the multi-robot case in which the second robot

fails before completing its task 84

Figure 6.1 Conceptual flowchart related to the AUV operations 90
Figure 6.2 NAVY MCM Mission Scenario 1 91
Figure 6.3 NAVY MCM Mission Scenario 2 92
Figure 6.4 NAVY MCM Mission Scenario 3 93
Figure 6.5 Initial mission graph consists of only the search task 95
Figure 6.6 Robots patrol the area in the corresponding regions 95
Figure 6.7 A sample execution trace under highly dynamic situations 96
Figure 6.8 Mission graph and allocations evolving through time

accordingly 97
Figure 6.9 Execution conflicts under limited communication are resolved 98

Figure 7.1 Mission completion time results for the pick-up/delivery
mission 106

Figure 7.2 Total path length results for the pick-up/delivery mission 107
Figure 7.3 Scenario 1 and 2 108
Figure 7.4 Khepera II robots achieve the overall complex mission 109
Figure 7.5 Real scenario mission graph with interrelated tasks 109

Figure B.1 ATT48 TSPLIB instance with 48 nodes 127
Figure B.2 Optimal open-loop route for the ATT48 TSPLIB instance 127
Figure B.3 EIL51 TSPLIB instance with 51 nodes 128
Figure B.4 Optimal open-loop route for the EIL51 TSPLIB instance 128
Figure B.5 BERLIN52 TSPLIB instance with 52 nodes 129
Figure B.6 Optimal open-loop route for the BERLIN52 TSPLIB instance129
Figure B.7 EIL101 TSPLIB instance with 101 nodes 130
Figure B.8 Optimal open-loop route for the EIL101 TSPLIB instance 130

xiii

LIST OF SYMBOLS

α : FAC heuristic parameter
µ : Average
σ : Standard Deviation
Bij : Bidder robot rj for task ti
cij : The cost value to traverse between i and j

Ci : Completion time of task ti
CLi : Coalition leader of Coali
CMi : Coalition member of Coali
c{i, j} : Euclidean distance between i and j

capj : Set of capabilities of robot rj

Coali : Coalition formed to execute task ti
curcsj : Remaining capacity of robot rj

deplisti : Dependency list of task ti
M : Mission to be achieved
M∗ : Minimum matching
MC : Coverage mission
MI : Identification mission
MMTRP : MTRP mission
O : Objective function
pi : Actual processing time of task ti
P (ti) : Set of all predecessor tasks of task ti
rj : A single robot of the multi-robot team indexed by j

relinfoi : Task related information set for task ti
reldist : Relative distance
precinfoi : Precaution information set for task ti
reqcapi : Set of capabilities of to execute task ti
reqcsi : required capacity to execute task ti
reqnoi : Minimum required number of robots to execute task ti
R : Set of the robots in the multi-robot team
Rcsj : Roughly estimation on the remaining capacity for robot rj

RUUV : Set of UUV robots
Si : Actual starting time of task ti
SRj : Rough schedule of robot rj

tφ : Ineligible task
tAj : Active task
tCj : Critical task for robot rj

tEj : Eligible task
tIj : Inactive task
ti : A single task of the overall mission indexed by i

tie : The task in execution
tiej : The task in execution by robot rj

tb : Boundary target

xiv

tsj : The most suitable task to execute for robot rj

T : Set of the tasks of the overall mission
Tφ : Set of all ineligible tasks
TAj : Set of all active tasks
TCj : Set of all critical tasks for robot rj

TEj : Set of all eligible tasks
TIj : Set of all inactive tasks
TRj : Rough target set for rj

TTSP : Partial tour for the TSP
type : Type of task ti
wi : Waypoint indexed by i

wb : Boundary waypoint
Wjk : Rough Region Schedule for robot rj and region k

xij : Indicator (0/1) variable

xv

AN INTEGRATED PLANNING, SCHEDULING and EXECUTION
FRAMEWORK FOR MULTI-ROBOT COOPERATION and
COORDINATION

SUMMARY

Although several architectures have been proposed for multi-robot coordination
previously, the field is still in its early stages and robot teams are still test
subjects in research laboratories. Fortunately, a growing community has been
researching techniques for multi-robot systems. The basis has been formed
for multi-robot systems to serve humanistic needs in the new future in many
domains, such as search and rescue operations and space explorations in the real
world. In fact, even though some of the open problems have been solved, some
open issues still remain even for single bodies of robots.

The real dynamics of physical task performance force unplanned actions to be
taken. Since the world is beyond the control of robots and changes continuously
in real-world applications, the difficulty of the multi-robot task execution
problem goes beyond the task allocation problem. In particular, multi-robot
systems deal with difficulties arising from noisy sensor information, unexpected
outcomes of actions, environmental limitations (especially in communication)
and the presence of failures of hardware. Furthermore, the problem instance may
be evolving through real time which is another important research challenge. All
these factors may affect the overall solution. Against this background, research
in this thesis addresses issues of real-time execution when managing an overall
team by a central authority is not possible due to limitations of the real-world
environments. Therefore, each individual robot should find a way to solve the
global problem from a local perspective in a decentralized way.

The main contribution of this PhD research is the design of a general framework,
Distributed and Efficient Multi-Robot-Cooperation Framework (DEMiR-CF),
that can be used to solve problems on a wide variety of application domains.
DEMiR-CF is suitable for multi-robot teams cooperating to achieve a global
mission. Team members cooperate to fulfill a mission by dividing the labor
of task execution through individual decisions that coordinate their actions,
contributing to the achievement of the goal in a distributed manner.

The cooperative mission execution problem is formulated as the Cooperative
Mission Achievement Problem (CMAP) and each individual robot contributes
to solve the CMAP by solving the formulated Coordinated Task Selection
Problem (CTSP) for itself. These two problem formulations are introduced to
represent the generalized problem and stated formally for the first time in this
PhD thesis. DEMiR-CF is capable of resolving the CMAP and CTSP for robots.

xvi

In the design of DEMiR-CF, the following issues were particularly investigated
as the design criteria: efficient and realistic representation of missions, efficient
allocation of tasks to cooperatively achieve the global goal, maintenance of
the system coherence and consistency by the team members, detection of the
contingencies and recovery from various failures that may arise during runtime,
efficient reallocation of tasks (if necessary) and reorganization of team members
(if necessary).

DEMiR-CF is designed to address different types of missions from the simplest to
more complex ones, including missions with interrelated tasks and multi-resource
(robot) requirements. In the proposed mission representation, components
of individual tasks are also allowed to be updated by robots depending on
real-world requirements.

The framework ensures an efficient way of integrating task planning, allocation
and execution for multi-entity (agent/robot) teams independent of the
underlying low-level behavior architecture, yet without ignoring it. The
integrated components of the framework ensure solving the CMAP in a robust
and efficient way. As a result, global planning, scheduling and execution is
carried on by the cooperative work of robots performing under DEMiR-CF.
Even though an incremental task selection approach is adopted, a global plan
consideration is also preserved to make the system both sound and complete.

The performance evaluations of the framework were implemented both on
simulations and on real robots for different application domains. Each
application domain is a separate problem domain which requires in depth
research.

The Multiple Traveling Robot Problem (MTRP) to explore several targets is
the first application domain on which tests were performed. This domain forms
a basis for different application domains. Although tasks of this domain are
independent of each other, there is a combinatorial structure of the problem
when efficiency of the solution is concerned. Therefore, optimization of the
generated solutions is investigated. Some heuristic cost functions to solve the
CTSP is proposed to be used with DEMiR-CF in the thesis. The performance
of the proposed heuristics and the framework is compared with that of one of
the well-known allocation approaches.

The evaluations on NAVY domains were performed where cooperation of
underwater vehicles is achieved for homeland security missions, such as mine
countermeasure missions. In this domain, the robot team is modeled as a
heterogeneous team and the mission is constructed from different types of tasks,
where each one needs to be performed by a different vehicle. The domain is
modeled as containing both the coverage problem and the MTRP in itself.
Robustness of the framework against both communication and robot failures
and efficiency of its response to the dynamically varying conditions are tested in
simulations.

xvii

In general, DEMiR-CF targets complex missions involving tasks with resource
constraints and interrelations. Therefore, these types of missions are perfect
candidate domains to apply the full functionality of the framework. In the
last experimental setup, specifically, pick-up/delivery and object construction
domains are investigated as complex domains. Different from previous
experiments, the robots are involved in more complex tasks where they interact
with the objects in the environment. The objective is not only optimizing cost
functions but also obeying rules and resolving constraints on task execution
during runtime. The base mechanisms of DEMiR-CF are used to design the
solution. The efficiency of the proposed solution for complex domains is evaluated
through experiments.

xviii

ÇOKLU-ROBOT SİSTEMLERİNİN ORTAK ÇALIŞMASI ve
KOORDİNASYONU İÇİN TÜMLEŞİK BİR PLANLAMA, GÖREV
ATAMA ve YÜRÜTME MİMARİSİ

ÖZET

Literatürde çoklu-robot koordinasyonu için birçok mimari önerilmiş olmasına
rağmen, bu konudaki araştırma alanı henüz gelişmekte olup üzerinde çalışılması
gereken birçok açık nokta bulunmaktadır. Çoklu-robot sistemleri henüz
laboratuvarlarda araştırma denekleri olarak kullanılmakta olsalar da yakın
gelecekte birçok uygulama alanı için insanlık yararına hizmet etmek üzere
ilk adımlar atılmıştır. Bu uygulama alanlarının başında arama-kurtarma
operasyonları ve uzay araştırmaları gelmektedir. Gittikçe artan bir ilgiyle
genişleyen çoklu-robot sistemleri araştırma grupları, çoklu-robot sistemleri için
çeşitli metodlar üzerinde araştırma yapmaktadır. Ancak, tek robotlu sistemler
için bile henüz çözülmemiş birçok problem bulunmaktadır.

Gerçek dünyada ortaklaşa otonom olarak çalışan donanımların görev başarımı
daha önceden planlanmamış davranışlar ve olayları göz önüne almayı gerektirir.
Robotlar kendilerinin kontrol altında tutamadıkları ve sürekli dinamik olan
ortamlar ve uygulama alanlarında çalıştıklarından, çoklu-robot görev yürütme
problemi görev paylaşımı probleminin de ötesinde çok daha zor boyutlara
taşınır. Özel olarak, çoklu-robot sistemleri gürültülü sensör verileri, beklenmeyen
davranışlar ve sonuçları, ortamsal kısıtlamalar (özellikle iletişimde) ve sık
olabilecek donanım bozulma ve hataları gibi çeşitli durumlardan kaynaklanan
zorluklar ile yüzleşmek zorundadır. Bunlara ek olarak problemin kendisi de ortam
durumu veya başka bir sebeple değişim gösteriyor olabilir ki bu da problemi
daha zor kılmaktadır. Tüm bu faktörler sistemin genel başarımını etkiler. Bu
doktora tezi araştırması, tüm bu durumlara karşı gerçek zamanlı görev yürütme
durumlarını da göz önüne alarak ortamdan kaynaklanan kısıtlamalar sonucu
robot sistemini tek bir merkezden yönetmenin mümkün olmadığı durumlar için
geçerli yöntemler üzerine odaklanmıştır. Dolayısıyla her bir robot tüm problemi
yerel olarak dağıtılmış bir şekilde çözmek için bir yol bulmalıdır.

Bu tezin en önemli katkısı, birçok uygulama alanında kullanılabilecek olan genel
bir mimarinin -DEMiR-CF (Distributed and Efficient Multi-Robot-Cooperation
Framework)- tasarımı ve ele alınan uygulama alanları için bu mimari kullanılarak
çözümler önerilmesidir. DEMiR-CF karmaşık bir ana işin başarılması için
robotların ortaklaşa çalışmasını öngören bir mimaridir. Ortak çalışma,
robotların dağıtılmış olarak karar alması ve görev paylaşımı yaparak bütün işin
başarımına katkıda bulunması ile sağlanır.

xix

Ortak iş yürütme problemi -CMAP (Cooperative Mission Achievement
Problem)- her bir robotun bu bütün problemi çözmek üzere kendisi için koordineli
görev seçim problemini -CTSP (Coordinated Task Selection Problem)- çözmesi
ile gerçeklenir. Bu problem tanımları ve formülasyonları genelleştirilmiş ortak
görev yürütme problemini temsil etmek üzere ilk kez bu tezde ortaya konmuştur.
Önerilen mimari de bu problemleri çözmek üzere tasarlanmıştır.

DEMiR-CF tasarımında özellikle şu problemler ve çözümleri üzerine çalışılmıştır:
görevlerin etkin ve gerçekçi şekilde temsili, görevlerin genel amacı gereçeklemek
üzere etkin şekilde atanması, sistem bütünlüğünün ve tutarlılığının robotlar
tarafından korunması, robotların yürütme zamanı oluşabilecek olağan dışı
durumlar, hatalar ve bozulmaları tespit edip uygun hata kotarma yöntemlerini
gerçeklemesi, gerekiyorsa görevlerin etkin şekilde yeniden atanması ve gerekli
durumlarda takım üyelerinin yeniden organize olmaları.

DEMiR-CF en basit işlerden en karmaşık işlere kadar farklı tipte görevler
üzerinde çalıştırılabilecek şekilde tasarlanmıştır. Karmaşık işler birbirlerine
bağımlı ve çoklu kaynak (robot) gereksinimi olan görevler içerebilir. Önerilen
mimaride, görevler, yürütme sırasında gerçek dünya gereksinimlerini karşılayacak
şekilde güncellenebilmesine açık şekilde temsil edilmektedir.

Mimari, çoklu-robot (etmen) sisteminin görev planlaması, ataması ve yürütmesini
alt katman davranış modelinden bağımsız olarak fakat onu gözardı etmeyecek
şekilde gerçekleme imkanı sunar. Mimarinin tümleşik bileşenleri CMAP

problemini hataya karşı dayanıklı ve etkin şekilde çözmek üzere tasarlanmıştır.
Dolayısıyla genel planlama, görev ataması ve yürütmenin eş zamanlı şekilde
gerçeklenmesi, DEMiR-CF mimarisinde tasarlanmış robotlar tarafından mümkün
olmaktadır. Robotlar dinamik ve artımlı olarak görev seçimini yürütürler, ancak
tüm işi etkin olarak tamamlayacak şekilde genel plan değerlendirilmesi yapılır.

Mimarinin başarımı hem benzetim ortamları, hem de gerçek robotlar üzerinde,
farklı uygulama alanlarında sınanmıştır. Aslında, her bir uygulama alanı
derinlemesine çalışma gerektiren ayrı bir problemdir.

Çoklu-robot çoklu-hedef ziyaret etme problemi, başarım analizinin yapıldığı
ilk uygulama alanıdır. Bu problem birçok uygulama alanı için bir temel
oluşturmaktadır. Problem görevleri birbirlerinden bağımsız olsa da, çözüm
kalitesi göz önüne alındığında, problemin kombinasyonal bir yapısı vardır.
Dolayısıyla üretilen çözümlerin eniyilemesi üzerinde durulmaktadır. Bu tezde
bu problemi çözmek üzere DEMiR-CF mimarisinde kullanılabilecek maliyet
hesap fonksiyonları önerilmektedir. Önerilen bu hesap fonksiyonları mimari
ile birlikte gerçeklenmiş ve literatürde iyi bilinen bir görev atama yöntemi ile
karşılaştırılarak başarım analizi yapılmıştır.

Bir başka uygulama alanı olarak mimari, kıta sahanlığını korumaya yönelik
askeri Deniz Kuvvetleri problemleri üzerinde gerçeklenmiştir. Buradaki robotlar
sualtı araçları olup, örnek bir uygulama problemi olarak sualtı mayın tarama ve
imha problemi ele alınmıştır. Robotlar farklı yeteneklere sahip olup heterojen

xx

birimler olarak modellenmiştir. Ana iş, farklı yetenekler gerektiren ve bu
nedenle farklı robotların yürütmesi gereken alt görevlerden oluşmaktadır. Bu
problem içinde, hem ortam tarama, hem de “çoklu-robot çoklu-hedef ziyaret
etme” problemi irdelenmiştir. Ayrıca, mimarinin iletişim problemleri ve robot
bozulmalarına karşı hataya dayanıklılığı ve ortam dinamizmine karşı başarım
iyileştirme yetenekleri irdelenmiştir.

DEMiR-CF mimarisi, en genel anlamda çoklu kaynak gereksinimleri olan ve
birbirleri ile bağlantılı görevlerden oluşan karmaşık işleri çözmeyi hedef alır.
Dolayısıyla bu tür karmaşık görevler, mimarinin tüm fonksiyonelliğini ölçmek
üzere en uygun aday uygulama alanlarını oluşturur. Son deneysel platformda,
karmaşık görevler olarak nesne alma/taşıma ve nesneler ile inşa uygulama alanları
üzerinde çalışılmıştır. Önceki deneylerden farklı olarak, robotlar ortamdaki
nesnelerle de etkileşim kurdukları karmaşık görevler üzerinde çalışmışlardır.
Amaç sadece eniyileme değil, aynı zamanda kısıtlama ve kurallara uygun
şekilde görev yürütmektir. Bu uygulama alanlarında, DEMiR-CF mimarisinin
temel bileşenleri kullanılmıştır. Gerçeklenen deneylerde yöntemin etkinliği
irdelenmiştir.

xxi

1. INTRODUCTION

Research on multi-robot coordination has come into prominence due to the

recent demand for Unmanned Ground Vehicle (UGV), Unmanned Aerial Vehicle

(UAV), Unmanned Underwater Vehicle (UUV) or space rover teams for both

humanitarian and military applications.

Multi-robot systems are suitable for domains in which the completion of the

mission is not possible with a single robot or situations in which coordination of

more than one robot contributes to the efficiency of the overall system. Sample

situations observed in nature also reveal how utility is gained when entities

behave in a cooperative manner. Cooperation among animals and/or humans is

the most apparent evidence of this theory.

Another reason for using multi-robot systems is the innate requirements for

distributing the system and the solution. In fact, the structure of the problem

domain may inherently possess distributed parts in space, time or functionality.

Such sample domains are listed below:

• Cooperative object transportation and manipulation, manufacturing, site

preparation, underwater construction, or pick-up/delivery

• Urban search and rescue

• Urban reconnaissance/surveillance

• Coverage for map building, searching, snow removal, lawn mowing, car body

painting, harvesting, etc.

• Formation generation and reconfiguration for special purposes

• Robot soccer

• Cooperative multi-target search and tracking

• Hazardous cleanup, waste cleaning, mine cleaning (ground/underwater)

• Planetary exploration

1

Sometimes robot application domains contain assemblage of these missions.

Some of these domains are adversarial, that is, robots compete against each

other, such as in multi-robot soccer teams. However, in this research, we focus

on cooperative multi-robot systems. Our proposed approach may also fit in

adversarial domains as well, interpreting the competition as facing difficulties of

the environment in a cooperative domain.

1.1. Open Issues in Multi-Robot Coordination Research

Although several architectures have been proposed for multi-robot coordination,

the field is still in its early stages with a great deal of open questions in many

dimensions. In fact, even though some of the open problems have been solved

in single robot research, some open issues still remain even for single bodies of

robots.

Open issues of multi-robot coordination that we would like to address are:

• How can tasks be represented for effective cooperation?

• Which robot should perform which task in order to cooperatively achieve

the global goal? Who should take which role in the team?

• How is group coherence and consistency maintained?

• Which information is shared when there are environmental, communication

and/or process power limitations?

• How are contingencies detected?

• How are allocations re-organized when contingencies are detected?

In addition to these open questions, Parker (2004) brings forward the open issue

of “whether a general architecture can be implemented to cover a wide area of

applications” in her multi-robot research review.

1.2. A Brief Overview of the Proposed Approach

This PhD research aims to focus on the investigation of the open issues in

multi-robot task allocation and execution problem in the context of autonomous

achievement of a mission and to propose novel algorithms to address open issues,

explicitly for task allocation and execution. We do not touch on research on

low-level essential robotic elements such as localization, mapping, etc. Our

2

main objective is to present a new effective strategy, integrating task planning,

allocation and execution for multi-entity (agent/robot) teams, independent of the

underlying low-level behavior architecture, yet without ignoring it. Our research

is closely related to Operations Research and Scheduling Theory, Distributed

AI/Multi-Agent Systems, Planning, and undoubtedly Robot Research.

Several real-time and real-world issues and limitations are analyzed for different

application domains in this PhD research. Then, the problem is formulated as

Coordinated Task Selection Problem for each robot in a decentralized setting to

solve the reformulated the Cooperative Mission Achievement Problem. To solve

the formulated problem, a novel decentralized multi-robot cooperation framework

is proposed. The new approach integrates incremental task selection, distributed

task allocation and contingency handling mechanisms to be performed during

runtime in a single framework for efficient achievement of complex missions

involving both resource-constrained and interrelated tasks. Experiments to

analyze the performance of the new approach are conducted on different

application domains in both simulations and in real environments with real

robots. In addition to the proposal of this new framework, this study also

provides real-world applicable solutions using the new framework for separate

application domain problems.

1.3. Contributions of the Thesis

The main contributions of this PhD research are threefold. The first one is

the formulation of the Cooperative Mission Achievement Problem (CMAP)

and the Coordinated Task Selection Problem (CTSP) based on the Operations

Research, Robot Research and Distributed Artificial Intelligence Research

problems. The second and most important contribution is the proposal of an

integrated cooperation and coordination framework, Distributed and Efficient

Multi-Robot-Cooperation Framework (DEMiR-CF), for a multi-robot team to

solve the CMAP and CTSP efficiently. The third contribution is the set of near

optimal solutions generated for several application domains with DEMiR-CF. We

will briefly explain these contributions in the following subsections.

1.3.1. DEMiR-CF

DEMiR-CF is an incremental and dynamic task allocation framework suitable for

a multi-robot team to achieve a complex mission cooperatively in a distributed

manner, simultaneously handling real-time contingencies.

3

In the design of DEMiR-CF, its suitability and applicability to many types

of robot platforms is targeted and computationally tractable procedures are

proposed in the framework to be performed on robots even with limited

computational capabilities. The following properties in DEMiR-CF are

endeavored to be achieved:

• Integrity: DEMiR-CF integrates task planning, scheduling and execution

into a single framework for real-time task achievement. From our

point of view, in order to obtain globally (near-)optimal solutions, task

allocation, execution and contingency handling should be integrated into

the cooperation framework without assuming they are achieved separately.

This is the main rationale behind our framework.

• Efficiency: The main strength of DEMiR-CF is its incremental and

dynamic task selection and allocation strategy through forming rough

schedules which is proved to be preferable when compared to the

complete allocation strategies for multi-robot systems. This approach

can generate highly acceptable solutions for real-time task achievement

with a significantly shorter response time. The efficiency of DEMiR-CF

is validated through evaluations performed on different simulators and in

real experimental environments with robots, as well for different NP-Hard

problems.

• Flexibility: DEMiR-CF is a highly flexible framework that responds

immediately to changes at runtime and adapts its behavior accordingly.

Its flexible task representation design allows for dynamic changes in

the decomposition of tasks during runtime. Online tasks that are

generated during runtime by either operators or active robots can be easily

integrated into the problem instance and the required actions are performed

immediately by means of the incremental task selection approach. Resource

constraints on task execution can also be dynamically updated based on the

physical requirements determined by robots during runtime task execution.

• Robustness: Plan B Precautions, an extensive design of the precaution

routines and the solution quality maintenance schemes are integrated into

DEMiR-CF for robots to efficiently recover from contingencies. Therefore,

even when (1) the communication is not reliable, (2) there is the potential

risk of failures, and (3) the environment is dynamic or unstructured, the

framework can ensure robustness by reconfiguring the allocations in an

efficient and completely distributed manner.

4

• Consistency: DEMiR-CF ensures a globally consistent system and

updated robot models regardless of the availability of resources in a

completely distributed manner. System-wide consistency is achieved

through the designed precaution routines, which results in the elimination

of redundant efforts.

• Generality: The intended application domains of DEMiR-CF cover a

broad range. This is validated through different implementations of the

framework in different domains. It is expected that the evaluations of

DEMiR-CF on different domains also contribute to the research on the

individual problems and the application domains.

• Applicability: DEMiR-CF can easily be used even on very small

robots with limited computational capacities and capabilities without

dependencies on specific software and/or hardware.

1.3.2. Formulation of the Cooperative Mission Achievement and

Coordinated Task Selection Problems

We formulate the multi-robot mission achievement problem stating the

requirements on the effective task allocation and reallocations against the real

dynamics. The Coordinated Task Selection Problem is a part of the Coordinated

Mission Achievement Problem for robots to select the most suitable task by a

time-extended view of the problem.

1.3.3. Integration of Task Allocation, Execution and Contingency

Handling into a Single Framework

The main strength of DEMiR-CF is that it integrates continual task allocation

and execution capabilities along with the contingency handling mechanisms.

In every phase of the design, the main consideration has been to combine

different aspects of the framework so that they form a coherent whole. The

implementation of DEMiR-CF, a high level framework, takes place on top of the

main robot architecture. The dynamic task selection, distributed task allocation

and contingency handling mechanisms of DEMiR-CF are smoothly integrated

into each other to achieve the real-world complex missions by a multi-robot team.

DEMiR-CF can easily be implemented on different robot platforms along with

low-level procedures for motor and sensor interface, localization and mapping.

Target allocation and route construction are integrated into each other by

an incremental assignment approach for the multi-target exploration domain.

5

Multi-robot planning is integrated into task allocation for complex missions of

interrelated and multi-resource dependent tasks.

1.3.4. Real-world Suitability with Limited Assumptions

In our research, we endeavor to limit assumptions and make the system mirror

reality to the greatest extent. Therefore, we have focused on real-time situations

and designed the framework as capable of detecting and recovering from various

real-world failures efficiently. This goal is achieved through an extensive design of

precaution routines, which ensure the suitability and robustness of the framework

in real-world domains. Several design criteria are investigated for the potential

situations that may occur in real-time and suitable recovery actions are activated.

1.3.5. Investigation and Generation of Novel Solutions for Different

Application Problems

While designing DEMiR-CF, evaluations on different domains were performed on

both simulated and real robots. Each separate domain is a stand alone problem

domain for multi-robot systems. By applying the framework to separate domains,

both the generality of DEMiR-CF is evaluated and these individual problems are

investigated in detail. Different formulations of the problems and sometimes

integration of the domains appeared as new testbeds. Since different domains

require different cost function designs, the treatment of these individual tasks is

also investigated.

1.3.6. Combination of The Methods from Different Disciplines

We are inspired by the methods in Robot Research, Distributed Artificial

Intelligence Research and Operations Research in the design of DEMiR-CF. This

interdisciplinary research highlights both the synergy between the problems of

these different domains and the ability to form new routes on different views of

the problems.

Finally, in doing this research, we aimed at developing ideas, approaches and

algorithms for robots to serve our humanistic and protective needs in a better

way, to challenge disasters beyond humans and/or to make use of technology

to better understand nature (e.g., in space exploration experiments). Although

these ideas may be used for protecting ourselves from each other, we are totally

against the use of these ideas for any destructive and inhuman objectives.

6

2. PROBLEM STATEMENT AND MOTIVATION

In this chapter, we present the problem investigated in this Ph.D. research and

its formulation based on the problem formulations in Operations Research (OR).

We are inspired by the Resource Constrained Project Scheduling Problem

(RCPSP) (Brucker, 2002) treated in OR to formulate the general multi-robot

multi-task allocation problem. Beyond the base problem, unpredictability of

the exact processing times of tasks, unstable cost values during runtime and

inconsistencies due to uncertain information form the main difficulties of the

task allocation problem for robot systems. Particularly, robots also deal with

real-world missions that may change their forms by introducing new online tasks

during execution, making the problem more challenging besides the real-world

dynamism.

2.1. Multi-Robot Mission Achievement

In this research, we investigate a framework for a multi-robot team to efficiently

allocate tasks among themselves and achieve the overall mission. This problem

simply deals with “who executes which task and when?” Therefore, the problem

can be divided into several sub-problems: First, the overall mission should

be decomposed into tasks to be executed by different robots. After this,

the tasks should be allocated to the robots with an efficient representation.

Based on the allocations, the robots begin performing the corresponding tasks.

During task execution, group coherence and consistency should be maintained

in several different situations that may appear in the real world. The robots

need to exchange information and adapt to the changing situations. Meanwhile

robustness should be ensured by detecting the anomalies, and the system should

recover from them.

There are three main allocation schemes to find schedules for robots:

1. Applying a centralized approach which executes on the operational leader

robot(s),

2. Applying a centralized approach which executes on each robot, or

7

3. Applying a distributed approach which executes on each robot

The overall schedule may be carried out by using operations research methods

(the first allocation method). However, shortcomings of the central authorities

and scheduling all tasks from scratch, especially in executing real-world tasks are

numerous, as listed below:

• For the decision to be made by a centralized (semi-centralized) algorithm,

the related information should be collected from all robots (even current

fuel levels). In dynamic environments, updated information related to the

resources (robots) should be continually recollected.

• Results of the scheduling process should be continually delivered to the

individual robots.

• Additional complications for determining the decision-making authority

exist, if there is more than one decision-making authority.

• These former issues should be handled in dynamic real-task environments

which are often unpredictable and noisy.

• A huge amount of redundant scheduling cost arises, if globally

(near-)optimum solutions are desired.

• The system becomes sensitive to single/multiple point(s) of failures.

Furthermore, besides the real-time execution burdens, the robots have to deal

with others’ plans in the first allocation scheme.

The second allocation method does not suggest coordination among robots. The

robots may plan themselves without knowledge about the intentions of the other

robots, and consequently, further inconsistencies may arise.

The third allocation scheme, on the other hand, can be applied by an effective,

explicit task allocation approach and can provide a scalable and efficient way of

distributing tasks. In this approach, robots announce their intentions regarding

a task selected to execute, may reason about the tasks that others have selected

and can make future plans based on this information. The decision-making

authority is therefore distributed among the robots, thus arriving at a scheduling

solution in a distributed manner. However, it may not guarantee finding the

optimal schedules. By introducing efficient heuristic cost functions, the solution

quality may be improved.

8

Our research addresses issues of real-time execution when the managing of the

overall team by a central authority is not possible due to limitations of the

real-world environments. Therefore, each individual robot should find a way

to solve the global problem from a local perspective while thinking as globally as

possible as in the third allocation scheme.

2.2. Real-Time Issues and Requirements for Multi-Robot Task

Achievement

Even in the case of carefully written orchestra scores or playbooks, the real

dynamics of physical task performance force some unplanned actions to be taken.

Since the world is beyond the control of the robots and changes continuously in

real-world applications, the difficulty of the multi-robot task execution problem

goes beyond the task allocation problem. In particular, multi-robot systems deal

with difficulties arising from noisy sensor information, unexpected outcomes of

actions, environmental limitations (especially in communication) and the presence

of failures of hardware. All these factors may affect the overall solution. We list

evolving circumstances that may change the solution as:

• Self failure detection: Robots detecting their own failure.

• Robots detecting the failure of another robot.

• Change in the estimated task execution cost/time: Environmental

dynamics, uncertain knowledge, or hardware problems may cause delays

in task execution or early achievements of tasks. Uncertain sensor and/or

localization information may also result in incorrect estimations.

• Change in the task definitions: Task dependencies, priorities, or the overall

objective (goal) may change. Some tasks may become invalid during

runtime.

• New online tasks introduced by human operators or discovered by the robots

themselves.

• New robots being released, or some failed robots being repaired or

recovering from trap-like threats.

• Intervention and manual changes on assignments by external agents.

Some of these situations may arise after either internal or external events. Given

these contingencies, even the result of an approach capable of finding the optimal

solutions may become suboptimal under the uncertainties of the real-world

9

applications. Verification of the solution optimality is also a difficult issue for

real-world applications.

2.3. Multi-Robot Cooperation vs. Coordination

Malone and Crowston (1994) define coordination as managing dependencies

among activities. Durfee (2001) defines coordination as an agent’s fundamental

capability to decide on its own actions in the context of the activities of

other agents around it. According to Jennings’ definition (Jennings, 1996),

coordination is the process by which an agent reasons about its local actions and

the (anticipated) actions of others to try and ensure that the community acts in

a coherent manner.

Cooperation on the other hand refers to the practice of people or greater entities

working in common with commonly agreed-upon goals and possibly methods

instead of working separately in competition (Wikipedia-Cooperation).

Therefore, there is an important distinction between cooperation and

coordination. This distinction is made in desJardins et al. (1999), where

multi-agent interaction is classified under two planning perspectives: Cooperative

Distributed Planning (CDP) and Negotiated Distributed Planning (NDP).

Although there is no clearly defined boundary between these models, CDP agents

typically exchange information about their plans, which they iteratively refine

and revise until they fit together, whereas NDP agents negotiate over planned

activities to ensure that their local objectives are met by their plan, when viewed

in a global context. Coordination is defined as “incremental merging of individual

agent sub-plans (multi-agent filtering)”.

2.4. Formulation of the Cooperative Mission Achievement Problem

General multi-robot task allocation problem may be formulated based on the

well known Resource Constrained Project Scheduling Problem (RCPSP) in OR

(Brucker, 2002). RCPSP is known to be an NP-Hard problem (Weglarz, 1999).

The adapted version of the formulation for our multi-robot task allocation

problem on project tasks is given as follows. A complex mission consists of a

set of tasks T = {t1, ..., tn} which have to be performed by a team of robots

R = {r1, ..., rm}. The tasks are interrelated by two types of constraints. First,

precedence constraints are defined between activities. These are given by relations

10

ti ≺ tj , where ti ≺ tj means that task tj cannot start before task ti is completed.

Second, a task ti requires a certain set of capabilities reqcapi and certain number

of robots (resources) reqnoi to be performed.

Using the given notation, Scheduling Problem (ScP) is defined as determining

starting times of all tasks in such a way that:

• at each execution time, the total reqnoi for a task ti is less than or

equal to the number of available robots (RSj = ∪rj) with reqcapi ⊆ capj

(Condition-1).

• the given precedence conditions (Condition-2) are fulfilled, and

• the makespan Cmax = max(Ci), 1 ≤ i ≤ n (Objective, O) is minimized,

where Ci = Si + pi is assumed to be the completion of task ti, where Si is

the actual starting time and pi is the actual processing time respectively.

This problem can be also be stated as a multiprocessor task scheduling problem

and it is proved to be an NP-Hard problem by Brucker (2001).

Beyond this base problem, the real-time issues presented earlier add further

dimension into this problem. It’s not always possible to estimate the exact

processing times (p) of tasks in real-world missions, especially those in which

robots are involved. However, to form a complete schedule, it is necessary to

make an approximation in terms of the best knowledge available.

The cost values are unstable during runtime and usually inaccurately estimated.

Since the sensor values of the robots are noisy and world knowledge is

uncertain, inconsistencies are unavoidable. Particularly, the robots also deal with

real-world missions that may change their forms by introducing new online tasks

during execution, making the problem more challenging besides the real-world

dynamism.

Difficulty of the task allocation/reallocation problem arises when communication

is limited and robots should autonomously perform task allocation at the same

time as task execution. Simultaneous execution requirements make the problem

more challenging because each robot should be in its most suitable execution in

a future formation and estimate it correctly before making a decision with the

minimum communication possible.

The Coordinated Task Selection Problem (CTSP) we propose is a part of the

Scheduling Problem (ScP) and is stated for each robot. When each CTSP is

solved in a time-extended manner, an overall schedule of the tasks and their

11

executors can be found. The new formulated task selection problem that robots

try to solve is given as follows: CTSP for each robot (after either being idle or

completing a task) is determining the next task ti to be selected in such a way

that:

• task ti is not achieved yet,

• total reqnoi for task ti is less than or equal to the number of available robots

(RSj = ∪rj) with reqcapi ⊆ capj (Condition-1),

• the given precedence conditions (Condition-2) are fulfilled,

• and the selected objective (O) is minimized.

Including the CTSP , the Cooperative Mission Achievement problem (CMAP)

for each robot is formulated as follows:

1. Select the task in such a way that the CTSP is satisfied,

2. Determine the most appropriate robot (coalition) according to

communication or beliefs to execute the task; resolve conflicts, if

any,

3. Execute the selected task efficiently, if it is appropriate to execute, and

4. Simultaneously respond to contingencies and return to Step 1, when

necessary, until the mission is achieved.

The second step in the formulation of CMAP is required due to the uncertainties

in the knowledge of robots. If robots had complete knowledge over the world state,

then this step would become redundant. Real-world limitations make the fourth

step an inevitable part of this problem.

12

3. BACKGROUND AND RELATED WORK

The goal of this section is to introduce the main concepts and basic vocabulary

needed to comprehend the proposed approach. The material has been classified

under different subtitles including corresponding related work to give better

insight into the principles used in the research. Each corresponding section first

introduces coordination mechanisms, then reviews the earlier implementations

that utilize them.

3.1. A Brief Review on the Classification of Earlier Multi-Robot

Systems

There are two different types of approaches for multi-robot coordination:

implicit/emergent coordination and explicit/intentional coordination. Implicit

coordination methods take their grounds from biological inspirations. These

systems are suitable for large teams to effectively achieve an overall mission

with the local view of each individual team member. This approach produces

highly effective solutions when combined with behavior based architectures for

domains such as foraging (Balch and Arkin, 1998). However, these systems are

usually domain-dependent. Explicit coordination schemes, on the other hand,

embody more complex representations and algorithms compared to the implicit

case, so their generalization is much easier. They may be extended to address a

wide variety of applications if implemented effectively. In this section, we review

the existing work in explicit multi-robot coordination for team tasks in detail,

leaving implicit approaches out of our scope.

Gerkey and Mataric (2004) present a taxonomy for the Multi-Robot Task

Allocation (MRTA) problem. In their analysis of this problem, they state that

utility is the core subject of optimization of overall solution quality. Since utility is

a measure of both the robot’s state and that of the environment, its inexactness

due to sensor noise, uncertainties, and changes in the environment makes the

multi-robot coordination problem difficult. Additionally, it is emphasized that

it is often difficult to measure the main objective being optimized during

execution. In their taxonomy, the problems can be classified within three different

dimensions:

13

• Single-task robots (ST) vs. Multi-task robots (MT): Robots may execute

only single tasks at a time or may be in execution of more than one task.

• Single-robot tasks (SR) vs. Multi-robot tasks (MR): A single task execution

may require one or more robots to execute.

• Instantaneous assignment (IA) vs. Time-extended assignment (TA): Arrival

of new tasks may be instantaneous, that is, there may be no knowledge of

the release time of tasks, or task information may be given to the system

initially.

According to this classification, current multi-robot systems are considered as

an instantiation of each dimension and a combination of them.

3.2. Organization and Control Hierarchy

Intentional multi-robot coordination can be achieved by either centralized

control or decentralized control. In the following subsections, we review these

approaches along with recent research.

As presented in the previous chapter, the centralized approach is not usually

successful, especially when communication is limited between the operator and

the robots or with the presence of a high possibility of single point of failure.

Therefore, this work focuses on distributed coordination frameworks, and we

broadly review the literature on this subject.

3.2.1. Centralized Approaches

The initial focus in multi-robot research was on centralized approaches. One

of the earlier works proposed by Tews (2001) is a centralized coordination

framework, emphasizing the importance of sharing the same timing and model of

environmental parameters concerned with the activity for coordinating entities.

Recently, Koes et al. (2005) have proposed a centralized architecture with a Mixed

Integer Linear Program (MILP) approach for multi-robot coordination in the

search and rescue domain.

3.2.2. Decentralized Approaches

Parker (1998) has presented one of the earlier works for instantaneous multi-robot

task assignment with a behavior based framework, ALLIANCE, and further

extended it by integrating learning into the system in L-ALLIANCE.

14

Recent studies have revealed that the distributed approach, especially when

complemented with the auction-based methods, has shown great promise for

multi-robot task allocation during the last decade because of its scalability.

M+ (Botelho and Alami, 1999) is one of the most successful architectures for

distributed task allocation and achievement, addressing many real-time issues,

including plan merging paradigms. MURDOCH (Gerkey and Mataric, 2002) is

a framework that achieves publisher/subscriber type allocation for instantaneous

assignment. Dias (2004) proposes a combinatorial auction-based task allocation

scheme: TraderBots. Zlot and Stentz’s work (Zlot and Stentz, 2006) on task tree

auctions is presented as an extension to the Traderbots approach to address more

complex tasks which can be decomposed into task trees. Lemaire et al. (2004)

propose a task allocation scheme for multi-UAV (Unmanned Aerial Vehicles)

cooperation with balanced workloads of robots. Recently Gancet et al. (2005)

have proposed a framework for multi-UAV coordination. The application problem

requires consideration of temporal constraints, uncertainties of task execution,

reactivity to contingencies and changing priorities during runtime by operators.

Their approach supports both centralized and distributed coordination and uses

synchronization signals to coordinate synchronization among UAVs. We review

these architectures in the following corresponding subsections.

3.3. Task Representation for Coordination

Tasks need to be efficiently represented before they are allocated among the

robots. This may require that the overall mission be decomposed into several

tasks.

In earlier systems, usually ad-hoc representations are used to represent the

mission structure. Some models for task representations for robots such as

Task Description Language (TDL) (Simmons and Apfelbaum, 1998) exist in

the literature; however, to our knowledge, a TDL representation supporting

multi-robot coordination has not been released or published yet. Goldberg et al.

(2002) use TDL in the executive layer of their layered market-based coordination

architecture. TAEMS framework ensures ways to define interrelations among

tasks in a detailed expression syntax (Decker, 1996) for multi-agent coordination.

Zlot and Stentz (2006) use AND/OR trees (Nilsson, 1986) to represent alternative

and entailed solutions for task execution. In Figure 3.1 a sample task tree

representation can be seen for the reconnaissance mission. In this mission

description, the area should be covered by dividing the region into different parts

(AND connections) in different ways (OR connections).

15

Reconnaissance

Mission

Cover Area

1

Cover Area

2

Cover Area 1

Plan 1

Cover Area 1

Plan 2

OP

1-1

OP

1-2

OP

1-3

OP

1-4

OP

1-5

Cover Area 2

Plan 1

Cover Area 2

Plan 2

OP

2-1

OP

2-2

OP

2-3

OP

2-4Primitive

Abstract

Figure 3.1: A sample mission representation as an AND/OR task tree (Zlot
and Stentz, 2006)

The task dependency issue, on the other hand, presents orderings among tasks

and has not been given much attention in earlier multi-robot systems. The

interdependencies make the NP-Hard multi-robot coordination problem even

harder. The interrelations among tasks require effective task representations. As

Malone and Crowston (1994) state; if there is no interdependence, there is nothing

to coordinate. Lemaire et al. (2004) represent temporal interdependencies as

task trees and the task execution is synchronized among robots by temporary

master-slave relationships.

Graph representations may be more suitable for representing tasks with

precedence relations as in activity on node graphs. This representation enables

the usage of graph algorithms on these graphs. In multi-agent research, each

agent’s abstract plan is given as a separate graph and interrelations are defined

on this graph. A sample multi-agent plan (Cox et al., 2005) for the Multiagent

Plan Coordination Problem (MPCP) is given with interrelations between tasks

(represented as boxes), preconditions and post-conditions in Figure 3.2. The

preconditions are labeled on the arcs, whereas the postconditions are stated near

the task boxes.

3.4. Task Allocation and Coordination Type Based on the Mission

Structure

We classify task coordination for multi-robot systems into four subclasses, namely,

tightly coupled tasks, loosely coupled tasks, interrelated tasks and tasks as parts

of a combinatorial structured mission.

16

1

3

5

2

4

6

g1

g2

g3

 x y

 a c

d e

 not (b) c

b

b

Figure 3.2: A sample multi-agent plan representation as task graphs (Cox et
al., 2005)

3.4.1. Tight/Loose Coordination

In tightly coupled tasks, the actions implemented by each robot are highly

dependent on the actions of others. Therefore, tightly coupled tasks are

represented as non-decomposable atomic units. These tasks require cooperative

work of all the participants, resolving constraints among each other. Interactions

may have unexpected outcomes affecting each other. A sample application of

tightly coupled task execution is presented in Kalra et al. (2005), in which robots

try to sweep a perimeter while coordinating their movements. Task dependencies

are considered in keeping a formation while simultaneously obeying some rules.

In loosely coupled task execution, the actions performed for individual tasks

do not have effects on other tasks. Separate individual tasks can be assigned

to different robots in the team. MURDOCH framework (Gerkey and Mataric,

2002) is evaluated on both a simple task domain with loosely coupled tasks and

a box pushing domain as a tightly coupled task domain. In the latter domain,

the monitoring for task execution is handled and the directives are given by a

watcher robot.

3.4.2. Allocation of Tasks with Dependencies

Tasks with precedence/resource constraints are represented in task graphs

in which nodes represent the individual tasks, whereas the arcs represent

the interrelations. These interrelations may correspond to shared resources,

producer/consumer, simultaneity and task-subtask dependencies (Ossowski,

1999). The Pick-Up/Delivery domain tasks can be classified in this class because

of the producer/consumer type of dependency relation for the pick-up tasks

and the delivery tasks. More complicated interrelations may be involved in the

mission representations.

17

Task dependency has been analyzed in some earlier multi-robot cooperation

schemes. The work by Alami et al. (1998) on multi-robot coordination presents a

generic scheme based on a distributed plan-merging process. Although optimality

is not guaranteed, Plan Merging Operation (PMO) provides a coordinated

plan in their approach. A deadlock resolution is implemented in a distributed

manner. The M+ scheme (Botelho and Alami, 1999) combines local planning

and negotiation for task allocation, and cooperative reaction for contingencies.

In their framework, a mission is a set of partially ordered tasks. Each robot

has its own local world knowledge. Tasks are allocated through negotiation

processes. Alami and Botelho (2001) introduce the mechanism concept in the

framework M+CTA as an improvement to the M+ scheme. Mechanism is used

for the resources in multi-robot cooperation. Each robot has an individual plan

and tasks are initially decomposed and then allocated. After this planning step,

robots negotiate with each other in order to incrementally adapt their plans in a

multi-robot context.

3.4.3. Combinatorial Effects on Task Assignment

Tasks with combinatorial structures take part in the task classes with soft

interrelations (i.e., not as hard as in tightly coupled tasks) in our task

classification. In this class, although there is no interrelation among tasks in

the mission definition, because of the combinatorial structure of the problem,

the solution quality highly depends on which task is performed first and by

which robot. Multi-robot exploration as a Multiple-TSP problem, the commonly

studied application domain, belongs to this class of tasks. Separately Lagoudakis

et al. (2004), Dias and Stentz (2002) and Lemaire et al. (2004) have studied this

problem.

3.5. Instantaneous Task Assignment/Scheduling

Multi-robot task allocation is better viewed as a scheduling problem when there

are interrelations and dependencies among tasks. When the problem solving time

is limited, Branch and Bound or MILP methods may not be convenient. In this

case, heuristic methods are preferred to find a good solution in reasonable time.

Furthermore, finding a solution with these approaches in a decentralized setting

may need considerably greater efforts in both computation and communication.

Given these limitations, instantaneous task assignment becomes profitable as

it provides a dynamic solution allocating tasks to robots whenever resources

are available (Parker, 1998; Gerkey and Mataric, 2002). However, in this case,

18

the global solution quality may be degraded if the decisions are made by just

using the up-to-date knowledge available, ignoring the global solution quality.

Paquet (2006) models the multi-agent task assignment problem as a scheduling

problem for the RoboCupRescue simulation domain. The main objective is

the maximization of the number of rescued civilians in a simulated disaster

environment. They compare both centralized and distributed scheduling in their

work. They conclude that the distributed scheduling performance is as good as

that of the centralized scheduling and the decentralized scheduling approach is

more robust. In the distributed approach, each agent locally chooses its best

task to accomplish using a scheduling algorithm. Then, the best local task

information is exchanged among agents to find the global best task to perform.

The Earliest Due Date (EDD) algorithm is used to schedule the tasks both

locally and globally. If there is no overload, this algorithm is optimal for the

given objective of maximization of the number of rescued civilians. The EDD

algorithm is a useful tool to schedule tasks that have no interdependencies and to

make instantaneous assignments. In the EDD algorithm, future considerations

and interrelations are not taken into consideration.

3.6. Reallocation and Dynamic Task Switching

Depending on the application domain and the frequency of the change in

the world correspondingly, task reallocation is needed to adapt to changing

situations. In dynamic games, such as RoboCup soccer domains, this frequency

is high. However, this frequency may be much lower when robots run in fully

structured environments with known maps and few unexpected events (e.g.,

robots working in a fully structured and isolated factory environment.)

Lagoudakis et al. (2004) propose a task reallocation method to be applied

whenever the world knowledge of the robots changes in the multi-target

exploration domain. On the other hand, dynamic scheduling and task selection

(Paquet, 2006) prevent rescheduling all the tasks that have been previously

scheduled. As stated in Paquet (2006), rescheduling each time that the world

knowledge changes could make agents switch between tasks frequently. In their

work, task preemption is not allowed to circumvent this situation.

In ALLIANCE (Parker, 1998), responding to unexpected events and dynamic

task reallocation are provided through the use of motivations: robot impatience

and robot acquiescence. The impatience motivation enables a robot to handle

19

situations when other robots fail in performing the given tasks. The acquiescence

motivation enables a robot to handle situations in which it fails to properly

perform its task. In Traderbots (Dias et al., 2004), task reallocation is achieved

through continuous auctioning by one of the robots. In MURDOCH (Gerkey

and Mataric, 2002), task reallocation is provided through the observations and

directives of the leader robot for tight coordination, and a publisher/subscriber

type of instantaneous task allocation approach for loosely coupled tasks. In

M+ (Botelho and Alami, 1999), contingencies in task execution are handled by

re-planning for execution of the goals at hand by each robot. Chaimowicz et al.

(2002) address the task dependence and role exchange issues in their work. Utility

calculation is implemented to perform role exchanging. Task announcement is

used to call for additional help. In the work by Lemaire et al. (2004), allocations

are implemented whenever the world knowledge of robots changes (there may be

new online tasks or robots may fail to achieve their plans).

3.7. Bounds on the Solution Quality

The exact bounds of the solution quality is hard to evaluate for robot systems due

to uncertainties. Therefore, in the last decade researchers have proposed effective

approaches and opportunistic methods without giving boundaries on the overall

solution quality. The one exception is Lagoudakis et al. (2004); however, their

work assumes perfect communication and contingencies are not considered in

these boundaries.

3.8. Organizational Requirements on Multi-Robot Task Execution

and Coordination

Tasks can be classified according to single robot/multiple robot requirements

for task execution, as in the taxonomy given in Gerkey and Mataric (2004).

Furthermore, robots in multi-robot task execution may be part of either a

homogeneous or a heterogeneous group. The heterogeneity may be in the

possessing capabilities or in the task execution performance. For example, the

robots may have the same equipment capable of achieving all the tasks of the

mission but may differ in abilities such as speed. Dahl et al. (2004) address

this issue in their task allocation method through vacancy chains. This method

ensures differentiation between robots based on their individual performances not

related to their physical and sensor capabilities. High-value tasks are assigned

to the high-performance robots.

20

Horling and Lesser (2005) classify the multi-agent organizations depending on

the objective. According to their classification, coalition as an organizational

paradigm is used in systems where the agents form coalitions (agent groups) to

perform a task in cooperation, and the coalition dissolves when the corresponding

task no longer needs to be executed by them. From our perspective, coalitions

are suitable to achieve the tasks which require a subteam to be formed during a

time period.

3.8.1. Coalition Formation

A coalition is an alliance between entities, during which they cooperate in joint

action, each in their own self-interest. This alliance may be temporary or a

matter of convenience. A coalition thus differs from a more formal covenant

(Wikipedia). The selection of the members of a coalition at one step has a great

effect on future coalition formation.

Shehory and Kraus (1998) present one of the earlier algorithms for coalition

formation for cooperative multi-agent systems. During coalition value

calculations, agents’ capabilities are taken into consideration. In multi-robot

systems, the cost values are a function of not only capabilities but also the

physical conditions which change during execution, such as robot’s location,

object/subject’s location, etc. When the robots decide to perform a task, both

subjects in the environment and robots’ physical entities (e.g., fuel) change.

Vig and Adams (2005) state the differences of multi-robot and multi-agent

coalition formation issues from a sensor possessive point of view. Locational

sensor capabilities are considered in their work. They propose an approach

based on the coalition evaluation step in Shehory and Kraus’ algorithm (Shehory

and Kraus, 1998). Vig and Adams’ approach assumes that capabilities are

known apriori before coalitions are formed. This approach may be applicable

in the beginning of mission execution. However, another important factor in

multi-robot systems for evaluating coalitions is the changing cost values during

runtime. They assume robot capabilities do not change (which also is not a

realistic assumption); however, this is not the case for the costs. They analyze

the trade-off between distributing the coalition value evaluation among robots

and implementing coalition value evaluation for each robot. This approach

may result in a robust system where all robots are informed about the robot

failures. Coalition imbalance issue is addressed to make the coalitions more

robust by distributing the required resources. This issue is debatable based on

the objective function which is selected.

21

ASyMTRe (Parker and Tang, 2006), uses reconfigurable schema abstraction for

collaborative task execution by providing sensor sharing among robots. The

fundamental building blocks of ASyMTRe are collections of environmental sensors

(ES), perceptual schemas (PS), motor schemas (MS), and also communication

schemas (CS). In ASyMTRe, connections among the schemas are dynamically

formed at runtime. The information labels provide a method for automating

the interconnections of schemas, enabling robots to share sensory and perceptual

information as needed. In their approach, initially the schema set is reduced to

contain only the individual separate schemas. Then potential solutions are found.

Finally the corresponding schemas are instantiated on robots. This approach is

used to form low-level coalitions to share robot capabilities.

3.9. Communication and Coordination Tools

Being a part of the real environment, robots trying to achieve common goals need

to interact with others to perform the tasks. Interaction may take place in two

forms:

• by a communication language (direct interaction)

• by observing others (indirect interaction)

Communication is one of the most important coordination tools for robots

when they have joint goals or interacting actions. Some tasks may be

achieved without communication (Balch and Arkin, 1994) but mostly intentional

cooperation/coordination requires some level of communication. Research on

observing other robots is in its early stages with current technology.

Communication protocols are specified at several levels:

• the bottom layer specifies the method of interconnection,

• the middle layer specifies the format, or syntax of the information being

transferred,

• the top layer specifies the meaning, or semantics of the information.

There are two main types of interaction to allocate tasks and reaching a consensus

on task execution: Negotiations and Auctions.

3.9.1. Negotiations

Negotiation is a process by which a joint decision is reached by two or more agents,

each trying to reach an individual goal or objective (Huhns and Stephens, 1999,

22

Muller, 1996). At this point, it differs from cooperative multi-robot objectives.

However, even when the robots work cooperatively, this mechanism can be used

to reach an argument for the global goal from local perspectives.

3.9.2. Auctions

Auctions are inevitable parts of the Market-Based approach which is based on

economy theory. An auction consists of an auctioneer and potential bidders.

Auctioneers want to sell items and get the highest possible price, whereas bidders

want to acquire the item with the lowest possible price (Sandholm, 1999).

The objects of the auctions can either be single items or a bundle of items.

Both single item (Lagoudakis et al., 2004) and multiple item allocation for

multi-robot task allocation (Berhault et al., 2003; Dias, 2004) are studied in the

literature. As a special case of the combinatorial auction approach, the task

tree auctions presented in Zlot and Stentz (2006) propose a way to offer task

allocation from any point in the task tree with the payoff of the expensive bid

clearing algorithms. In the combinatorial auction methods, even when effective

methods are used to define bundles of items, communication requirements and

efforts for negotiations and bidding grow exponentially with the task size.

3.9.3. Contract-Net-Protocol

Even though the issue of task allocation is analyzed in a wide variety of

works, there still are not formalisms to decide which one to implement in a

particular domain. Both single item and combinatorial auctions are proposed for

multi-robot systems. However, there is not a perfect answer for the suitability of

these methods for different domains. Since in many domains the environment is

highly dynamic, the solution to task allocation problem in the initial world state

may be obsolete or suboptimal in later steps. This is due to the environmental

changes after actions of the robots, changes in the robots’ capabilities, changes

in the team mission, or changes in the team capabilities or composition.

Auction-based methods and Contract Net Protocol (CNP) (Randall and Smith,

1983; Smith, 1980) seem to be an efficient way to allocate tasks in a distributed

manner and these methods are applied to both software agents and real robots.

CNP is modeled on the contracting mechanism used by businesses to govern the

exchange of goods and services. The contract net provides a solution for finding

the most appropriate agent to work on a given task. In the contract net protocol,

23

an agent that has a task to be solved is called the manager. Agents that might be

able to solve the task are called potential contractors. The manager decomposes

its larger problem into a set of subproblems and announces each subproblem to

the network, along with the specifications about which other agents are eligible

to accept the subproblem, when the deadline is reached, and how they should

specify a bid for the problem. A recipient of the announcement decides whether

it is eligible, and if so it formulates a bid. The manager collects bids, and awards

the subproblem to the contractors with the best bid. A contractor receives

the subproblem details, solves the subproblem, and returns the solution to the

manager. The contract net protocol procedural steps can be seen in Figure 3.3.

There is a mutual selection between the manager and the contractors. Any agent

The Manager

Decompose

the task

Consider the

announcement

spefications, and

own capabilities

Send a bid

Send a bid

DEADLINE

Choose the

best bid

Award

Solve the

problem

Send the solution

For each subtask

Contractor 1
Contractor 2

Contractor N
Announce the task

Figure 3.3: Contract Net Protocol

can act as a manager by making task announcements, and any agent can act as

a contractor by responding to the task announcements. The task announcement

can be made by broadcasting to the network or by directed contracting by prior

experience. One drawback of the contract net protocol is that a task might be

awarded to a contractor with limited capability if a better qualified contractor is

busy at the award time. There are also some situations when the manager does

not get any bid from contractors. The contractors might be busy with other

24

tasks. They might consider other announcements and prefer them by ranking,

or they might not be capable of working on the task in consideration. If no

contractors are found, the manager may request a response from contractors

indicating their situation such as: eligible but busy, ineligible, or uninterested.

The manager can retry the announcement periodically. The manager can

also relax the eligibility requirements, but there may be no contractors having

capability for the announced subproblems. In this case, the manager tries to

decompose the problem differently. Another solution is that the contractors

can announce availability. It is also possible to alternate between task and

availability announcements.

Although Contract Net Protocol presents the formalism on the relationships

between managers and contractors for task allocation, it does not present details

for the following questions:

• What is the communicated information in auctions for multi-robot systems?

• When should task announcement be made? Who should announce the task?

• How should bid values be defined to get globally good solutions for different

domains?

• Which subset (or all) of the already allocated tasks should be re-allocated?

• When should reallocations be announced?

These questions are usually left open in most multi-robot systems.

3.10. Failure Detection and Recovery

Robustness is an important issue for multi-entity systems (Kaminka and Tambe,

2000). The dynamic task allocation problem has been investigated in the face

of robot failures (including partial/complete failures) or environmental changes.

In most cases which include failure detection, the test domain missions include

independent subtasks that can be executed by a single robot.

ALLIANCE (Parker, 1998), provide a mechanism to handle robot failures through

using the motivational behaviors. Dias et al. (2004) investigate the performance

of their framework, Traderbots, against different kinds of failures such as

communication failures, partial malfunction or death. In their work, execution

conflicts between robots are resolved by continuous auctioning by one of the

robots. Since the robots sell different portions of their tasks during execution,

25

robot failures are handled by complicated queries on earlier communications

made by the failed robot and communicating with other subcontractors for the

tasks of the failed robot. Gerkey and Mataric (2002) evaluated the MURDOCH

against the robot failures for tightly coordinated task execution in which there

is a leader giving appropriate directives for the changing situation of the system

after failures. In M+ (Botelho and Alami, 1999), contingencies in task execution

(task failures) are handled by re-planning for execution of the goals at hand by a

robot. The watch-out task introduced in the work by Lemaire et al. (2004) has an

interesting property providing cooperative work against communication failures.

3.11. Interleaving Planning and Execution

According to desJardins et al. (1999), there are three ways to accommodate

planning and execution into one framework:

1. Conditional planning: For each contingency, an alternative course of actions

is provided.

2. Plan monitoring and repair: The plan-and-execute cycle is repeated

sequentially whenever the execution does not match the estimated model.

3. Interleaving planning and execution together: This method corresponds to

continual planning.

As desJardins et al. (1999) state, an agent should plan continually:

• when aspects of the world can change beyond the control of the agent,

• when aspects of the world are revealed incrementally,

• when time pressures require execution to begin before a complete plan can

be generated, and

• when goal objectives change.

desJardins et al. (1999) come up with an important corollary that states it is

better to delay plan refinement as long as possible, so that detailed decisions are

made with as much information as possible. They argue that simply combining

distributed and continual planning methods independently may not be sufficient

and more intelligent integration approaches are needed.

26

3.12. Application Domains

RoboCup domain (Kitano, 2000) is a testbed to develop and improve robot

architectures and algorithms by motivating through competitions held annually.

Vail and Veloso (2003) present a dynamic assignment based coordination

approach for RoboCup soccer robots. Their method is based on shared potential

functions related to the positions of the relevant obstacles. The bidding

mechanism is implemented for distributed coordination. Kose et al. (2005)

present a market-driven coordination approach for RoboCup domain. They

present different bid functions to assign roles and further extend the system

by integrating reinforcement-learning to learn the role assignment process.

Paquet (2006) models the multi-agent task assignment problem as a scheduling

problem for the RoboCupRescue simulation domain. The main objective is

the maximization of the number of saved civilians in a simulated disaster

environment.

As a humanitarian domain the real Search and Rescue (SR) domain is one of

the attractive application domains for deploying multiple robots. Jennings et

al. (1997) propose an algorithm for a distributed team of autonomous mobile

search and rescue robots. In their experimental setup with two robots, the

tasks are explicitly defined and communication is assumed to be perfect. The

experimental robots are homogeneous and they both aim to manipulate an

object with no constraints on the task requirements. Recently, Koes et al. (2005)

propose a centralized architecture with a Mixed Integer Linear Program (MILP)

approach to multi-robot coordination for the search and rescue domain. The

evaluations are performed in simulations.

In the cooperative transportation domain, a group of robots locate and

cooperatively transport several objects scattered in the environment. Chaimowicz

et al. (2002) address the task dependence and role exchange issues in this domain.

Dahl et al. (2004) present the results of their approach based on vacancy chains

in this domain. The scheme by Alami et al. (1998) is tested on the multiple

transportation of containers in different environments.

Another attractive domain for researchers is surveillance, monitoring and

reconnaissance domains. These domains could be modeled by either the

multi-robot coverage (Hazon and Kaminka, 2005, Rekleitis et al., 2004) or the

multi-target exploration problem formulation. In multi-target exploration, the

robots visit targets (special observation points or object locations). Goldberg

27

et al. (2003) present evaluations of their market-based architecture for the

MARS exploration application domain. Dias and Stentz (2002) evaluate the

performance of their framework, Traderbots on the multi-robot exploration

problem in which robots are homogeneous and tasks have the same type of

capability requirements. Zlot and Stentz (2006) evaluate the market-based

complex task allocation approach work on the area reconnaissance problem.

The system proposed by Lemaire et al. (2004) aims to be used in surveillance

and monitoring, specifically forest fire monitoring applications. There are other

military applications, such as perimeter sweeping (Kalra et al., 2005) in which

robots try to sweep an area while coordinating their movements to form security

barriers.

The Multiple-TSP problem, the commonly studied application domain, usually is

ipart of one of the domains presented above. This domain deserves investigation

due to its easy applicability into different applications such as SR and space

exploration domains. Lagoudakis et al. (2004), Dias and Stentz (2002) and

Lemaire et al. (2004) have studied this problem.

3.13. Multi-Robots vs. Multi-Agents

How multi-robot research differs from multi-agent research is questioned by both

robot and software agent researchers. The main difference is in the environment

and the body of the entities; the robots live in the real physical world, whereas

the software agents live in electronic environments. Therefore, the assumptions

made in multi-agent systems make the real robot systems far from reality. While

the agents can travel easily over communication channels, the robots need to

avoid real obstacles while simultaneously localizing themselves and mapping

their environment.

Usually the agents in the multi-agent systems are modeled as self-interested.

The agents have their own abstract plans and should coordinate their

activities/actions in a compatible and mutually supporting manner. The

suitability of self-interest in multi-robot systems is a part of ongoing debates.

The main difficulty with robot systems is the requirement for simultaneous

computation and physical actions. The capabilities of the agents are usually

assumed to be shared by other agents. However, considerable effort is needed to

achieve this in robot systems. Simultaneity and synchronization between robots

is much harder with limited sensors and communication capabilities.

28

3.14. Summary and Discussion

Different frameworks proposed in the literature touch separate aspects of the

research questions, presented in different subsections of this chapter. Current

research in multi-robot coordination addresses the issue of dynamic task

allocation in the presence of robot failures and environmental changes. Earlier

experiments are usually on either simulated or real robot teams implementing

simple/independent tasks. Complex task domains requiring heterogeneous

robot teams working on interrelated tasks facing with time constraints, sensing

uncertainties, and nondeterministic actions have not yet been fully investigated

with a complete framework.

Although it is questioned if a general architecture can be found spanning

all types of domains for multi-robot systems, in this research our objective

is to investigate and find an acceptable answer to this question by offering

a distributed multi-robot coordination scheme at least spanning different

multi-robot mission domains. This framework should serve to achieve a global

goal with its integrated scheduling and execution capabilities while handling

contingencies and using resources effectively.

We have seen that market-based approach ensures a scalable way of solving

the multi-robot task allocation problem. However, following the remarks made

by Dias et al. (2005), existing market mechanisms are not fully capable of

re-planning task distributions, changing decomposition of tasks, rescheduling

commitments or re-planning coordination during execution. From the dynamic

events dimension, there is not a formalized study of response speed for any

multi-robot coordination approach. Scalability in the market-based approaches

may be limited by the computation and communication needs that arise from

increasing auction frequency, bid complexity and planning demands.

On the other hand, Operation Research methods may not be directly applicable

to the multi-robot coordination for complex tasks.

Therefore, we need to use the approaches from different disciplines to construct

our multi-robot coordination framework as a consistent and efficient architecture

formed from the marriage of Operations Research, Planning, Distributed Problem

Solving and Autonomous Robots Research fields.

29

4. DEMiR-CF: DISTRIBUTED AND EFFICIENT MULTI-ROBOT

- COOPERATION FRAMEWORK

This chapter presents our solution to the Cooperative Mission Achievement

problem (CMAP) as a generalized framework and the integrated components

of the framework. Since our objective is to span different types of domains, we

present the details of the components in our framework by analyzing them for

missions involving both independent and interrelated tasks (Sariel and Balch,

2005b, Sariel et al., 2006a, Sariel and Balch, 2006a).

4.1. Integrated Modules of DEMiR-CF

DEMiR-CF, Distributed and Efficient Multi-Robot - Cooperation Framework,

is designed for complex missions including interrelated tasks that require

diverse (heterogeneous) capabilities and simultaneous execution. The framework

combines The Dynamic Priority Based Task Selection Scheme, Distributed

Task Allocation and Coalition Formation Schemes as cooperation components

and Plan B Precaution Routines, some of which are implemented by The

Coalition Maintenance/Dynamic Task Switching Scheme. These components

are integrated into a single framework to provide an overall system that finds

near-optimal solutions for real-time task execution.

DEMiR-CF is classified as SIZE-LIM, COM-NEAR/COM-INF, TOP-ADD,

BAND-MOTION, ARR-COMM/ARR-DYN, PROC-TME, CMP-HET according

to the taxonomy of multi-robot systems given in Dudek et al. (1996). To clarify

this notation, the abbreviations are explained as follows. The number of robots

in the system is classified as SIZE-LIM, since the system is not designed as

an emergent swarm robot collective. Communication range can be limited

(COM-NEAR) or robots may have unlimited communication range in the

operation environment (COM-INF). Communication topology is classified as

TOP-ADD since both broadcast and peer-to-peer communication is possible.

Communication bandwidth is not assumed to be costless; therefore, due to this

limitation, DEMiR-CF is classified as BAND-MOTION. Reconfigurability of

DEMiR-CF is classified as both ARR-DYN, that is, the relationship of members

of the system can change arbitrarily, and ARR-COM, where coordinated

rearrangement is needed for multi-robot requirements for single task execution.

30

The processing ability of each robot is classified as PROC-TME, Turing machine

equivalent. Collective composition is heterogeneous (CMP-HET) where both a

heterogeneous and homogeneous team is addressed.

The overall objective of the robot team (rj ∈ R, 0 < j ≤ ||R||) in our framework

is to achieve a mission (M) consisting of independent or interrelated tasks Ti

(0 < i ≤ ||M ||), by incremental assignment of all Ti ∈ M to rj ∈ R while

optimizing the specified objective function. Tasks are preemptive: The activity

of task execution can be split during runtime if another advantageous situation

arises or environmental conditions impel.

Coalitions (Coali) (Horling and Lesser, 2005) are formed to meet simultaneous

execution requirements of tasks (Ti) synchronously by a group of robots. An

example of such a task that needs to be executed by a coalition of robots is

pushing a heavy object requiring more than one robot. Sizes of coalitions vary

according to the minimum number of robots required (reqnoi) to execute the

tasks. A coalition 1 may involve only one robot for a task that can be executed

by a single robot.

The robots can detect and recover from different types of contingencies by

keeping the models of the system tasks and other robots as corresponding Finite

State Machines (FSM) in their world knowledge. Details of these FSMs are

presented in Section 4.8. The Model Update Module is responsible for checking

and updating a robot’s own models. The modules that embody the framework

and the information which flows among them are given in Figure 4.1. Each robot

keeps a model of the other robots and the mission tasks. The Model Update, The

(System) Consistency Checking Module, and The Dynamic Task Selector Module

perform Plan B Precaution Routines by either updating the model maintained by

the robot or activating the warning mechanisms. Model updates are initiated by

either incoming information from the other robots or information perceived by the

robot itself. If a system inconsistency exists, The Consistency Checking Module is

responsible to initiate warning mechanisms and inform the corresponding robots.

The Dynamic Task Selector Module selects the most suitable task by considering

the model of the robot. The Allocation Scheme ensures the distributed task

allocation by executing the required negotiation procedures for the selected task.

The Execution/Coalition Scheme implements synchronized task execution and

coalition maintenance procedures. According to the selected task and the task

1The term coalition is also used for a single robot executing a task for the sake of generality.

31

Model

Update

Module

FSM

FSM

Consistency

Checking

Module

Dynamic

Task

Selector

Allocation

Scheme

Execution/

Coalition

Scheme

Outgoing

Messages

Incoming

Messages

Actuators

MODEL

Effectors

Localization

and Mapping

Layers

Communication Layer

Sensor

Interface Layer

Motor

Interfaces

Layer

Robot

Descriptions

Task

Descriptions

Perception

Figure 4.1: DEMiR-CF Modules

currently in execution, the task models are updated accordingly. A sample flow

of the operations in the framework is summarized below:

1. Initially the robots are delivered the mission task definitions (time-extended

representation of tasks with precedence constraints to achieve the overall

mission).

2. Each robot selects the most suitable candidate task to execute through

global cost consideration (dynamic task selection/switching).

3. Robots offer auctions for the tasks they have selected. During auction steps,

inconsistencies are cleared and conflicts are resolved.

4. Coalitions are formed for the announced tasks, making sure that each robot

takes part in the most suitable coalition when the global solution quality is

considered.

5. Dynamic task selection/switching proceeds simultaneously with task

execution. This allows the robot to switch between tasks when executing

the candidate task becomes more profitable than continuing with the

current task, handling real-time contingencies at the same time. Thus,

32

corresponding auction and coalition formation procedures (2-4) are applied

continually.

Real-time situations in which task switching becomes necessary are given in

Section 2.2.

Move 1

Move 2

Drop 1

Drop 2

S

T

{Conjunctive Arc}

Clean

[reqno = 2] [reqno = 2]

[reqno = 1]

[reqno = 1]

[reqno = 1]

Figure 4.2: Directed acyclic mission graph for the Box Mailing Mission

Figure 4.3: Box Mailing Mission initial state is illustrated. The robots are
located on the left. The two boxes, the stamping machine and the mailbox are
located in different places in the environment.

4.2. Mission Representation

A mission in DEMiR-CF is represented by a directed acyclic graph (DAG) where

each node represents a task and the directed arcs (conjunctive arcs) represent

the precedence constraints among tasks.

33

Example 1 To clarify, Figure 4.2 depicts the graph representation of a small

sized mission illustrated in Figure 4.3. The mission involves moving boxes to a

stamping machine, dropping them in a given order, and then cleaning the room.

The room can only be cleaned after both boxes are moved. Since box 1 is heavy, two

robots are needed to move and drop the box (hence, reqno = 2). Unique dummy

nodes are added to the graph to represent initial (S) and termination tasks (T).

Therefore, even when the task graph is not connected, after adding these task

nodes, it becomes connected. Although this graph shows the relationships between

dependencies among tasks, it does not show which robot performs which task and

in what sequence. The decision of which robot will be involved in the task execution

of a particular task has an important effect on the performance. There may be

alternative solutions to this problem according to the number of available robots,

their capabilities and task requirements. A sample set of robot capabilities is given

in Table 4.1.

Table 4.1: Robot Team and Capabilities in the Box Mailing Mission Domain

Robot ID Capability

R1 BUMPER, GRIPPER
R2 BUMPER, GRIPPER, BRUSH
R3 BUMPER, GRIPPER

In our representation, interrelations among tasks can be represented either by

adjacency-lists or adjacency matrices where each node represents a task. Tasks

are represented as septuples containing information regarding task execution

requirements and task status: < id, type, reqcap, deplist, reqno, relinfo,

precinfo>.

1. id: A system-generated unique task identification number common to all

robots before mission execution.

2. type: A description of task type and corresponding action definitions.

3. reqcap: Requirements defining special sensors and capabilities required to

execute the task.

4. deplist: The two types of dependencies representing precedence relations.

Hard dependency implies sequential execution of the related tasks while soft

dependency allows parallel execution. Dependencies are represented by two

letters H and S followed by the dependent task id.

34

Table 4.2: Representation of the tasks of the Box Mailing Mission

id type reqcap deplist repno relinfo precinfo

0 MOV E 1, 2 − 2 < locations of object 1 and the final destination > available

1 MOV E 1, 2 S0 1 < location of object 2 and the final destination > available

2 DROP 1, 2 H0 2 < location of object 1 > available

3 DROP 1, 2 H1, H2 1 < location of object 2 > available

4 CLEAN 3 H0, H1 1 < cleaned portion of the environment > available

5. reqno: The minimum number of robots required to execute the task,

determined either before mission execution or during runtime.

6. relinfo: Descriptive information regarding task type, such as the latest

location, the target location, etc.

7. precinfo: Precaution information used for contingency handling: the task

state, the estimated task achievement time and the current execution cost.

Information in a task representation can dynamically be modified during

execution. In particular, relinfo, precinfo and reqno are subject to change

during execution.

Task representation for the tasks of the sample mission described is given in Table

4.2. Capabilities required for task execution, such as possessing a bumper (to push

an object), possessing a gripper (to hold and drop a box) and possessing a brush

(to clean the environment) are encoded as 1, 2 and 3, respectively. Soft (S) and

Hard (H) dependencies are identified with the corresponding task ids. precinfo

values of the tasks are initialized to state available before mission execution.

These values are updated during runtime. These issues are explained in Section

4.8.

4.3. Inputs and Outputs of DEMiR-CF

DEMiR-CF uses the planning graph of a mission for interrelated tasks represented

as explained. Although planning is assumed to be performed outside the

framework, it is achieved by DEMiR-CF for independent tasks. For example, the

multi-target exploration mission has independent tasks, but the selection of the

targets to be visited by robots is a form of planning which is done by DEMiR-CF.

Another input to the system is the robot capabilities. The system may involve a

heterogeneous team of robots both possessing different equipment (e.g., sensors,

35

different hardware tools, etc.) and/or having different capabilities with the same

equipment (e.g., speed). The robots are informed about the other robots in

the system initially. But this does not preclude that they discover other robots

working on the same mission during runtime in peer-to-peer communications.

The initial information is better to be fed into the robots’ world knowledge,

although DEMiR-CF can also handle distributed information update in runtime.

At the end of the mission execution, all achievable tasks of the mission are

performed by robots working in a cooperative manner. In the meantime,

DEMiR-CF also ensures efficiency with its integrated task allocation and

contingency handling capabilities.

4.4. Dynamic Priority-based Task Selection Scheme

In DEMiR-CF, the robots make instantaneous decisions (from their local

perspectives) which are both precedence and resource feasible in the context

of the global time extended view of the problem. While the completion of the

mission is the highest priority objective, performance related objectives can

additionally be targeted. Each robot initially forms a rough schedule of its

activities for an overall time extended resolution of the mission. Since these

schedules are highly probable to change in dynamic environments and robots also

have the real-time burdens of path planning, mapping etc., the formed rough

schedules are tentative and constructed by computationally cheap methods

(explained in Section 4.4.1.). Therefore, the robots in our framework come up

with their rough schedules and refine their plans during actual fast execution

when information available in the current context enables them to make specific,

detailed decisions.

Task selection and allocation is performed by evaluating each task according to

the selected cost function. Depending on the objective, different cost functions

can be defined, from the simplest functions to more complex and composite

evaluations. Cost evaluation is one of the key issues to make the framework

suitable for different domains in an efficient and effective manner. Cost functions

are analyzed in Section 4.5.

Since schedules are subject to change, we propose an approach in which tasks

are not scheduled initially but instead allocated to robots incrementally, without

ignoring the overall global solution quality. Therefore, the main objective

36

becomes determining a particular task to be assigned whenever it is convenient

in a precedence and resource feasible manner, instead of scheduling all the tasks

from scratch. Although not a concern during assignments, preemption (i.e.,

yielding) is possible to maintain the solution quality and to handle failures during

execution. Therefore, the allocation problem turns into a selection problem and

is stated as the CTSP , which is introduced in Section 2.

Note that the CTSP presented earlier is an optimization problem as in

ScP , and it is desirable to find a solution by considering the problem from

the global perspective. Therefore, the instantaneous task selection scheme

needs to be strengthened by considering the problem as a whole, with the

designed cost evaluation functions. Depending on the objective function, either

priorities or penalties can be applied to find a near-optimal solution ensuring a

time-extended view of the problem. This issue is analyzed in detail in Section 4.5.

The following definitions are needed to present our formulation to solve the

CMAP .

Definition (suitable task and suitable robot) ti is a suitable task for robot rj , if

reqcapi ⊆ capj and rj is a suitable robot for ti.

Definition (executable task) ti is an executable task, if at least reqnoi number

of robots can be assigned for its execution.

Definition (task in execution) tiej is a task in execution by robot rj or coalition

Cj. Tie is a union of tasks in execution.

Definition (eligible task) tEj is an eligible task, if it is an executable task and is

neither in execution (tie) nor achieved. TEj is a union of eligible tasks for robot rj .

Definition (ineligible task) tφ is an ineligible task if it is not an executable task, if

it is already achieved or if it is not a suitable task. Tφ is a union of ineligible tasks.

Definition (predecessor task set) P (ti) is defined as the set of all predecessor

tasks of task ti.

Definition (active task) tAj is an active task if it is suitable, executable and

tasks in P (tAj) are completed. TAj(⊆ TEj) is a union of the active tasks for

robot rj .

37

Definition (inactive task set) is the set of all all inactive tasks (tIj),

TIj = TEj \ TAj contains the tasks that are suitable but not executable yet for

robot rj .

Definition (critical task) A critical task tCj is a task that has inflexibility from

the point of view of resources and robot rj is suitable for that task. TCj is a

union of critical tasks for robot rj .

Definition (rough schedule) A rough schedule SRj for robot rj is a priority

queue of mission tasks that rj assumes it will execute.

4.4.1. Rough Schedule Generation Scheme

Each robot rj generates its rough schedule as a dynamic priority queue similar to

runqueues, by considering its critical task set (TCj), the eligible tasks (TEj), the

conjunctive arcs (if any) and the requirements. If there are no new online tasks

or invalidations, the order of the tasks which are connected by the conjunctive

arcs remains the same in the priority queue, even though there may be additional

intermediate entries into the queue at runtime.

Since each robot rj has different capabilities, the eligible task sets (TEj) and

the priority queue entries will be different. Sometimes uncertain information

(e.g., related to a local online task) or unexpected (internal or external) events

(e.g., detection of a fuel leakage) may result in this difference, even when robots

possess the same type of capabilities. The critical tasks may be determined either

by negotiations or by beliefs. Critical task information is used for determining

the task requirements such as power, fuel etc.

Intuitively, robots do not deal with the ineligible tasks (Tφ), the union of tasks

that are already achieved or those that are not eligible from the capabilities

perspective while forming the rough schedules. The eligible tasks (TEj = T \ Tφ)

for robot rj consists of active and inactive tasks.

The rough schedule of a robot is generated by execution of Algorithm 1. curcsj

represents the remaining capacity of robot rj and reqcs(ti) represents the required

capacity for task ti in terms of the consumable resources (e.g., fuel). In the rough

schedule generation algorithm, while the rough schedule is being formed, the

remaining capacity of the robot is also monitored. If the capacity of the robot is

38

Algorithm 1 GenerateRoughSchedule for robot rj

input: Eligible task set (TEj), active task set (TAj), critical task list (LCj), remaining
capacity (curcsj) of robot rj

output: Rough schedule (SRj) of tasks, the top most suitable active task ts

ts = φ; R = curcsj; achievable = true;
SRj = GeneratePriorityList(TEj , TAj)
/*Determines if the mission is achievable*/
for each ti ∈ LCj do

R = R − reqcs(ti)
if R < 0 then

achievable = false

R = curcsj

break
end if

end for

if SRj �= φ and (top(SRj) ∈ LCj ‖ R − reqcs(top(SRj)) ≥ 0) then

ts = top(SRj)
end if

not sufficient for executing all of its critical tasks and the mission is believed to

be unachievable accordingly, then the robot may select an active task to execute

even if it is not a critical task for the robot in case new robots can be deployed.

However, if the mission is believed to be achievable, the robot may select to stay

idle until its critical tasks become active. This selection is done after forming

the rough schedule. The active task on top of the rough schedule that can be

executable is the most suitable task to be executed for the robot. Sometimes the

rough schedule of the robot may be empty. In this case, the robot selects to stay

idle as determined in the DPTSS algorithm. The priority values to form rough

schedules are determined based on the mission and the objective function which

will be explained in Section 4.5.

4.4.2. DPTSS Algorithm

In our incremental allocation approach, the fundamental decision that each robot

must make is the selection of the most suitable task from the active task set (TA)

by considering eligible task set (TE). Algorithm 2 presents the DPTSS in which a

rough schedule is generated before making a decision. The four different decisions

made by robots after performing DPTSS are:

• continue to execute the current task (if any),

• join a coalition,

• form a new coalition to perform an available task, or

• stay idle.

39

The dynamic task switching scheme is used by robots to dynamically switch

between tasks if updates in the world knowledge compel. Therefore, issues

related to both online scheduling and scheduling under uncertainty are addressed.

Algorithm 2 DPTSS Algorithm for robot rj

input: Mission (M) task descriptions
output: Action to be performed depending on the selected task

Determine the TEj, TAj ⊆ TEj

LCj = GenerateListOfCriticalTasks(TEj)
[SRj , ts] = GenerateRoughSchedule (TEj, TAj , LCj , curcsj)
if ts �= φ then

if ts is the current task then

Continue with the current execution
else

Offer an auction to form a new coalition or directly begin execution
end if

else

if tiek ∈ Tie and R + reqcs(tiek) ≤ curcsj and it is profitable to join a coalition
then

Join a coalition
else

Stay idle
end if

end if

The DPTSS process is repeated whenever a robot completes its current task

execution or detects a change in its world knowledge. Instead of regenerating the

rough schedule at each call of the DPTSS, the rough schedule may be repaired

whenever it is desirable.

4.5. Cost Evaluation for Rough Schedule Generation and Dynamic

Task Selection

The impact of cost evaluation on solution quality is inevitable for systems that

need some forms of optimization procedures, and research in this area requires

more investigation. Unless efficient cost evaluation strategies are designed, it is

not possible to observe globally near-optimal solutions for NP-Hard problems,

and additional adjustments are required to change allocations with an additional

cost of communication as in combinatorial auctions.

According to the taxonomy given in (Gerkey and Mataric, 2004), multi-robot

task allocation problems are divided into two classes based on the mission

description: instantaneous vs. time-extended. Most multi-robot architectures

40

offer solutions for instantaneous assignments. DEMiR-CF can address both types

of classes by implementing incremental allocation of tasks with efficient bidding

strategies. Therefore, global solution quality is achieved from a time-extended

view of the problem by means of bid considerations. However, the approach is

also capable of offering solutions for instantaneous changes on task descriptions.

Therefore, our framework is classified as capable of addressing both classes.

Incremental assignments eliminate redundant considerations for environments

in which a current best solution is highly probable to change, and efficient

and intelligent bidding strategies ensure solutions to be close to optimal with a

time-extended view of the problem in a computationally tractable way.

It is shown that by an efficient bid evaluation approach, globally near optimal

solutions can be observed in an auction-based approach. This is validated in the

following chapters by evaluating the performance of the framework in different

domains.

4.5.1. Cost Function Design Criteria

Depending on the selected application domain and a regular objective function,

cost functions should be designed appropriately. Different types of rough schedule

generation schemes can be performed by using the designed cost functions. At

this point, it is necessary to distinguish the rough schedule generation schemes

for independent tasks and interrelated tasks with workforce constraints.

4.5.1.1. Independent Tasks with Combinatorial Structures

There are several Operation Research methods to allocate independent tasks to

robots.

Integer Programming Formulation . Optimal results can be obtained

by an efficient Integer Programming (IP) formulation in IP solvers (e.g., the

commercial IP solver CPLEX (ILOG-CPLEX-9.0-UserMan)).

Branch and Bound Algorithms . In these algorithms, a search tree is

enumerated (branching) by constructing the smaller subtrees (subproblems)

within a feasible search space and searched through investigating lower and

upper bounds of each subtree (bounding). The procedure continues until all

nodes are either pruned or solved. The performance of the approach is dependent

on the branching and bounding algorithms (Toth and Vigo, 2001).

41

Heuristics . There are several heuristic approaches to find approximate solutions

to the optimal solution. The methods are classified into two subclasses: Classical

Heuristics and Meta-heuristics. In the classical heuristic approach, standard

construction and improvement methods are applied to the solution. These

approaches perform limited exploration of the search space and typically produce

good results within modest computing times. In the meta-heuristics approach,

the algorithm searches a large solution space. Evolutionary algorithms, Tabu

Search and Simulated Annealing methods are the common methods belonging to

this class. Although the quality of the solution is much higher than that of the

classical approaches, time complexity increases dramatically in these approaches.

The applied procedures are usually context dependent and require finely tuned

parameters (Toth and Vigo, 2001).

All these cost evaluation procedures can be used in DEMiR-CF. Each robot

may simply perform the explained operations to generate the rough schedules

and select a task to perform. However, as experiments in the following chapters

illustrate, classical heuristic cost evaluations, which are more applicable to

robots, produce highly acceptable and efficient results.

4.5.1.2. Interrelated Tasks with Multi-Robot Requirements

The interrelations among tasks and resource requirements are represented as

directed acyclic graphs in each robot’s world knowledge. The generated rough

schedules respect the precedence and resource constraints. For the makespan

objective in general, branch and bound methods can be applied. However, since

there are interrelations and resource dependencies, reaching a consensus by

communication may sometimes be intractable.

There are two efficient heuristic methods to generate feasible schedules:

Forward-Backward Schedule Generation Schemes (Pinedo, 2005) for the RCPSP

and another method that we propose which generates a topological sort of

the directed acyclic graph fed by different priority rules. There are various

priority rules that can be applied (Brucker and Knust, 2006) for evaluating cost

values to select tasks. These are classified into four types: activity-based rules,

network-based rules, critical path-based rules and resource-based rules. Different

priority rules are listed as follows: activity-based rules by selection of tasks

with the smallest processing time (SPT) or the longest processing time (LPT);

network-based rules by selection of tasks with the most immediate successors

(MIS), the least immediate successors (LIS), the most total successors (MTS),

42

the least total successors (LTS) or the greatest rank positional weight (GRPW)

(the largest processing time of all successors); critical path-based rules with

the smallest earliest starting time (EST), the smallest earliest completion time

(ECT), the smallest latest starting time (LST), the smallest latest completion

time (LCT) or minimum slack (MSLK); resource-based rules with the greatest

resource requirements (GRR).

4.6. Task Allocation

DEMiR-CF uses the standard auction procedures of CNP (Smith, 1980) to

announce the intentions of robots on task execution and to select the reqno

number of robots for a coalition in a cost-profitable, scalable and tractable

way. Additionally, Plan B Precaution Routines are added to check validity,

consistency and coherence in these negotiation steps. Each robot intending to

execute a task announces an auction after determining its rough schedule and

performing the DPTSS.

4.6.1. Distributed Task Allocation Scheme

Basically, auction announcements are ways to illustrate intentions to execute

tasks for which reqno = 1 or to select members of coalitions to execute tasks

for which reqno > 1. Therefore, if more than one robot declares intentions to

execute the same task, the more suitable one(s) is selected in the auction by

considering the cost values. Auction negotiations and selection of the suitable

robots are performed in a completely distributed manner by the auctioneers.

Single task items are auctioned and allocated in auctions. Auction negotiation

implemented in the framework consists of standard steps to clear an auction.

Robots can get the necessary task details from the auction offers, and then

check the validity of the auction. If the auction is invalid, related precaution

routines (explained in Section 4.8.) are activated. Otherwise, the candidate

robots send their cost values as bids. (The other candidate robots may behave

as auctioneers as well. If the auctioneer does not receive the required number

(reqno) of bids (also counting in its own bid) from the other robots by the

predefined deadline, it cancels the auction. Otherwise, it ranks all bids and

assigns the best suitable robot with the lowest cost value to the executable

task (if reqno = 1), or suitable coalition members (if reqno > 1). The

framework allows multiple auctions to be carried out simultaneously. The basic

steps of an auction negotiation process are illustrated in Figure 4.4. Validity

controls are performed to ensure system consistency as a part of the Plan B

43

Precautions on top of the standard CNP protocol procedures. If the auction is

for an already achieved task, it becomes invalid and if this situation is detected

by any of the candidates, a warning message is sent to the auctioneer (Figure 4.5).

Figure 4.4: Basic steps of an auction negotiation process

4.6.2. Communication in DEMiR-CF

Interactions among robots is assumed to be implemented by explicit

communication. However, if robots are capable of observing each other,

this utility can also be used by DEMiR-CF to improve the performance and

the solution quality. Different types of communication are available for robot

systems. While ground robots use wireless communication, underwater robots

may use acoustic modems.

An extensive set of communication primitives and different message types

are designed for robots to have a common ontology. These messages can be

implemented in KQML (Finin et al., 1997) or FIPA (FIPA ACL) compliant

44

Figure 4.5: An invalid auction for an achieved task is canceled by the auctioneer
after being warned by one of the candidates

formats.

Most of the time, the broadcast type of message propagation is used in

DEMiR-CF. For some special negotiations peer-to-peer messaging is also used.

The message types designed for DEMiR-CF are given in Table 4.3.

4.6.3. Roles

Members of coalitions are selected by auctions. The auctioneers are also active

robots in the system. A robot (rj) may take different roles for task ti, such as

auctioneer, bidder (Bij), coalition leader (CLi) or coalition member (CMi) during

runtime.

• An Auctioneer is responsible for managing auction negotiation steps and

selecting reqnoi of suitable members of a coalition.

• A Bidder is a candidate to become a member of a coalition to execute a

task.

• A Coalition Leader is the robot responsible for maintaining the coalition

and providing synchronization while performing the coalition task.

• A Coalition Member is one of the members of the coalition, and it executes

a portion of the task.

A robot rj may be in more than one Bij roles for different tasks, but may not

be in multiple roles as an auctioneer, a CMi or a CLi at the same time. The

auctioneer is responsible to select the required number of robots (the coalition

leader and members) for task execution. The auctioneer may or may not take

place in the coalition for which it offers an auction. The coalition leader, selected

by the auctioneer as the one with the minimum cost for executing the task,

45

Table 4.3: Message types in DEMiR-CF

Message Type Description

EXECUTING
Robots broadcast messages regarding the tasks they execute along with additional
information on task execution.

ACHIEV ED Robots broadcast this type of message when they believe a task is achieved.

CANCEL EXEC Robots declare cancellation of task execution with this type of message.

QUERY LEADER
Sometimes it is desirable to send a heart-beat signal to check if the coalition
leader is alive.

SY NCHRONIZATION
Robots send synchronization messages to coordinate tightly coupled task
execution (e.g., while pushing a box simultaneously).

LEADER INFO Coalition leader robots send their information to the coalition members.

AUCTION
Auction messages are broadcast to all robots to declare the intention of task
execution.

BID
Bid messages are sent to an auctioneer robot to declare the cost of executing the
corresponding task.

AWARD COAL LEADER The best suitable leader robot is awarded with this type of message.

AWARD COAL MEMBER The best suitable member robots are awarded with this type of message.

WARNING
Warning messages are sent whenever there are inconsistencies detected in another
robot’s knowledge.

CONFIRM Awarded robots send a confirmation message to the auctioneer.

CANCEL AUCTION Auction cancellation is declared to the others.

JOIN/SWITCH REQUEST Robots may declare their requests to join a coalition or switch a task to execute.

JOIN ACCEPT Robots willing to participate in task execution are accepted.

TERMINATE COAL Coalitions may be terminated by the coalition leader.

RELEASE Robots may be released from the coalitions.

OBS LOCATE Newly detected obstacle locations may be broadcast.

OBS CLEAR
Previously occupied but cleared for the time being location information can also
be sent.

MY LOCATION Robots may broadcast their location information.

UNACHIEV ABLE
Robots inform others about the tasks that are believed to be unachievable (e.g.,
tasks for untraversable targets).

46

maintains the coalition and keeps track of the members’ conditions and their

updated information. After the execution of the task is completed, the coalition

ends. Each robot is allowed to take part in only one coalition until it leaves

the coalition. Coordination between coalition members is implemented through

synchronization messages. We assume that robots are not able to infer the state

of others by observation, although such capabilities would only provide more

reliability (e.g., Balch and Arkin (1994)).

4.7. Coalition Maintenance/Dynamic Task Switching Scheme

In the framework, instead of using complicated re-allocation procedures,

we propose incremental selection and task switching schemes for behaving

myopically while thinking globally using bid evaluation heuristics. Provided

with an efficient bid evaluation heuristic, the dynamic task selection scheme

ensures task switching whenever it is profitable. Each robot, independent of its

current status from executing a task or not, can offer a new auction or select to

execute a task already being executed by another robot with a worse cost value

than it will cost for itself. If task switching occurs with a coalition member, the

corresponding coalition member is released from the coalition and becomes a

suitable robot for other tasks.

To ensure maintaining the solution quality against environmental changes, we

propose a dynamic reconfiguration approach. Coalition members can leave a

coalition when there is a sufficient number of members to execute the task. The

coalition leader is responsible for broadcasting the maximum cost of execution for

the task by one of the coalition members in each execution step. In the decision

stage, each robot receiving these messages evaluates the maximum cost value of

each coalition. If a robot detects that its cost is lower than the maximum cost of

the coalition and it is released from its current coalition, it sends a join request

message to the coalition leader. The leader, getting a join request message,

directly adds the robot to the coalition. If the coalition leader detects that the

size of the coalition is larger than required, it can release coalition members with

the maximum cost value for the current task. Getting a released message, a robot

can proceed to select another suitable task. When the coalition leader considers

the size of the current coalition, it also checks the failures. Since each robot in the

coalition broadcasts an executing message along with the updated cost values,

their failure can be detected by the coalition leader. The failed robots are also

released from the coalition. If the number of members to execute the task is

below the required number for a period of time, the coalition leader cancels the

47

coalition. An illustrative example of coalition reconfiguration is given in Figure

4.6. Such a situation may occur if a robot is not reachable when the auction

announcement is made (a). When the situation changes (b), the robot may take

over the role of the member with the maximum cost value in the coalition (c).

The released member can select another task to execute.

Robot with the maximum cost value (max

cost1) in the coalition

Figure 4.6: An illustrative reconfiguration scenario for maintaining the
coalitional solution quality

The decision regarding which robot/agent is a member of which coalition

(task execution) is an important issue. Since coalitions are disjoint in our

case, assigning a robot/agent to a coalition may prevent another advantageous

situation in which one of the already assigned robots may take a role in a near

future formation. Further negotiations, other than auctions are needed to reach

consistent agreements.

One important issue that should be addressed in robot systems is ensuring ways

to plan for the global problem from local views. From our point of view, this

can be achieved through extensive bid evaluation designs and additional routines

to improve solution quality. We generalize statements given in desJardins et

al. (1999) for continual planning. Added to the integration of planning and

execution, task allocation/scheduling should also be integrated into a continual

planning process. Currently most multi-agent/robot coordination architectures

48

implement decomposition, allocation and execution steps sequentially, and

respond to the contingencies (mostly embedded in the model) in the execution

phase. However, this integration is provided in DEMiR-CF by means of the Plan

B Precaution Routines which are explained in the following section.

4.8. Plan B Precautions: A System-wide Contingency Handling

Mechanism

Plan B Precautions are taken in DEMiR-CF by The Model Update Module which

updates the system model of the robot and The System Consistency Checking

Module. The Model Update Module uses incoming information and its own

perception data to update the models of the robot. The System Consistency

Checking Module provides warning messages to keep the system consistent.

In DEMiR-CF, information is not assumed to be complete and robots allocate

and execute tasks in a distributed manner. This framework can take advantage

of communication when it is reliable. The consistency of the current task states

is ensured by Plan B Precautions which are carried out by the robots in a

completely distributed manner. Consequently, the system immediately responds

to various failure modes and can recover from them. Current implementation

uses explicit communication to detect conflicts and contingencies. However,

failures in communication can also be handled by precaution routines. (If robots

can observe each other implicitly, model updates can be implemented in a

similar manner.) Appropriate precaution routines according to the contingent

situations are activated to either correct the models or to initiate recovery actions.

4.8.1. Representation of The System Model In Each Robot’s World

Knowledge

Each robot keeps the models of the system tasks and other robots in its

knowledge base. Models of different robots may become inconsistent because

of the uncertainties, incomplete knowledge, assumptions etc. It is not always

possible to share a common world knowledge in decentralized systems as in the

case of ours.

Task models are stored as Finite State Machines (FSM) where each task can be

in a different state. Task FSMs are illustrated in Figure 4.7 and Figure 4.8 for

single-robot and multi-robot task models, respectively. The difference in these

two types of representations is mainly the synchronization issue that robots need

to achieve when participating in a coalition. The state transitions are activated

49

unachievable

message

is received

self_auctioned
awarded by

itself
awardedavailable

threshold

Is exceeded

task

switching

selected

by the DPTSS

achieved

others_inexec

valid execution

message

is received

execution is

canceled

uncertain

others_auctioned

self_inexec

unachievable

auction message

is received

awarded by

another robot

robot believes that

the task is unachievable

task is

achieved

valid execution

message

is received

auction message

is received

selected

by the DPTSS

threshold

Is exceeded

ready for

execution

awarded to

another robot

valid execution

message

is received

init/

auction

is canceled

achieved message

is received

Figure 4.7: States of the FSMs for single-robot task models

by The Model Update Module for both types of FSMs. Different task states that

tasks can be in are as follows:

• available: This is the initial state of the tasks that are neither in execution

nor in auction.

• uncertain (interpreted as state available): This state is activated whenever

there is incomplete information regarding a task which was previously being

auctioned or executed.

• self auctioned : A task in this state is under the auction negotiation process

managed by the corresponding robot as an auctioneer.

• others auctioned : A task in this state is under the auction negotiation

process managed by another robot as an auctioneer.

• awarded : A task is in this state if the robot either selects itself or is awarded

the task at the end of an auction negotiation process.

• self inexec wait sync: A task in this state is being executed by the

corresponding robot in a coalition with more than one robot but not

synchronized yet.

50

• self inexec: A task in this state is being executed by the corresponding

robot in a coalition and synchronized or the coalition involves only the

robot itself.

• others inexec: A task in this state is being executed by other robots.

• achieved : This is the final state of the tasks that are achieved.

• unachievable: This state is used for the tasks that are not traversable or

achievable.

unachievable

message

is received

self_auctioned
awarded to

Itself in

a coalition
awarded

self_inexec_wait_

sync

available

threshold

Is exceeded

released

from

the coalition

selected

by the DPTSS

achieved

achieved message

is received

init/

auction

is canceled

others_inexec

valid execution

message

is received

coal execution is

canceled

uncertain

others_auctioned

self_inexec

unachievable

auction message

is received

awarded by

another robot

robot believes that

the task is unachievable

synchronization

is achieved

ready for

execution

task is

achieved

valid execution

message

is received

auction message

is received

selected

by the DPTSS

threshold

Is exceeded

awarded to a coalition

without itself

valid execution

message

is received

joined

to the

coalition

Figure 4.8: States of the FSMs for multi-robot task models

Robot models are also stored in FSMs, where each robot model has a state which

is assumed by the corresponding robot. A robot may be in one of the following

states:

• idle: A robot is assumed to be in this state when there is no evidence that

it is executing any task.

• executing : A robot is assumed to be running properly and executing a task

whenever there is supporting evidence.

• failed : A robot is assumed to have failed when there is no evidence that it

has been running properly for a long time.

51

• auctioneer : A robot is assumed to have auctioned for a task when there is

recent evidence.

Table 4.4: Precautions for contingencies and conflicts

Contingency or Conflict by inconsistencies Precaution

Any message from an unrecognized system robot
is received.

Robot model is created with the corresponding
state derived from the message.

Any message related to an unrecognized task is
received.

The task is added to the task list with the
corresponding state.

An already achieved task is announced as a new
task/being executed/canceled/auctioned.

Warning message is sent to the sender.

A task being executed/auctioned is announced
as being executed/auctioned.

Only the robot with the minimum cost continues
the operation.

Cancellation message is received for a task
already being executed by the receiver.

Robot state is set as idle.

A cancellation message is received for a task
being executed by the sender robot.

The task and robot states are set as available and
idle, respectively.

4.8.2. Plan B Precaution Routines

Recovery operations may include warning other robots about the problem or

changing the model accordingly. Inconsistencies usually arise when robots are

not informed about tasks that are achieved, under execution, or under auction

in real-world operations.

To keep system consistency, robots use explicit communication and broadcast the

following information:

• known achieved tasks in predefined time periods to prevent redundant

executions (This feature provides a bucket-brigade type of information

sharing which enables information transition from one robot to

another where point-to-point access is not possible, and consequently

communication range limitations are resolved.)

• newly discovered online tasks which are unachieved yet

• task execution messages in predefined time periods (These messages

contain the updated cost value and estimated task achievement deadline

information. Therefore, they serve as clues, meaning that the executer

robot is still alive and the task is under execution.)

• task achievement message when the task is achieved

• cancellation message if task execution is canceled

52

• task invalidation message when an invalidity is detected

Designed precautions are given in Table 4.4. Most of the contingencies are

detected by checking models, and corresponding model updates are implemented

(Table 4.5-Table 4.6).

Table 4.5: Model checking for tasks and system robots

Status Action

The time duration from the latest
communication with a robot is longer
than the threshold.

Robot state is set as failed. Related task state is
set as uncertain.

Task in execution is not achieved although the
estimated deadline is reached.

Task state is set as uncertain.

Task state is others auctioned for longer than
predefined time period.

The task state is set as uncertain.

One standard way of detection of robot failures is sending heart-beat signals.

However, in our framework, incoming messages from other robots are taken as

clues for being marked as running properly. More complicated prediction models

may be used for more accurate failure prediction. Some misleading beliefs such

as setting the state of a robot as failed although it is running properly may

cause parallel executions. This is a desired feature from the mission completion

point of view. Designed precautions resolve these kinds of inconsistencies if

communication resources permit in later steps. In designing precautions, it is

assumed that robots are trusted and benevolent.

Table 4.6: Model updates related to the messages

Message Type Action

Any type
Current time is registered as the latest comm.
time both with the robot and for the task.

“achieved” - valid

The robot and task states are set as idle

and achieved, respectively. If the task is in
consideration (in schedule or in execution), it is
canceled.

“execution” - valid
If there are other tasks with state self inexec,
these states are changed to uncertain.

53

5. EMPIRICAL EVALUATION OF DEMiR-CF ON THE MULTIPLE

TRAVELING ROBOT PROBLEM

Search and rescue operations, space exploration, and reconnaissance/surveillance

applications require effective multi-robot exploration. Although the coordination

problem seems to be similar, the overall objective for cost optimization may

be different in these domains. Search and rescue operations may require time

minimization, while space operations require minimization of total path length

traversed by all robots being proportional to the total energy consumed by robots.

In this chapter, we investigate the performance of several heuristic functions

integrated into the framework for multi-robot exploration tasks as a case study

(Sariel and Balch, 2005a, Sariel and Balch, 2006c). Because this problem area

is well studied in operations research, optimal solutions are available, so we can

analyze the deviations of results generated by the framework from optima. Note,

however, that optimal solutions sometimes require time consuming computations,

while our solutions can be found quickly. Although the problem domain consists

of the same types of tasks that can be executed by a homogeneous team of

robots, still it is NP-Hard due to the combinatorial structure of the problem.

5.1. MTRP Problem Statement

The single robot exploration problem, a variation of the well known NP-Hard

Traveling Salesman Problem (TSP), is to find the minimum cost traversal of a

given number of targets (T) without considering the return cost from the last

target to the initial location for a single robot. The problem can be stated as

finding the minimal Hamiltonian path on a given fully connected graph with all

nodes to be visited. The travel costs are assumed to be symmetric. Although

the TSP is NP-hard, there are many efficient k-OPT heuristic methods in the

literature (Lawler et al., 1985).

The Multi Traveling Robot Problem (MTRP) or the multi-robot multi-target

exploration problem is a generalization of the TSP in which there is a team

of robots (R) to visit targets (ti ∈ MMTRP) at least once (ideally at most

once). This problem may be stated for different objectives such as minimizing

54

the overall path length traversed by robots or minimizing the total time

of traversing all targets (similar to the makespan minimization objective).

In the MTRP, besides the quality of the solution constructed by the paths

of robots, allocation of the targets is quite affective on the overall solution quality.

Optimal results can be obtained using Integer Programming (IP) formulations.

However, these approaches may become impractical even when the size of

the mission is moderate or the cost values change frequently due to uncertain

knowledge, changes in the environment (including failures) or the changing

structure of the mission (e.g., online tasks). Furthermore, robots have continuous

path planning burdens for target sets in dynamic environments. Expensive

computational efforts for initial allocations may become redundant.

The Vehicle Routing Problem (VRP) from transportation and logistics research

(Toth and Vigo, 2001, Ghiani et al., 2003) is similar to the MTRP. Especially

the dynamic and stochastic multi-depot VRP problem has a similar structure to

the problem presented here. In the multi-depot VRP, vehicles may be in different

depots, similar to our case where robots may be in different locations initially or

during run-time.

4 4

33

33

(a) (b) Total Solution Cost = 18 (c) Optimal Solution Cost = 14

Figure 5.1: The optimal solution can be obtained by clustering the targets

5.1.1. Remarks on the MTRP Characteristics

While allocating targets, separation by considering distances between

robot-target pairs and assignment of the corresponding targets to robots ignore

the additional cost of returns. A sample situation is given in Figure 5.1. In (a), the

locations of robots and the targets are marked with circles as crosses, respectively,

and the distance values are given. Allocations and final paths generation by

separating targets based on the distances to robots result in the total cost value

18 (Figure 5.1 (b)). However, the optimal allocation cost value is indeed 14

(Figure 5.1 (c)).

55

2 4 3 3

(a)

(b) Total Solution Cost = 11

(c) Optimal Solution Cost = 9

Figure 5.2: Clustering the targets does not necessarily result in the optimal
solution

The optimal allocation can be obtained by clustering the targets. Clustering

methods can be used to form target clusters. However, these techniques use

distance information. Therefore, in some situations, clustering methods also do

not produce optimal results because of ignoring additional costs as in Figure 5.2.

Lagoudakis et al. (2005) present an extensive analysis of the multi-robot

exploration problem from the point of view of solution guarantees. In their work,

they analyze allocation approaches for both sequential tree construction and

route generation, and direct allocation while constructing paths. From our point

of view, as it is suggested in their work, generating a Minimum Spanning Forest

(MSF) and constructing routes on separate MSTs may not always be an effective

method. One reason is that there may be different MSF solutions for the MTRP

case in which some of the distances are the same. It may result in different

allocation alternatives, and if there is not a reasonable allocation strategy

other than selecting the minimum distance, the solution quality may degrade

accordingly. The other reason is that while allocating targets, considering only

distance is not an effective approach because additional costs added in the route

construction phase are ignored. A sample situation is given in Figure 5.3.

Even though constructions of the tree-like structures are computationally

efficient, tree construction and making allocations from scratch may result in

suboptimal allocations. An IP approach may be used for finding optimal

allocations. However, for even moderate sized instances, there is no guarantee of

the solution time. Changes in the distance values between target and robot pairs

may be frequent in dynamic environments. In this case, the solution should be

reexamined. Even very small changes may completely change the overall solution.

56

55

5

6 6 55

5

5

6 6

(a)

(c) Optimal Solution Cost = 17

(b) MSF

Figure 5.3: The optimal allocations may be completely different than the
allocations performed after computing the MSF

5.1.2. Operations Research Methods for the MTRP

The MTRP problem is investigated as Multi-Depot VRP problem or Multiple

TSP problem in Operations Research (OR). There are several methods to obtain

solutions either with exact optimal value or with bounded optimality.

5.1.2.1. Integer Programming Formulation

Optimal results can be obtained by an efficient Integer Programming (IP)

formulation. The optimal results in this work are generated by the commercial

IP solver CPLEX using the following IP formulation given in Lagoudakis et al.

(2005).

minimize:

∑

i∈R∪T,j∈ti

cijxij

subject to

∑

i∈R∪T

xij = 1, ∀j ∈ T

∑

j∈T

xij ≤ 1, ∀i ∈ R ∪ T

∑

i,j∈U

xij ≤ |U | − 1, ∀U ⊆ T : |U | ≥ 2

57

In this formulation, R denotes the set of robot vertices and T the set of target

vertices. xij is an indicator (0/1) variable for i ∈ T ∪ R and j ∈ T . If xij = 1,

then location j must be visited directly after location i. cij is the cost value to

traverse between i ∈ R ∪ T and j ∈ R ∪ T .

The first set of constraints ensures that target locations are visited exactly once,

while the second set ensures that robot and target locations are left at most once

and, finally, the third set guarantees that there are no cycles among the target

locations (subtour elimination constraints) (Lagoudakis et al., 2005).

5.1.2.2. Branch and Bound Approach

The MTRP problem can be solved by Branch and Bound algorithms. In these

algorithms, a search tree is enumerated (branching) by constructing the smaller

subtrees (subproblems) within a feasible search space and searched through

investigating lower and upper bounds of the current subtree (bounding). The

procedure continues until all nodes are either pruned or solved. The performance

of the approach is dependent on the branching and bounding algorithms (Toth

and Vigo, 2001).

5.1.2.3. Heuristics

There are several heuristic approaches to find approximate solutions close to

the optimal solution. The methods are classified into two subclasses: Classical

Heuristics and Meta-heuristics. In the classical heuristic approach, standard

construction and improvement methods are applied to the solution. These

approaches perform limited exploration of the search space and typically produce

good results within modest computing times. In the meta-heuristics approach,

the algorithm searches a large solution space. Evolutionary algorithms, Tabu

Search and Simulated Annealing methods are the common methods belonging to

this class. Although the quality of the solution is much higher than that of the

classical approaches, time complexity worsens dramatically in these approaches.

The applied procedures are usually context dependent and require finely tuned

parameters (Toth and Vigo, 2001).

5.1.3. Robotic Research Methods for the MTRP

Operations Research methods are applied and integrated into robot systems in

earlier works.

58

5.1.3.1. Prim Allocation Method

The Prim Allocation method (Lagoudakis et al., 2004), based on Prim’s

Algorithm (Jarnik, 1930; Prim, 1957), generates an MSF of targets and robots.

An MSF consists of separate robot trees. These trees are constructed by adding

each unallocated target to the closest robot path containing the node with the

minimum distance to the target, until all targets are allocated. In other words,

a new target is added by considering the distances between the target and the

nodes of the robot tree instead of considering the last position of the robot.

Each robot offers an auction for a target and one of the targets is allocated in

each round. Before robots run and visit the targets, all targets are allocated.

Whenever the world knowledge is changed, the remaining unvisited targets

are reallocated using the same algorithm. Like Prim’s Algorithm, the Prim

Allocation method is bounded by 2*OPT for the MTRP. Since this method

offers a single item allocation approach, it is the best candidate in the literature

to compare the task allocation approach of DEMiR-CF. Furthermore, the Prim

Allocation approach is discussed with its performance bounds and the details

necessary to implement it, so we have been able to implement and compare the

performance of DEMiR-CF to that of the Prim Allocation method.

The depth-first traversal solution of an MST is bounded by 2*OPT, and the

traversal and subtree selection does not affect the solution quality in solving the

TSP. However, for the open loop version of the TSP, as in the MTRP, selection

of the subtree that is traversed affects the solution quality to a great extent.

To improve the solutions, traversal may begin with the shortest depth subtree

and continue with traversal on the subtree with the next shortest depth. A

sample situation is given in Figure 5.4. We added this improvement to the PRIM

Allocation method while making the comparisons.

Figure 5.4: Effects of the MST traversal strategy on the total cost for the open
traversal version of the TSP

59

5.1.3.2. Other solutions for the MTRP

Both combinatorial (Dias and Stentz, 2002, Berhault et al., 2003) and single

auction methods are studied for the MTRP in the literature. In GRAMMPS

(Brumitt and Stentz, 1998), one of the earliest works to solve the MTRP, a mission

planner works centrally either on one of the robots or as an operator. The mission

planner selects a robot for each target. The system can regenerate plans when the

environment changes. Authors claim that for the initial state of the system, the

allocations may be suboptimal. However, in later steps, when the number of open

missions decreases, the system can find close to optimal solutions. By using the

simulated annealing algorithm, a randomized search over all possible allocations

is made. In their latest work, Dias and Stentz (2002) propose a market-based

scheme introducing a leader approach for combinatorial task exchanges. These

leaders are responsible for multi-party multi-task optimizations for obtaining

optimal results. In combinatorial auctions, different combinations of tasks are

offered and bidders bid by considering all tasks in these combinations. Thus, this

method may become intractable for large instances or for dynamic situations in

which calculations should be made frequently. Especially when the environment

is dynamic, allocations may become suboptimal. Then, a combinatorial exchange

mechanism is necessary to maintain optimality. Computational requirements for

combinatorial auctions increase dramatically for dynamic environments.

5.1.4. Cooperation Objectives

Different types of objectives complementary to the main goal may be selected

to optimize the performance of the system, as in scheduling problems.

Examples of such objectives are total energy minimization (total path length

minimization), time minimization, average energy minimization, makespan

minimization (Lemaire et al., 2004), etc. Based on the selected objective function,

cost evaluation may need to be designed differently. In Figure 5.5, the paths that

robots traverse in order to optimize target allocations for two different objectives

are shown. The robots are located at the bottom of the figure in the initial

configuration facing the three targets to be visited. Achievement of the total

path length minimization objective is illustrated in the first row of the figures

(a-e), whereas in the second row of the figures, robots minimize the time needed

to achieve the mission (f-j). When the total path length is minimized, one of

the robots visits all targets. For the time minimization, all robots are involved

in the target visiting process. Related videos of these runs are available at the

website-ref: SarielKh2Mov.

60

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.5: Two different optimization objectives for the MTRP: The first row of
the figures illustrates achievement of the total path length minimization objective.
In the second row, robots minimize the time needed to achieve the mission.

In a more general setting, incorporating composite objectives (sometimes for

pareto optimal solutions) into the system may be more useful for the success

of the mission (e.g., both the path length and the time need to be optimized).

Besides these objectives, there are other real-time execution issues that should

also be analyzed. Some of them are listed below:

• reducing collision risk,

• target priorities/strategic target selection,

• time windows, and

• multi-robot requirements to visit a target, etc.

5.1.5. Application Domains for the MTRP

The MTRP domain forms an important basis for many other domains

such as Search and Rescue (SR), Space Explorations, Object Construction,

Pick-up/Delivery, etc. ”Goto Target” task is one of the main tasks for these

domains. Many high level tasks or assemblages of behaviors require this task to

be performed. Even “pushing an object” task can be performed by simply going

to the next point in the desired pushing path; that way the object is assumed to

be pushed when the target location is reached.

In SR operations (Davids, 2002), the mission is challenging due to short time

constraints and success is crucial. Victim locations in a disaster area are not

known in advance. Incoming sensor data can be used to determine probabilistic

information regarding the possible victim locations (Sariel and Akin, 2005).

61

In space explorations (Boddy et al., 2004), the mission is exploring unknown

outer space to collect scientific data. In this domain, robots communicate

through satellite links that are highly prone to communication failures and

latency. Instead of optimizing time, the battery/fuel life of the robots may be

optimized in this domain.

In the object construction or pick-up/delivery domain, the mission is locating

the objects so that they can be carried or pushed to the desired destinations.

Depending on the evidence strength of the estimated locations of the objects,

the estimated task achievement time may vary. There are two situations for the

problem structure: There may be (strong/weak) evidence about the estimated

locations of objects, whereas in another setting, the object locations cannot be

estimated in advance.

All domains listed above have the MTRP ingredients in their problem

representations although the implementations and the complementary objectives

may be different.

In summary, target visiting can be performed:

• to be in a specific location for a purpose,

• to participate in a formation,

• to locate an object to either affect it or collect information from it,

• to pick up an object,

• to drop off an object at/deliver an object to the destination.

The frontier cell-based exploration to cover unknown environments and create

maps (Burgard et al., 2005) is one of application domains related to the MTRP. In

this case, the coverage problem is efficiently reduced to the assignment of frontier

cells to the robots. The frontier cells can be modeled as the targets of the MTRP.

In another application domain, the coverage problem is represented as visiting

waypoints, which can also be formulated as the MTRP problem (Sariel et al.,

2006b). Therefore, although the coverage problem and the MTRP seem to be

different, they share common structures when appropriately represented.

62

5.1.6. Communication Requirements

One of the main issues in multi-robot systems is the communication among

robots. The following questions from Balch and Arkin (1994) determine the

design criteria for multi-robot systems: How much communication do robots

need? Given the communication limitations, what is the best strategy? From

our point of view, communication is the top most priority issue in task allocation

for multi-robot systems. Regardless of the task selection mechanism, the outside

connection has a superior effect on the task achievement time.

5.1.7. Formation of the Mission Structure for the MTRP

Although not investigated in detail previously, the generation of the targets for

the MTRP is an important issue. Even if the target locations are known in

advance, if robots use different global reference frames, high uncertainty and

many inconsistencies are unavoidable.

There are two ways of online target assignment:

• the operator agent(s) assign the targets to the robots, or

• robots discover new targets to be visited by themselves or by others. (e.g.,

in the search and rescue case, a robot may discover more than one potential

victim location.)

The important question which arises is reaching a consensus on the determination

of the target: Which robot is talking about which target? Our solution to

this problem is assigning system-wide known id numbers (reserved) to the

system generated tasks. Alternatively, the robots can communicate the believed

locations of the targets. Given a region threshold, relatively close targets are

treated as the same (Sariel et al., 2006b), although this brings uncertainty into

the system.

The problem with online target generation by robots themselves is that each

robot executes its own localization and mapping procedures and may come up

with different localization errors. These errors may accumulate resulting in

greatly overestimated target locations.

63

5.2. Applying DEMiR-CF to the MTRP

In practical applications, computing the true optimal solutions is not always

required due to several reasons (Reinelt, 1994). Those reasons may be the

incorrect modeling of the underlying problem (targets) or the lack of sufficient

time to find the optimal solution. These are common cases in robot applications

along with the real-time issues presented in Chapter 2. To meet all these

limitations, we propose a dynamic and distributed task allocation scheme,

DEMiR-CF, to coordinate robots that cooperate to fulfill different parts of a

mission. Dynamism is achieved through the incremental selection and allocation

of the targets. By means of the distributed characteristic of DEMiR-CF, each

robot is allowed to select a candidate task for itself and, next, the robots proceed

to cooperate in the process of selecting the most suitable robots for the tasks.

DEMiR-CF is designed with the capability to deal with the situations presented

in Chapter 2. The framework can efficiently respond to these events and the

solution quality is maintained simultaneously with the real-time task execution.

We propose a general mechanism for multi-robot cooperation for the MTRP but

not necessarily specific heuristic functions to solve the problem, although we

validate their successes.

5.2.1. The Dynamic Priority Based Task Selection Scheme

The dynamic priority based task selection and allocation scheme ensures two

types of selection. Each robot selects a target to visit. The system provides

a CNP-based selection method to select the appropriate robot to allocate a

task. This mechanism ensures distributed, robust and scalable allocations. The

incremental assignment approach eliminates the complexity of the decision of

allocating all targets to all robots at a time.

5.2.1.1. Selecting is Eliminating the Other: Incremental Allocation

through Unconditional Commitments

Each robot selects candidate targets that are suitable for itself and forms a target

set (rough schedule). This set consists of the targets suitable to be visited by the

robot. The robot then selects the most suitable candidate task to perform among

these targets in its corresponding set. After selecting the most suitable target for

itself, the robot announces its intention. A CNP-based selection is implemented

and the most appropriate robot among the team of robots to perform the task

(to visit the target) is selected. When robots receive task execution intention

messages, they either send their cost values as bids for the announced target or

64

send warning messages to the sender robot. These warning messages are sent if

the auction is for an invalid target, is one which has already been achieved or

is being executed by another robot. The design of the bid generation rules and

the reply messages is very affective on the quality of allocations. We analyze two

different bid generation rules for different optimization criteria.

Since there is a tight connection between route generation and allocations for the

MTRP, robots initially generate rough routes (rough schedules) in our heuristic

approach. Next, each robot (rj) selects its most suitable target among the targets

in the rough schedule (TRj). TRj is constructed by selecting the targets close to

robot rj , among unvisited targets (TU) according to Equation 5.1, where dist

function returns the Euclidean distance between two points. Targets in TRj are

considered as the candidate targets for robot rj. Therefore, before selecting the

most suitable target, each robot constructs these rough route sets. This heuristic

does not compel an actual commitment, and the targets in the rough routes

are not necessarily assigned to the corresponding robots in the future auctions.

Instead, it provides a global view to the problem from a local perspective.

reldist(rj, ti) = dist(rj , ti) − min(dist(rk, ti))

{∀k �= j, rk is active} (5.1)

TRj = ∪ti, reldist(rj , ti) < 0, ∀ti ∈ TU

5.2.1.2. Cost Estimation and Evaluation

Although the TSP problem is NP-hard, there are many efficient heuristic methods

in the literature generating k-OPT solutions (Lawler et al., 1985). Some of the

heuristic methods use the triangle inequality principle given in Equation 5.2 The

triangle inequality principle for cities i, j and k assumes that the shortest distance

(c) between two cities is a straight line (direct route).

cik ≤ cij + cjk (5.2)

Since these heuristic cost functions form the basis of our inspiration to design

our cost functions, we review them in Appendix A. We are inspired by some

of these route generation heuristics in the design of our multi-robot multi-target

route construction heuristics. We extensively focus on two heuristic cost functions

combined within our framework in this work. These cost values are evaluated for

the targets in TR for each robot. The CC (Closest Cost) heuristic cost value for

robot rj and target ti is evaluated by Equation 5.3. This heuristic cost function

65

only considers the distance between targets in TRj and the robot rj.

cji = dist(rj , ti) ti ∈ TRj (5.3)

The FAC (Farthest Addition Cost) heuristic function considers costs as if there

is a route for TRj as in Equation 5.4 and applies a penalty for not visiting the

boundary targets. Boundary targets, tb1 and tb2, are the targets in TRj with the

maximum distance value. The FAC heuristic forwards robots to these targets in

TRj to some degree. The main idea behind this approach is that the open loop

traversal should contain both tb1 and tb2s. If the robot heads towards one of these

targets, if profitable (α), the longest path can be traversed by traversing other

targets on the path. A sample illustration of this cost function is given in Figure

5.6. In this figure, although t2 is closer to r1 than t1, with the FAC heuristic

applied, t1’s cost value is smaller than that of t2 (3 < 3.6), hence resulting in

a better route shown by the dashed arrows. We have performed an empirical

analysis of the parameter α; the best results are observed for a value of 0.6.

cji = α ∗ dist(rj, ti) + (1 − α) ∗ [dist(tb1, tb2)

−max(dist(ti, tb1), dist(ti, tb2)] (5.4)

{dist(tb1, tb2) = max(dist(tk, tl)) ti,k,l ∈ TRj}

2 3 4

4

3

5

(T)R1

t
m1

t
m2

{c = 5*0.6+0 = 3}

{c = 4 * 0.6 + (12 - 9) *0.4 = 3.6 }

r
1

11

12

t
2t =

1
t
3

t
4 = t5

Figure 5.6: Target selection strategy by the FAC Heuristic function

5.2.1.3. Dynamic Task Selection and Distributed Target Allocation

Each robot executes Algorithm 3 to generate its rough schedule. The robot then

selects the most suitable candidate task (ts, the most suitable target among the

rough schedule targets) to perform.

Algorithm 4 forms the main loop for incremental task allocation and it is called

in the beginning of the mission execution and whenever the world knowledge

66

Algorithm 3 MTRP-FormRoughSchedule for rj

input: TU

output: TRj and ts

TRj = φ (a heap with task cost as the key)
ts = φ

while TU is not empty do
if ti is in the rough schedule region according to Equation 5.1 then

cji = evaluateCost(ti ∈ TU) (*)
insert ti into TRj

end if
end while

if ‖TRj‖ > 0 then
ts = top(TRj)

end if
∗ cji is evaluated by Equation 5.3

of the robot changes. Each robot executes the same algorithm concurrently

until the end of the mission, when all traversable targets are visited. The

given algorithm may be used to allocate all targets from scratch. However,

an incremental assignment approach eliminates the redundant allocations for

dynamic environments. The cost function design can be determined based on

the capabilities of the robot. The cost function that we use can be successfully

implemented for very small robots, as is shown in our experiments.

Algorithm 4 MTRP-DPTSS algorithm for robot rj

input: TU

output: An action to be performed

[TRj , ts] = MTRP-FormRoughSchedule(TU)
if ts �= φ then

if ts is the current task then
continue with current execution

else
if ts is an available task then

offer an auction to announce intention on execution
else

directly execute the task (task switching or being awarded)
end if

end if
else

stay idle
end if

67

After selecting the most suitable target for itself, each robot announces its

intentions by a single-item auction. Selection of the best robot for a task is

performed by using the Contract Net Protocol (CNP) in our approach. Although

the CNP presents the formalism on the relationships between managers and

contractors, some simple decisions are left to the designer. Most auction based

task allocation schemes offer solutions for allocating one/a subset of task(s) of

the overall mission. However, there is usually little information about when task

announcements and reassignments are made.

The approach we propose allows for multiple auctioneers and winners for different

tasks, depending on the optimization objective. In the case of the total path

length minimization objective, ending one auction at a time results in better

performance when there are relations between targets. This is the reason why

some auctions are canceled when there are multiple auctions going on at the

same time. On the other hand, auctions/executions are canceled only if there are

relations between the targets in consideration for the time minimization objective.

These two different responses are generated by Algorithm 5 and Algorithm 6,

respectively.

Algorithm 5 Response for Path Optimization - rj

if auction/execution is in progress & (cji > clk) then
cancel auction/execution for ti

end if
if cjk < clk then

send bid value for tk
end if

Algorithm 6 Response for Time Optimization - rj

if auction/execution is in progress & (cji > cjk) || ((cji > clk) & (tk or rl is
close to the TRj)) then

cancel auction/execution for ti
end if
if cjk < clk then

send bid value for tk
end if

5.2.2. Failure Detection and Recovery

Plan B Precaution Routines integrated into the dynamic task selection mechanism

is applied for the MTRP as explained in Chapter 4. The single-robot task models

68

are used to represent the states of the FSMs for individual tasks. Robots

continually perform model updates and consistency checking operations using

information received from the incoming messages and the data perceived from

the environment during runtime. When robots receive task execution intention

messages as auctions, they either send their cost values as bids for the announced

targets or send warning messages to the sender robots. Failures can be detected

immediately and recovery routines are activated for the failures or contingencies.

5.3. Bounds on the Solution Quality

The performance of the Prim Allocation algorithm is proved to be bounded by

2*OPT (Lagoudakis et al., 2004). The difference between the Prim allocation and

the CC heuristic approach is in the robot location considered. Our framework

combined with the CC heuristic considers the latest location of robots, while

the Prim Allocation algorithm considers their initial locations. Assuming there

are two subtrees of the MST, the CC heuristic approach forwards robots into

either of the subtrees of the MST, leaving the other subtree to be traversed by

another robot or by itself. If in the end, the first robot traverses the subtree,

the solution cost is the same as the Prim Allocation solution cost. However, if

another robot traverses the other subtree, the generated solution is better than

depth-first traversal since the other robot has been favored because of its cheaper

cost value. The CC heuristic can be classified as one of the BidSumPath heuristics

(Lagoudakis et al., 2005) and it is shown that the solution is bounded by 2*OPT.

The FAC heuristic forwards robots to one of the border subtrees. In the worst

case scenario, the next selection phase forwards a robot to the next subtree in

the MST before the completion of the traversal of a subtree (usually this results

in the elimination of long connections among subtrees and gives better results).

However, by making use of triangle inequality, going back to the previous subtree

cannot be greater than two times the traversal of the corresponding MST edges

in this worst case.

5.3.1. Analysis of the Approach

The approach we have proposed for the MTRP offers a polynomial time solution.

Sorting the distance values to find the boundary targets takes O(nlog(n)) for all

n number of tasks. Both cost and queue initialization are implemented in O(n).

Top element selection and deletion is performed in O(logn). Therefore, the total

complexity is bounded by O(nlog(n)). In the worst case, the environment is

dynamic and cost values change frequently in the order of O(l). Then the total

complexity becomes O(lnlog(n)) for each robot.

69

5.4. Implementation Details

“Morse decomposition”and spinning behavior is stated to be efficient for searching

an area (Acar et al., 2002). This is used in our system for locating objects whose

estimated locations are not exactly known or when there is uncertainty about the

location of either an object or a robot. This idea is useful for locating specific

objects that are very likely to be located in the search area. The framework

implements the Archimedean spiral in robot behavior, an is inspired from the

geometric implementations given in Figure 5.7.

Figure 5.7: The Archimedean spiral and two simple implementations

A search and rescue domain in which victim locations are not exactly known but

may be estimated, is a candidate domain for applying this idea. However, if the

robot is only visiting waypoints, spinning behavior may be time consuming in the

application.

Figure 5.8: The robot can directly find the target with a reasonably accurate
estimation

We define a deadline threshold for the spinning behavior in our implementation.

The robot searches the area to find the object until the deadline is reached. If

the object is not found within the deadline, the robot gives up its search for that

target and continues to look for other targets, if any. In Figure 5.8, the robot

70

Figure 5.9: An implementation of the Archimedean spiral with the
corresponding robot behavior

directly finds the object (The scenario illustration is taken from a WEBOTS

simulation with a Khepera robot) since the uncertainty is in an acceptable

degree. Figure 5.9 presents two situations; one in which the robot can find the

object before the deadline is reached, and one in which it cannot find the object

in due time. Due to a localization error or inexact information regarding the

location of the object, the robot should search the area for the object. On the

left, the robot continues to search until a deadline is reached. On the right, it

finds the object while spinning before the deadline. In some of our experiments

illustrating different cases, robots simply visit targets without looking for objects

and without using the approach presented above.

5.5. MTRP Experiments

MTRP experiments are designed in four sets. In the first set, the performance

of the proposed heuristic cost function for the MTRP is analyzed. In the

second set of experiments, the heuristic approaches are evaluated to measure

the solution quality. All methods are implemented by coding all methods in

different programs with the same interface to give the test instances on CPLEX

by using the Integer Programming formulation given in Lagoudakis et al.

(2004). Basically, in this set of experiments, the algorithms are run on distance

matrices. In the optimal result generation for large instances of the problem,

the constraints (3rd) cannot be fed into CPLEX. As explained in Lagoudakis

et al. (2004) we used a cutting plane method to solve the integer program. In

our experiments, we observed this limitation for instances with 18 targets or

more. The results are taken by the cutting plane method after iterative calling

of CPLEX for a previously found solution, as explained in the original paper

(Lagoudakis et al., 2004). The environment is represented as a grid with 100*100

71

nodes; the number of robots change in the range [1-50] and the number of targets

in [10-50]. Time comparison results are taken for the centralized implementation

of the methods. The distance calculations among targets and robots are excluded

from the run time period while the IP model generation is included in the time

period because it is part of the solution. Both approaches are assumed to be

running on the given distance matrices. The results are presented as averages of

100 independent runs for the randomly generated test instances. The running

time results are averaged over 30 runs.

In the third set of experiments, the real-time performance of DEMiR-CF on

the MTRP is evaluated as dynamic simulation experiments on the professional

mobile robot simulation software, WEBOTS (Michel, 1998). WEBOTS contains

a rapid prototyping tool allowing the user to create 3D virtual worlds with

physics properties, such as mass repartition, joints, friction coefficients, etc. The

fourth set of experiments is performed on real robots, namely Khepera II.

Table 5.1: FAC heuristic function performance results for the known TSP
instances

TSP Instance FAC Optimum
% Deviation from
the Optimum

ATT48 - 48 nodes 33537.83 31470.4 6.5

EIL51 - 51 nodes 444.01 413.51 7.37

BERLIN52 - 52 nodes 8104.99 7305.38 10.94

EIL101 - 101 nodes 725.31 629.38 15.24

FAC Heuristic Optimum

Figure 5.10: Open-loop routes of the FAC Heuristic function and the Optimum
for the ATT48 TSP instance

72

5.5.1. Experiment 1: Evaluation of the FAC Heuristic Cost Function

In the first set of experiments, an analysis of the performance of the FAC heuristic

for the TSP is performed for the known TSP instances (Reinelt, 1991). Problem

instances are presented in Appendix B. The results are given in Table 5.1 as

the cost of traveling through visiting all nodes for a single robot. These results

reveal the near-optimal performance of the FAC heuristic function with at most

15.24% deviation from the optimum (for a large TSP instance). Note that these

results are for the open loop TSP and present construction solutions without

any additional improvements applied. In Figure 5.10, open loop routes of the

FAC heuristic function and the Optimum are given for a sample TSP instance,

ATT48, where targets represent geographical locations of capitals of US cities.

The geographical representations and the optimal routes for other instances are

given in Appendix B.

5.5.2. Experiment 2: Performance Comparison of DEMiR-CF and

the Prim Allocation Approach with the Optimum

In the second set of experiments, heuristic functions integrated into DEMiR-CF

and the Prim Allocation method are evaluated on randomly generated test sets

for different numbers of robots and targets.

20 30 40 50 60 70 80 90 100 110
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Targets

Ru
n

Ti
m

e
(s

)

DEMIR−CF
PRIM
IP

x

x

x

xx

x

o

o o o o

+

+ + ++x +o

x

x

x

x

Figure 5.11: Runtime comparison of the approaches for single robot route
generation

Comparison of running time requirements of DEMiR-CF, the Prim Allocation

and the IP approach for the MTRP solution approaches are given in Figure 5.11.

73

Large standard deviation values for the IP approach present the dependency

of the solution time on the problem instance structure. The performance of

the IP approach is close to the worst case performance for some instances,

not given in these statistics. Depending on the application and the instance

size or the frequency of the changes in the distance values, the IP approach

may be impractical without guarantees on the solution time. Allocations by

using a heuristic approach (either DEMiR-CF or the Prim Allocation) can be

implemented in a very short time as expected and are given in Figure 5.11. This

graph presents running time results of the approaches for the single robot case.

With a decreasing amount of target densities, the IP approach solution time

decreases accordingly.

50 25 15 5 1
5040302010

0

10

20

30

40

of Robots

PRIM ORG

of Targets

D
ev

ia
tio

n
fr

om
 O

PT

50 25 15 5 1
5040302010

0

10

20

30

40

of Robots

PRIM SD

of Targets

D
ev

ia
tio

n
fr

om
 O

PT

50 25 15 5 1
5040302010

0

10

20

30

40

of Robots

DEMIR−CF + FAC

of Targets

D
ev

ia
tio

n
fr

om
 O

PT

50 25 15 5 1
5040302010

0

10

20

30

40

of Robots

DEMIR−CF + CC

of Targets

D
ev

ia
tio

n
fr

om
 O

PT

Figure 5.12: Performance results of the heuristic approaches

The overall performance results are given in Figure 5.12 as deviations from the

optima with standard deviation, averaged over 100 runs. PRIM-ORG values

represent the results of the Prim Allocation method without considering subtree

sizes on the traversal, while PRIM-SD values represent the results with shortest

subtree selection improvement. Results of the FAC heuristic approach are

74

promising even for single robot instances. With increasing number of robots, the

solution quality is also affected by the target allocation. Therefore, the CC and

the FAC heuristic results become closer with only a very small value of deviation

from the optima. The decrease in target/robot proportion results in a decrease

in the deviations of the results from the optima. However, results obtained

for the Prim Allocation method still deviate from the optima because of the

allocation method. This is prevented in DEMiR-CF by the dynamic selection of

TRs. Allocation samples generated by the algorithms and the optimal allocations

for a 15 robots 50 targets instance is given in Figure 5.13. Note that our results

can be further improved by using 2-OR exchange (Toth and Vigo, 2001) type of

improvements, if the communication is reliable.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

OPT FAC

MSF PRIM

Figure 5.13: Allocations generated by each approach for an instance of 15 robots
and 50 targets

75

5.5.3. Experiment 3: Real-Time Dynamic Simulation Experiments

In our simulation experiments, each environment is represented as a 5m by 5m

3D virtual world where 70mm-sized simulated Khepera II robots and objects are

located. The environments are randomly generated VRML files containing the

robots, the objects and the MTRP targets.

Robot kinematic calculations are done on the low-level design of the robots by

using the odometry information coming from the encoders for both simulation

and real-world experiments. The robots perform mapping of the environment by

using an occupancy grid approach (Moravec and Elfes, 1985) simultaneously with

online localization. In the simulator, slipping and encoder errors are simulated

whereas the real world has its own uncertainties. Due to the slipping errors, as

expected from differential wheel robots, usually odometry errors are encountered.

The scalability of the system for different numbers of robots is evaluated through

10 run-time experiments for each set. The robots are randomly located in the

environments with 10 targets at fixed locations. Since the approach proposed is

for a multi-robot team, we expect to see a linear decrease in the total path length

traversed by the robots as the number of robots increases as in Figure 5.14. These

results validate our expectations.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

Number of Robots

T
ot

al
 p

at
h

le
ng

th
 tr

av
er

se
d

by
 r

ob
ot

s

Figure 5.14: Scalability analysis for different number of robots

In another experiment using the same setting presented above, the performance

of the contingency handling mechanism is evaluated and the results are depicted

in Figure 5.15. NO PREC indicates that capabilities of the contingency

handling mechanism are not used, while USE PREC indicates that they are

76

used. The figure on the left is the total number of messages sent by the

robots. The surprising result here is the increase in the number of messages

for the NO PREC case. Although the contingency handling mechanism seems

to inject additional messages into the system at first glance (for ensuring the

system consistency), these results reveal that it also eliminates the redundancy

in the number of messages for multiple bids and auctions. The figure on the

right shows the total path length traversed by the robots. The path length is

presented by discretized values (each unit is 70mm). The experiments reveal

that using the contingency handling mechanisms reduce both the number of

messages sent and the total path length traversed by the robots. This result

validates the efficiency of integrating the contingency handling mechanism into

the system. Dynamic simulation experiments where the robots perform both

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

1000

Number of Robots

N
um

be
r o

f M
es

sa
ge

s

NO_PREC
USE_PREC

0 2 4 6 8 10 12
100

120

140

160

180

200

220

240

260

280

300

Number of Robots

To
ta

l p
at

h
le

ng
th

 tr
av

er
se

d
by

 ro
bo

ts

NO_PREC
USE_PREC

Figure 5.15: Performance results for the Contingency Handling Mechanism

task allocation and real-time sensing, localization and mapping can demonstrate

how the knowledge of map information changes the problem instance and the

requirements on reallocations when new information is encountered by robots.

Two sample scenarios with 3 robots and 10 targets present this hypothesis. The

initial configuration of the environment is illustrated in Figure 5.16. The targets

are presented by the blue landmarks. Two robots are located at the bottom

of the environment and the third robot is located in the center of the environment.

In scenario 1, lacking the map information, the robots initially assume that

the environment is empty, even though there are obstacles. Thus, visiting the

predetermined target locations takes much more time than expected. The final

state of the environment at the end of the mission is presented in Figure 5.17.

Robot paths are drawn by the simulator in this figure. The robots carry out

localization and mapping operations simultaneously to visit targets efficiently.

77

The actual paths and the estimated paths traversed by the robots using odometry

information and kinematics calculations are illustrated on the left side of Figure

5.18. The estimated paths are represented by dotted lines. As can be seen from

the figures, due to the slipping and encoder errors, the estimated paths do not

completely overlap with the actual paths traversed. In such cases, target locations

may sometimes be incorrectly interpreted. The errors on the traversed paths may

be reduced by using landmarks in the environment and adjusting the localization

error accordingly. The occupancy mapping approach (Moravec and Elfes, 1985)

is used in our experiments. The maps generated by the robots are illustrated

on the right side of Figure 5.18. Rough schedules are generated and robots visit

targets based on the up-to-date selections. During mission execution, one of

the robots detects that a target is not traversable after discovering the obstacles

surrounding the target. In scenario 2, the map of the environment is given to the

robots (Figure 5.19). As expected, robots do not intend to visit untraversable

targets. Paths and maps of this scenario are illustrated in Figure 5.20.

Figure 5.16: The initial configuration of Scenario 1

Figure 5.17: The final configuration of Scenario 1

78

Robot Paths Robot Grid−Maps

Figure 5.18: (left) Ground truth and estimated paths of the robots. (right)
Runtime maps generated by the robots in Scenario 1.

Figure 5.19: The final configuration of Scenario 2

Robot Paths Robot Grid−Maps

Figure 5.20: (left) Ground truth and estimated paths of the robots. (right)
Runtime maps generated by the robots in Scenario 2.

79

5.5.4. Experiment 4: Real-Time, Real-World and Dynamic

Environment Experiments

Each Khepera II robot is equipped with a 25MHz MC68331 micro-controller,

512K Flash and 512K RAM memories and 8 infra-red sensors with a limited

obstacle detection range as simulated in WEBOTS. Communication is achieved

through wireless links. Real Kheperas have standard radio turrets mounted on

them to communicate through the selected radio frequency. Emitters in the

simulator are configured to have a baud rate of 9600 and a buffer size of 1024B

as in the receiver modules.

Figure 5.21: The Khepera II robot visits six targets in the environment

Figure 5.22: Three Khepera II robots divide the labor of visiting the six targets

Each robot executes a multi-threaded controller software to achieve the

functionality of DEMiR-CF. Different modules on the task allocation layer are

integrated with the low-level Sensory Interface, Motor Interface, Motion Model

and Mapping modules in the multi-threading structure.

The overlaid video frames from real robot experiments that we have conducted

are illustrated in Figure 5.21 - Figure 5.23. Figure 5.21 illustrates a path

80

Figure 5.23: The team handles the failure of the third robot in real-time

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

(b1)

(b2)

(b3)

(b4)

(b5)

(b6)

(c1)

(c2)

(c3)

(c4)

(c5)

(c6)

Figure 5.24: Single robot cases for different initial deployment locations of the
robots

81

traversed by one Khepera II robot visiting six targets in the environment. The

target locations are shown with blue flags and fixed in all real robot experiments.

When we have a multi-robot team, the mission completion time is reduced by

the robots’ division of labor. The robot paths are illustrated in Figure 5.22. The

multi-robot team can successfully handle robot failures as illustrated in Figure

5.23. All robot positions at the time of the failure are marked with red filled

circles.

Depending on the initial location of the robot, the path constructed to

traverse the targets differentiate for the single robot case. This is illustrated

in Figure 5.24. In this figure, each column (a-c) represents the illustration of

an independent run with a different initial deployment location for the robot.

The continuous video frames are divided into episodes in which the images of

the videos are overlapped and the final overlapped image is illustrated (e.g.,

a1,a2..a6) in the figure.

Figure 5.25 illustrates the scenario (Scenario 1) with three robots for the same

setting of the target set. Time is minimized by using a three-robot team. Robots

use DEMiR-CF to select and allocate tasks in a distributed manner.

(a) (b) (c)

(d) (e) (f)

Figure 5.25: Scenario 1: the multi-robot case without failure

The failure of the third robot and the rest of the run are illustrated in Figure 5.26

(Scenario 2). In this scenario, the third fails after visiting its assigned task. The

failure of the robot is forced by the human agent isolating the related robot. At

the time of the failure, the other robots are busy with their own target visiting

tasks. The failure of the third robot does not block the execution. Since the

82

allocations are performed incrementally in DEMiR-CF, the target that is assigned

to the third robot in Scenario 1 is not allocated to the third robot in this situation

because it fails immediately after achieving its first task. After the failure, the

second robot selects this target as an available target among the other targets.

There is no recovery in this scenario, but redundant allocation procedures are

eliminated by DEMiR-CF.

(a) (b) (c)

(d) (e) (f)

O

Figure 5.26: Scenario 2: the multi-robot case in which the third robot fails after
completing its task

(a) (b) (c)

(d) (e) (f)

O

Figure 5.27: Scenario 3: the multi-robot case in which the third robot fails
before completing its task

If the failure of the third occurs before completing its assigned task, then a

recovery is needed (Figure 5.27). Using Plan B Precaution Routines, DEMiR-CF

83

(a) (b) (c)

(d) (e) (f)

O

Figure 5.28: Scenario 4: the multi-robot case in which the first robot fails before
after completing its task

can handle these types of contingency cases and the mission is successfully and

efficiently accomplished. The failure cases for the first and the second robot are

also illustrated in Figure 5.28 and Figure 5.29, respectively. All videos of these

scenarios are available at the website-ref: SarielKh2Mov.

(a) (b) (c)

(d) (e) (f)

O

Figure 5.29: Scenario 5: the multi-robot case in which the second robot fails
before completing its task

5.6. Summary and Discussion

In this chapter, we introduce the MTRP problem, the solution methods and

our solution by using DEMiR-CF. In conclusion, the IP formulation generates

optimum results for a given configuration of the robot and target locations

84

in small instances. However, these approaches may become impractical when

the number of targets increases or the distances change frequently because

of uncertain knowledge, the dynamism of the environment or the changing

structure of the mission. Therefore, the IP approach may be too expensive when

added to the path planning calculations for large target sets. As the results

illustrate, allocating all targets and generating routes of robots from scratch may

result in highly suboptimal solutions.

DEMiR-CF eliminates the redundant efforts by means of the incremental

assignments based on the up-to-date situations of the environment for this

domain. It can also handle the contingencies by Plan B Precaution Routines.

Communication failures may sometimes prevent target allocations from being

optimal. The framework can also detect these situations and maintains high

solution quality by the dynamic task selection and task exchange scheme. As a

final remark, as our experiments and given sample situations reveal, we argue

that target allocation and route construction should be integrated for better

results in this domain. This integration and incremental allocation is useful for

eliminating redundant calculations in highly dynamic or unknown environments.

85

6. EMPIRICAL EVALUATION OF DEMiR-CF ON NAVY

MISSIONS

In this chapter, we evaluate the performance of DEMiR-CF in Naval Mine

CounterMeasure (MCM) missions and Naval Homeland Security Missions.

Marine applications using AUVs (Autonomous Underwater Vehicle) involve

challenges in addition to noisy communication, position uncertainty and the

likelihood of failures. In particular, in undersea operations communication

windows are restricted and bandwidth is limited. Consequently, coordination

among agents is correspondingly more difficult. It is highly likely that the

initial task assignments are subject to change during run time in these kinds

of environments. DEMiR-CF on NAVY missions can ensure robust execution

and efficient completion of missions against several different types of failures.

The experiments are performed on the US Navy’s Autonomous Littoral Warfare

Systems Evaluator-Monte Carlo (ALWSE-MC) simulator against different

contingencies that may arise at run time.

Empirical evaluations are performed on a cooperative NAVY mine clearance

mission (Sariel et al., 2006b) and a cooperative NAVY homeland security mission

(Sariel and Balch, 2006b).

6.1. Naval Mine Countermeasure Missions

Naval Mine CounterMeasures are actions taken to counter the effectiveness of

underwater mines. MCM operations include finding and seizing mine stockpiles

before they are deployed, sweeping desired operational areas, identifying mined

areas to be avoided, and locating and neutralizing individual mines (Stack and

Manning, 2004).

Our research is focused on the subset of MCMs that involve locating and mapping

all individual mines in an operational area. In general, recognizing proud mines

on the seafloor is not overly difficult; the difficulty arises with the abundance

of non-mine objects on the sea floor that possess mine-like characteristics (e.g.,

geologic outcroppings, coral, man-made debris, etc.). This ample supply of

false alarms has necessitated the following strategy typically employed by the

Navy: detect and classify the mine-like objects (MLOs) with high-coverage rate

86

sensors (e.g., sidelooking sonar), employ advanced signal processing techniques

for maximal false alarm reduction, then revisit the remaining MLOs with

identification-quality assets (e.g., electro-optic sensors) to confirm them as mines

or dismiss them as false alarms.

The reference mission in this research is to detect, classify, and identify

underwater mines in a given operational area simulated in a PC-based

software, ALWSE-MC (ALWSE), analysis package designed to simulate multiple

autonomous vehicles performing missions in the littoral regions including mine

reconnaissance, mapping, surveillance, and clearance. This mission employs

two types of vehicles: unmanned underwater vehicles (UUVs) which are free

swimming AUVs and possess large-footprint sensors (e.g., side-scan sonar) for

detection and classification (D/C) of mines and sea-floor crawlers equipped with

short-range, identification-quality sensors (e.g., camera). The crawlers have the

ability to stop at an object and take a picture with a camera.

6.2. Applying DEMiR-CF to the Naval MCM

To apply DEMiR-CF framework to the NAVY MCM, the task types and the

vehicle operations are determined and the general representation is adopted to

be used in this domain. Different operations are needed for different underwater

vehicles depending on their capabilities and the task types that they can execute.

6.2.1. Task Representation for The MCM

Our general task representation is capable of describing complex tasks with

interdependencies. However, in this particular case study, tasks do not have

interdependencies. Two types of tasks are defined for vehicles: “visit waypoint”

(w) and “identify MLO” (t). The task representation includes the capabilities

required for each type of task: reqcapw contains side-scan sonar and reqcapt

contains cameras besides the standard capabilities of AUVs common in both types

of vehicles. The coverage mission (MC) contains a predefined number of known

waypoints (wi ∈ MC , 0 < i ≤ ||MC ||) to be visited by all UUVs (RUUV ⊂ R).

One way of task representation is to directly assign a task for each waypoint.

However, this representation has a drawback of high communication requirements

for the efficient completion of the mission. Instead, we represent tasks as interest

points of regions/search areas (Wk = ∪wi, ∀wi is unvisited, and Wk ⊆ MC).

Therefore, both the allocation of the waypoints to the robots and the paths

constructed to traverse these waypoints are determined online by negotiations.

Negotiating the interest points (regions) instead of the individual waypoints

87

reduces the communication overhead. Regions determined by different UUVs

may vary during runtime and may sometimes overlap. However, the uncertainty

related to the region determination is within an acceptable range, especially

when the cost is compared to the requirements of complete knowledge sharing

by representing each waypoint as a task. Before defining the regions, the relative

distance values, reldist(rj , wi), are determined for each unvisited waypoint wi

using Equation 6.1, where function dist returns the Euclidean distance between

points. rk locations are the latest updated locations of the robots. If there is no

known active robot assumed to be running properly, reldist(rj, wi) is the value

of the distance between the robot and the waypoint.

reldist(rj , wi) = dist(rj, wi) − min∀k �=j(dist(rk, wi)), rk is active (6.1)

Each robot defines its rough regions (Wjk, 1 ≤ k ≤ ||RUUV ||). The number of

regions equals the number of UUVs believed to be running properly. After

sorting the reldist(rj , wi) values of the unvisited waypoints in descending order

as an array, the array is cut into subarrays which represent the regions. Each

region contains approximately an equal number of waypoints. Each robot

specifies the region of the highest interest as its “first” region. If the robots

are closely located, the regions of highest interest may overlap. In this case,

negotiations are needed to resolve conflicts and to assign only one robot for each

region.

The identification mission (MI) contains an unknown number of tasks for the

MLO locations (ti ∈ MI , 0 < i ≤ ||MI ||) to be visited by the crawlers. Therefore,

the tasks in MI are generated during runtime.

6.2.2. Exploration for Detection and Classification of MLO Locations

To begin the mission, the UUVs survey the operational area following waypoints

determined a priori ; however, corresponding regions containing waypoints may be

reassigned by the negotiations among UUVs autonomously. After determining the

regions, each UUV proposes an auction for the region of highest interest (interest

point). After negotiations on several auctions, each UUV is assigned to the closest

region (interest point). If more than one robot is almost the same distance from

the interest point, the one with the smaller id number is assigned to the region.

The other UUVs continue to offer auctions for the remaining regions. Allocations

of the regions may also change during run time to maintain the solution quality.

Whenever UUVs detect UUV failures or recoveries from failures, they change

their region definitions accordingly and offer new auctions. After the region

88

assignments are completed, each robot visits waypoints in its region (Wj) in a

sequence identified by an ordering from the smallest to the largest of their cost

values, which are computed using the heuristic function given in Equation 6.2.

c(rj , wi) = α ∗ dist(rj , wi) + (1 − α) ∗ [dist(wb1, wb2)

−max(dist(wi, wb1), dist(wi, wb2))]

{dist(wb1, wb2) = max(dist(wk, wl)), wi,k,l,f1,f2 ∈ Wj}

(6.2)

This heuristic function considers boundary targets, wb1 and wb2 in Wj , the

targets with the maximum distance value. The basic idea of this function is to

forward the robot to one of these boundary targets since these targets determine

the diameter of the region (Wj) and both of them should be visited. If the robot

initially heads towards one of the boundary targets, the diameter (the longest

path) can be traveled by visiting other targets along the path. The cost penalty

applied to forward the robot to the boundary targets is limited to a small degree.

By introducing a constant (α), this degree of direction can be adjusted. When

α is assigned a value of 2/3, this heuristic function produces close to optimal

results for multi-robot multi-target domains as explained in the previous chapter.

If more than one pair of boundary targets exist, the pair which has a member

the smallest distance from the UUV is selected.

As UUVs detect the MLOs on their way, they broadcast these estimated target

positions to all AUVs (i.e., tasks for crawlers are generated online during

execution). Then MLO information can propagate in bucket-brigade style to

all other AUVs in the group that can possibly be reached. Periodic broadcasting

of important information coming from either owned sensors or external agents is

a way to handle communication range limitations.

6.2.3. Identification of Mine-like Objects

When the crawlers are informed about the MLO locations, they update their

world knowledge and dynamically select the best MLO targets to visit and

propose auctions. Therefore, they can switch among tasks when new tasks

appear, if it is more profitable. It is also possible that a crawler may inadvertently

discover a mine without being informed of its position by a UUV. In this case,

the crawler identifies the target, adds it to its task list as an achieved task,

and broadcasts achievement information to maintain the system consistency.

Crawlers determine the bid values by using the MTRP cost evaluations to model

the MLOs as MTRP targets.

89

In the identification task, when crawlers are within an area close to an MLO

location, they begin keeping time while surveying the MLO location. Whenever

the time limit is reached, they set the task status as achieved and broadcast

this information. If a detection event occurs during this time period, the MLO

location is considered to be an actual mine and the task is assumed to be

achieved; otherwise, it is determined as a false alarm after deadline. In either

case, the task is marked as achieved.

A conceptual flowchart summarizing operations of UUVs and crawlers, and the

general operations implemented by both types of AUVs is given in Figure 6.1.

Define Regions

Select the most suitable

region

Offer auction

for the selected region

Visit waypoints in

the

assigned region

MLO
Detection

Broadcast

known unachieved MLO locations

visited waypoints

execution message for the next

waypoint in the schedule

New Messages are

received

Resolve inconsistencies

Warn

others

Update

Models

Reply for

auctions

Select the most suitable

MLO location

Offer auction

for the best MLO location

Award

another

UUV

Visit MLO location

Award

another

crawler

no change

Broadcast

known unachieved MLO locations

achieved MLO tasks

execution message if executing

a MLO task

Dynamic Task Selecting/Switching

Distributed Task Allocation

Plan B Precautions

UUV Operations Crawler OperationsGeneric Operations

System Model is updated / Mission

Execution Begins

failures , recoveries , own

inconsistencies , new MLO tasks

System Model is updated/ Mission

Execution Begins

failures , recoveries , own

inconsistencies , new tasks

no change

Figure 6.1: Conceptual flowchart related to the AUV operations

6.3. Experimental Results on the Naval MCM

The performance of our framework and the precaution routines is evaluated in

ALWSE-MC. Three sample scenarios in the simulator are given to illustrate the

performance for Naval MCM missions. UUVs are equipped with sensors capable

of detecting mines within 30 feet from the skin of a target in the simulator.

However, they are not able to correctly identify them. The crawlers are equipped

90

with cameras which can both detect and identify mines within 20 feet. None of

the AUVs have predefined search patterns. UUVs have internal navigation errors,

therefore, their estimated location values are different from actual locations in

most cases. Two AUVs can communicate with each other whenever the receiver

AUV is in the sender AUV’s transmitter range, within its transmitter beam

width, and the sender AUV is within the transmitter AUV’s receiver beam width.

All UUVs and crawlers begin execution from a deployment area. There is no a

priori information about mine locations. 121 waypoint locations (environment

size: 200x200) are known but are not assigned initially. UUVs begin negotiations

and divide the overall mission area into three (known number of UUVs)

regions. Since they are within line of sight, they can communicate their location

information. Therefore, initially defined regions are almost the same for all

UUVs. Figure 6.2 illustrates a successful mission scenario with three UUVs

and two crawlers. The legend for all simulation scenarios are also provided in

the figure. Allocations of waypoints after negotiations can be seen in Figure

6.2(b). Since there are no failures, the waypoint assignments do not change

during run time. However, the crawlers sometimes switch among tasks if they

are not informed about tasks that are being executed and sometimes parallel

executions occur. Whenever they are in communication range, they can resolve

the conflicts efficiently by means of the precaution routines. As in Figure 6.2(a),

the crawlers can also detect mines without being informed (red circled in the

figure). The routes of the crawlers may seem somewhat random. However, it

should be noted that the tasks related to the MLO locations appear during run

time when they are discovered, and the communication range is limited.

UUV 1
UUV 2
UUV 3
UUV 4
Crawler 1
Crawler 2
Mines
Detection by crawlers
UUV 1 Search Area
UUV 2 Search Area
UUV 3 Search Area
UUV 4 Search Area

(a) (b)

Figure 6.2: Scenario 1: (a) The UUVs cover the area; the crawlers visit MLO
locations.

In the second scenario, one of the UUVs (UUV3) fails in the same setting of

scenario 1 (Figure 6.3). Initially all UUVs begin execution (Figure 6.3(a)).

91

When UUV3 fails, the other UUVs take responsibility of all unvisited waypoints

(The location of the failure is indicated with a red arrow in the figure.). Initial

regions for all UUVs change after UUV3 fails (Figure 6.3(b)). The other UUVs

revise their region definitions and, after negotiations, they share the full area as

indicated in the figure. The visited waypoints are not in their region coverage.

Due to the uncertainties, some waypoints may remain uncovered in the schedules

(indicated with the red diamond in the figure). However, this uncertainty related

problem is resolved by UUV2 and the mission is completed.

>

(a) (b)

(c)

Figure 6.3: Scenario 2: UUV failure is handled by the other UUVs in the system

In the third scenario (Figure 6.4), UUV3 fails and the other UUVs detect

the failure and they negotiate the remaining unvisited waypoints and new

schedules are determined as in Figure 6.4(b). While these UUVs execute

their tasks, another UUV (4) is released from the deployment area (Figure

6.4(c)). Detecting the arrival of a new UUV, the other UUVs change their

region definitions accordingly (Figure 6.4(d)) and offer auctions for these areas.

Initially UUV4 is not informed about the visited waypoints and defines its

regions with this incomplete knowledge. After negotiations, the regions are

assigned and the schedules are formed. Entering into the the communication

92

range, UUV4 redefines its regions by considering incoming information for the

visited waypoints. Videos of these scenarios are available at the website-ref:

SarielMCMMov.

(a) (b)

(c) (d)

(e)

Figure 6.4: Scenario 3: UUV failure is handled and new robot arrival is also
used to improve the system utility in a distributed manner

In the same settings, another experiment is conducted to evaluate the effect of

message loss rate on the mission completion success. Table 6.1 illustrates the

results (µ | σ) averaged over 10 runs. When the message loss rate is different

from 0, as expected, the mission completion time performance of the system

93

degrades but linearly. It should be noted that even for a rate of 0.75, the overall

mission (MC and MI) by the final identification of the mines is completed. The

average of the first visit times of the waypoints increases linearly due to the delays

occurring by redundant visits of the targets. The number of waypoint (w) visits

increases for high message loss rates. When the message loss rate is 1, there

is no communication among AUVs and they cannot correctly reason about the

region portions. Therefore, each UUV searches the full area completely. The

crawlers detect and identify 12.8% of mines by their local detection in a small

area (MLO target information can not be communicated in this case). Since

the identification mission is not complete, the overall mission is not completed.

This table illustrates the performance of our framework against message losses.

As a final remark, auction generation and clearing in an environment with

communication delays desires special attention. Especially auction deadlines

should be determined by considering communication delays which may vary

during the run. Plan B Precautions could resolve these kinds of problems.

Precautions for delayed messages on out-of-date situations prevent the system

from getting stuck in further inconsistencies and deadlocks.

Table 6.1: The performance results for different message loss rates given with
the average and standard deviation values (µ, σ)

Mssg Loss Rate 0 0.25 0.5 0.75 1
µ σ µ σ µ σ µ σ µ σ

MC Comp. (%) 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
MI Comp. (%) 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 12.8 4.1
MC Comp. time 3349.4 60.5 3683.2 167.1 4909.0 430.1 5141.2 938.1 6304.2 139.0
MI Comp. time 2852.8 35.3 3227.6 205.3 4205.0 836.9 5021.2 692.7 N/A N/A
(w) first visit 1380.1 6.1 1390.0 16.3 1922.0 92.8 2256.6 334.5 2936.0 104.5
(w) #of visits 1.0 0.0 1.0 0.0 1.01 0.01 1.09 0.04 3.0 0.0

6.4. A NAVY Homeland Security Application

We have evaluated DEMiR-CF in ALWSE. In this experiment, the mission

consists of online tasks whose generation times are not known in advance by the

robots (AUVs). The overall mission is searching a predefined area in order to

protect the deployment ship from any hostile intents.

The initial mission graph for the extended MCM mission is given in Figure

6.5. Initially the mission consists of only the Search Task. Although reqno = 1

for this task, since there are no other tasks and the robots have enough fuel

capacities, they execute the task as a coalition and divide the area to be searched.

The Search Task execution with three robots and the corresponding search areas

are illustrated in Figure 6.6. The overall area is divided into regions related to

94

the generated task instances (Figure 6.6(a)). The robots patrol the subareas

which are determined after the negotiations (Figure 6.6(b)). Therefore, although

there is only one task on the higher level, the robots create instances of the

Search Task (Search 1-3) as if each instance is another separate task. If there

are no hostile intentions, the robots only search the area.

Search-1 Search - 3

SearchS T

[reqno = 1]

(a) Mission Graph

Search - 2

SearchS T

[reqno = 1]

(b) Allocation of the Mission Tasks

R1

R2

R3

Figure 6.5: Initial mission graph consists of only the search task

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

SA−1 SA−2 SA−3 R1 R2 R3

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

(a) (b)

Figure 6.6: Robots patrol the area in the corresponding regions

Whenever a hostile diver is detected by the robots, a related interception task is

generated. The scenario is illustrated in Figure 6.7. The robots begin searching

the area (Figure 6.7(a)). R2 recognizes the hostile intent (Figure 6.7(b)). After

detection, the hostile vehicle attacks R2. R2 returns to the deployment ship.

R1 takes control of the intercept task. The hostile intention disappears (Figure

6.7(c)). R1 and R3 continue searching the area (Figure 6.7(d)).

The updated mission graph for the sample scenario is illustrated in Figure 6.8.

The hostile diver may be destructive by using missiles. Therefore, task execution

95

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

SA−1 SA−2 SA−3 R1 R2 R3 Hostile Diver

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

SA−1 SA−2 R1 R2 R3 Hostile Diver

(a) (b)

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

SA−1 SA−2 R1 R2 R3 Hostile Diver

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

R1 R2 R3 Hostile Diver

(c) (d)

Figure 6.7: A sample execution trace under highly dynamic task situations in
which failures occur after shots by the hostile diver

may need to be preempted and the task execution authority is exchanged during

run time. The robots may need to generate local tasks (e.g., Repair/Refuel Task,

which is generated by R2 after being shot by the hostile diver unexpectedly) as

in Figure 6.8(d).Therefore, the mission graphs may be different for the robots

even when they work cooperatively (Figure 6.8(c-d)). In Figure 6.8(c), although

executing the Intercept Task, R1 can make a coalition commitment assuming it

will succeed in a predefined time period (described as TBD). At this time R2

cannot make any coalition commitment for the search task because its future

operations depend on its recovery.

Cost evaluation for the tasks are computed by considering the task facilitating

composite (multi) objective missions. While the robots try to optimize the fuel

levels for the search task, the intercept task requires immediate response and time

minimization. Therefore, different cost evaluations are carried out for different

tasks. We provide the cost evaluations for the task types used in the experiments

in Table 6.2. Cost evaluation for the search task is implemented by first dividing

the search area into regions (with corresponding interest points) and comparing

the distance values for these interest points. The same cost evaluation used in

the MCM mission is adopted for the search task. For the intercept task, the

expected time to achieve (intercept the diver) the task is taken as the cost value.

96

S T

Search

S T

[reqno = 1]

Intercept

[reqno = 1]

(c) Task Graphs for R1 and R3 (d) Task Graph for R2

S T

(a) New Mission Graph (b) Allocations of the Mission Tasks

Search -1 Search -2

R1 R3

Search

Intercept

R2

Search

Intercept

Repair/

Refuel
R2

Coalitional

Commitment

S TSearch -1 Search -2

R3 TBD

Search

Intercept

R1

S T

Search

S T

[reqno = 1]

Intercept

[reqno = 1]

(c) Task Graphs for R1 and R3 (d) Task Graph for R2

S T

(New Mission Graph (b) Allocations of the Mission Tasks

Search -1 Search -2

R1 R3

Search

Intercept

R2

Search

Intercept

Repair/

Refuel
R2

Coalitional

Commitment

S TSearch -1 Search -2

R3 TBD

Search

Intercept

R1

Figure 6.8: Mission graph and allocations evolving through time accordingly

Actions taken to execute the tasks are defined before mission execution. In our

Table 6.2: The cost evaluations for the application domain

Task Type Cost Function Taken Action

Search Task Distance to the region interest points as in

MCM Mission

In depth analysis is needed.

Standard auction is applied.

Intercept Task Expected time to achieve the task:

tE = E[dist(rj , ti)]/E[speed diff(rj , ti)]

where speed diff function returns the

estimated speed difference of the vehicles

Immediate response is needed.

One step auction or direct

execution is applied.

approach, the auction announcements are used both to maintain the models of the

other robots in the system and to announce clues for the intentions. Emergency

tasks (e.g., Intercept Task) require immediate action. We do not suggest the

standard auction steps for these types of tasks. Instead, either a one-step auction

is performed or the task is directly executed, which is the approach adopted

in the experiments. However, in this case parallel executions may occur and

should be resolved. This facility is provided in our framework by the precaution

routines. We allow the parallel executions to handle the emergencies to be

resolved when recognized. The intercept task is assumed to be achieved whenever

the hostile threat is believed to have disappeared. In a sample scenario for a

limited communication range, the parallel executions arise for the emergency

tasks such as the intercept task as in Figure 6.9. However, these inconsistencies

97

are resolved by the activation of the corresponding precaution routines whenever

the robots enter into the communication range. In this scenario, R3 switches to

the search task after detecting the parallel execution. R1 continues to execute

the intercept task.

−50 0 50 100 150 200 250
−50

0

50

100

150

200

250
Robot Paths and Search Areas

SA−1 R1 R2 R3 Hostile Diver

Figure 6.9: Under limited communication ranges, parallel executions may occur
and are resolved when detected

6.5. Summary and Discussion

We have implemented and tested DEMiR-CF in the NAVY domains, where

the environments are highly dynamic. The rough schedule generation scheme

implemented by each under water vehicle to define regions offers an efficient

way of considering the problem from a global perspective. The incremental

task assignment approach has also proved to be successful in handling the

environmental dynamism.

As the experiments we have performed illustrate, DEMiR-CF ensures robust

execution and efficient completion of missions against several different types

of failures. Results for MCM missions are promising in the sense of mission

completion, and AUV paths are close to optimal in the presence of uncertainties.

Evaluations also reveal the high performance of DEMiR-CF on online task and

situation handling. Since the framework is a single-item auction method, it can

be used for the environments with limited, delayed or unreliable communication.

It should be noted that the selected application domain, objectives and limitations

are similar to the Search and Rescue (SR) domain. Therefore, we believe this

research can also be useful for similar application domains such as SR.

98

7. EMPIRICAL EVALUATION OF DEMiR-CF ON RESOURCE

CONSTRAINED AND INTERRELATED TASKS

In this chapter, we investigate the performance of DEMiR-CF on complex

missions with resource constrained and interrelated tasks. Different from

previous chapters, the robots take part in more complex tasks where they

interact with the objects in the environment (Sariel et al., 2007a). The objective

is not only optimizing cost functions but also obeying rules and resolving

constraints on task execution during runtime. When the tasks of a mission are

interrelated and subject to several resource constraints, more efforts are needed

to coordinate robots towards achieving the mission than during independent

tasks.

As in the previous experimental evaluations, the DEMiR-CF framework is

evaluated for complex domains. The incremental task selection and allocation

mechanisms of DEMiR-CF also eliminate redundant considerations in this

domain. The base mechanisms of DEMiR-CF are used for designing the solution.

Rough schedule formation and cost evaluations are designed according to the

complex mission requirements.

7.1. Complex Multi-Robot Mission Problem Statement

The multi-robot task allocation problem is better viewed as a scheduling problem

if there are interrelations among tasks, suggesting the use of Operation Research

methods. However, when the problem solving time is limited and/or reallocations

are frequently required at runtime, Operation Research (OR) solutions such

as Branch and Bound (Brucker et al., 1998) or Integer Programming methods

may not be directly applicable. In this chapter, our focus is on complex

missions (project tasks) with interrelated tasks whose requirements on task

execution may vary. These interrelations may correspond to shared resources,

producer/consumer, simultaneity and task-subtask dependencies (Ossowski,

1999). The Pick-Up/Delivery domain tasks can be classified in this class

because of the producer/consumer type of dependency relation for the pick-up

and delivery tasks. More complicated interrelations may be placed in mission

representations. Simultaneous execution requirements imply tightly coupled task

execution where the actions implemented by each robot are highly dependent on

99

the actions of others. Furthermore, a group of robots executing a task may be

either homogeneous or heterogeneous. The heterogeneity may be in the possessed

capabilities or in the task execution performance. For example, robots may have

the same equipments capable of achieving all the tasks of the mission but may

differ in abilities such as speed. According to the classification of multi-agent

organizations given in Horling and Lesser (2005), coalitions (agent groups) are

formed to perform tasks in cooperation. From our perspective, coalitions are

suitable for meeting the simultaneous resource requirements of executing tasks

with a subteam of robots.

7.2. Applying DEMiR-CF to Complex Missions

The dynamic and incremental task selection, distributed allocation and

contingency handling mechanisms of DEMiR-CF are used in the design of the

solution for complex mission achievement. This domain forms a platform to

apply the full functionality of DEMiR-CF.

Although the base mechanisms are the same, the rough schedule generation

scheme and the cost functions are designed accordingly to meet the interrelation

and resource constraints.

7.2.1. Dynamic Priority-based Task Selection Scheme and Online

Scheduling

As the core principle of DEMiR-CF, the robots make instantaneous decisions

(from their local perspectives) which are both precedence and resource feasible

in the context of the global-time extended view of the problem. While the

completion of the mission is the highest priority objective, performance related

objectives can additionally be targeted. Each robot initially forms a rough

schedule of its activities for an overall time extended resolution of the mission.

Since these schedules are highly probable to change in dynamic environments

and the robots also have the real-time burdens of path planning, mapping etc.,

the rough schedules formed are tentative and constructed by computationally

cheap methods (explained in subsection 7.2.3.). Therefore, the robots in our

framework come up with their rough schedules and refine their plans during

actual fast execution when information available in the current context enables

them to make specific, detailed decisions.

Instead of scheduling all tasks in one step, we propose a Dynamic Priority-based

Task Selection Scheme (DPTSS) to allocate tasks to robots incrementally,

100

considering the global solution quality. The main objective of the proposed

scheme is the incremental allocation of tasks by taking into account the

precedence and resource constraints whenever a new task needs to be assigned,

instead of scheduling all tasks from scratch.

The CTSP , introduced earlier, is an optimization problem as in ScP and it is

desirable to find a solution by considering the problem from a global perspective.

Therefore, the instantaneous task selection scheme needs to be strengthened by

considering the problem as a whole, with the designed cost evaluation functions.

Depending on the objective function, either priorities or penalties can be applied

to find an efficient solution, ensuring a time-extended view of the problem.

Each robot rj generates its rough schedule as a dynamic priority queue similar

to runqueues by considering its critical task list (LCj), the eligible task set

(TEj), the conjunctive arcs (if any) and the requirements. If there are no new

online tasks or invalidations, the order of the tasks which are connected by the

conjunctive arcs remains the same in the priority queue, even though there may

be additional intermediate entries into the queue at runtime.

The critical tasks may be determined by either negotiations or beliefs. To

eliminate intractable communication overhead, we use a rough belief update

approach to form the critical tasks. Each critical task is assigned a probability

value to indicate its criticality. Critical task information is used for determining

the task requirements such as power, fuel etc.

Algorithm 7 GeneratePriorityList for robot rj

input: Eligible task set (TEj), active task set (TAj)
output: Topologically ordered and prioritized schedule list: SRj

SRj = φ, STemp = φ

STemp = DFS(TEj
) /*List generated by a depth-first search, the tasks are ordered

by ascending order of estimated task completion times*/
for all ti ∈ STemp do

if ti ∈ TAj then

insert ti in SRj as ordered by the cost value and the precedence
else

insert ti to the front of SRj

end if

end for

The rough schedule of a robot constitutes a topological order of the directed

101

acyclic graph of the eligible mission tasks. While generating the rough schedules,

both precedence constraints and cost values are considered. Basically each rough

schedule is a priority list (To, topological order) determined by Algorithm 7.

While forming the topologically ordered prioritized schedule list, a depth first

search (DFS) is performed to topologically order the tasks by using the estimated

task completion times. Next, the tasks are inserted into the list according to

their completion times. If a task is an active task, its priority key is computed as

a combination of the precedence and the cost value. Tasks with equal precedence

are ordered according to their cost values.

The rough schedule of a robot is generated by execution of Algorithm 8. curcsj

represents the remaining capacity of robot rj, and reqcs(ti) represents the

required capacity for task ti in terms of the consumable resources (e.g., fuel).

Algorithm 8 GenerateRoughSchedule for robot rj

input: Eligible task set (TEj), active task set (TAj), critical task list (LCj), remaining
capacity (curcsj) of robot rj

output: Rough schedule (SRj) of tasks, the top most suitable active task ts

ts = φ; R = curcsj; achievable = true;
SRj = GeneratePriorityList(TEj , TAj)
/*Determines if the mission is achievable*/
for each ti ∈ LCj do

R = R − reqcs(ti)
if R < 0 then

achievable = false

R = curcsj

break
end if

end for

if SRj �= φ and (top(SRj) ∈ LCj ‖ R − reqcs(top(SRj)) ≥ 0) then

ts = top(SRj)
end if

In the rough schedule generation algorithm, while forming the rough schedule,

the remaining capacity of the robot is also monitored. If the capacity of the robot

is not sufficient for executing all of its critical tasks and the mission is believed to

be unachievable as a result, then the robot may select an active task to execute

even if it is not a critical task for the robot in case new robots can be deployed.

However, if the mission is believed to be achievable, the robot may select to stay

idle until its critical tasks become active. This selection is done after forming

the rough schedule. The active task on top of the rough schedule that can be

executable is the most suitable task to be executed for the robot. Sometimes the

102

rough schedule of the robot may be empty. In this case, the robot selects to stay

idle as determined in the DPTSS algorithm.

7.2.1.1. DPTSS Algorithm

In our incremental allocation approach, the fundamental decision that each robot

must make is the selection of the most suitable task from the active task set (TA)

by considering the eligible task set (TE). Algorithm 9 presents the DPTSS in

which a rough schedule is generated before making a decision. The four different

decisions made by robots after performing the DPTSS are:

• continue to execute the current task (if any),

• join a coalition,

• form a new coalition to perform an available task or

• stay idle.

Algorithm 9 DPTSS Algorithm for robot rj

input: Mission (M) task descriptions
output: Action to be performed depending on the selected task

Determine the TEj, TAj ⊆ TEj and LCj ⊆ TEj

/*GenerateListOfCriticalTasks*/
LCj = φ

for each ti ∈ TEj do

Pct(ti) = reqno
#ofsuitablerobots

if Pct(ti) ≥ 0.5 then

Insert ti in LCj prioritized by the Pct(ti)
end if

end for

[SRj , ts] = GenerateRoughSchedule (TEj, TAj , LCj , curcsj)

if ts �= φ then

if ts is the current task then

Continue with the current execution
else

Offer an auction to form a new coalition or directly begin execution
end if

else

if ts ∈ Tie and it is profitable to join the coalition then

Join the coalition
else

Stay idle
end if

end if

103

The dynamic task switching scheme is used by robots to dynamically switch

between tasks if updates in the world knowledge compel. Therefore, issues

related to both online scheduling and scheduling under uncertainty are addressed.

The DPTSS process is repeated whenever a robot completes its current task

execution or detects a change in its world knowledge. Instead of regenerating the

rough schedule at each call of the DPTSS, the rough schedule may be repaired

whenever it is desirable.

7.2.2. Distributed Task Allocation Scheme

Standard auction procedures of our distributed allocation procedures are applied.

For task executions with multiple robot requirements (for which reqno > 1),

coalitions are formed. For such a task, a coalition leader and the required number

of coalition members are selected. These roles are assigned to ensure synchronous

task execution among coalition members although tight coordination routines

are beyond the scope of this research. Additionally, precaution routines are

added to check validity, consistency and coherence in these negotiation steps.

Each robot intending to execute a task announces an auction after determining

its rough schedule and performing the DPTSS. Basically, auction announcements

are ways to illustrate intentions to execute tasks for which reqno = 1 or to select

members of coalitions to execute tasks for which reqno > 1. The succeeding

steps of the distributed task allocation scheme are applied as in the general

design of the framework.

7.2.3. Cost/Bid Evaluation and Tie Breaking Rules

The cost evaluation has a tremendous impact on the solution quality. Each task

type as a part of the mission requires a different cost evaluation to efficiently

solve the problem. As an example, while estimating the cost value for picking

up an item, the distance between the robot location and the estimated location

of the item may be considered. However, to form a globally efficient allocation,

the locations of the other items must be considered as well. We have validated

this statement in the MTRP domain. Cost evaluation is performed by using the

corresponding functions given in Table 7.1. If a robot is executing a task when

it receives an auction message, it sends the bid value by considering the final

destination of the current task as the location of itself.

Another important design criteria is determining the bid values to be sent to the

104

Table 7.1: Cost evaluations for the tasks

Task Type(s) Cost Function

Locate/Pick-up Estimated time to reach at the location of the object.
Deliver/Push Estimated time to carry/push the object from the

initial location to the final destination.
Clean Estimated time to cover the whole environment.

other robots. Furthermore, robots may need to cancel or postpone their offers

for auctions if there is synergy between tasks when announcements of offers from

others are received. Intuitively, robots only send bid values for the active tasks

for themselves.

A common situation appears when the auctions are offered at the same time

by different robots either for the same task or for different tasks. To decide on

the selection of the robots to execute specific tasks in a distributed setting is a

challenging issue. In our approach, if there are conflicting auctions for the same

task, only the robot offering an auction with the smallest cost value continues with

the auction negotiation process. In the case of the conflicting auctions for different

tasks, a resource-based rule (related to the reqno of the tasks) borrowed from

Operations Research, Greatest Resource Requirements (GRR), is used (Brucker

and Knust, 2006).

7.2.4. Analysis of the Approach

The approach we have proposed for this particular problem domain offers a

polynomial time solution. The critical task list generation takes O(nlog(n)) time

for all n number of tasks. Achievability of the mission is determined in O(n).

The complexity of the rough schedule generation is bounded by the topological

list generation algorithm which is in the order of O(n+e) (where e is the number

of conjunctive arcs, i.e., hard dependencies). Therefore, the total complexity

becomes O(n(e+nlog(n))). If (e << n), the complexity of the proposed approach

reduces to O(n2log(n)).

7.3. Complex Mission Experiments

We have conducted real-world experiments and real-time dynamic simulation

experiments on WEBOTS, the professional mobile robot simulation software. It

contains a rapid prototyping tool to create 3D virtual worlds with robots and

objects possessing physics properties (WEBOTS).

105

In our simulation experiments, each environment is represented as a 5m by 5m

3D virtual world where 70mm-size simulated Khepera II robots and objects are

located. The environments are randomly generated VRML files containing the

robots and the objects. Each Khepera II robot is mainly equipped with a 25MHz

MC68331 micro-controller, 512K Flash and 512K RAM memories and 8 infra-red

sensors with a limited obstacle detection range as simulated in WEBOTS.

Communication is achieved through wireless links in both simulations and in

real-world experiments. Real Kheperas have standard radio turrets mounted

on them to communicate through the selected radio frequency. Emitters in the

simulator are configured to have a baud rate of 9600 and a buffer size of 1024B

as in the receiver modules.

A multi-process controller implementation is performed on the real robots to

achieve the proposed system. Different modules on the task allocation layer are

integrated with the lower-level Sensory Interface, Motor Interface, Motion Model

and Mapping modules in the multi-threaded structure.

0 2 4 6 8 10 12

0

500

1000

1500

2000

2500

3000

3500

4000

Number of Robots

T
im

e
(s

)

Figure 7.1: Mission completion time(s) for the pick-up/delivery mission, with
task number fixed at 20

The first set of experiments is targeted to analyze the scalability of the proposed

approach on the pick-up/delivery mission in which the tasks are interrelated

by picking up and delivery constraints. All picked up items are collected

106

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

1000

Number of Robots

T
ot

al
 P

at
h

Le
ng

th

Figure 7.2: Total path length traversed by the robots(mm) for the
pick-up/delivery mission, with task number fixed at 20

in the center of the environment. In the fully flexible version, while there

are precedence constraints between pick-up and delivery tasks, there are no

interrelations between pick-up tasks for different items. The items are distributed

in the environment at fixed locations for each run. The robot locations are

randomly determined. Figure 7.1 illustrates the mission completion times for

sets with different numbers of robots. As expected from this approach, the time

to complete the overall mission is greatly reduced with increasing numbers of

robots, validating the scalability of the approach. Figure 7.2 plots the total path

length traversed by the robots. Since the items are delivered to the center of

the environment, an extreme variation for the expected utility in the total path

length traversed by robots is not expected, as illustrated in the graph.

A sample scenario for a complex mission which includes tasks for pushing boxes

and picking-up and delivering items to a desired location is given in Figure 7.3

with five participating robots. Locations of the objects are indicated with the

red arrows in the figure. In the first scenario, two items are picked up and

delivered to the destinations by the robots possessing grippers. The two robots

simultaneously and independently push the two boxes. One of the robots stays

idle during mission execution. In the second scenario, since the minimum required

number of robots to push one of the boxes is two, the two robots form a coalition

and push the heavy box synchronously.

107

Figure 7.3: Scenario 1 and 2: Robots push and carry boxes to a final destination.
Some tasks may require simultaneous and tightly coordinated task execution.

Another complex mission allocation scenario which includes tasks for pushing

a box, carrying a cylindrical object to a final destination and then inspecting

the environment is implemented by three Khepera II robots and the execution

scenario is illustrated in Figure 7.4. There are interrelations between push,

carry and inspection tasks respectively as in the graph depicted in Figure

7.5. While the objects can only be carried by the robots with grippers, the

inspection task requires possessing a camera. The box can be pushed by any

of the three robots. However, due to the cost evaluations and the critical task

list consideration, allocations are implemented accordingly. Robots obey the

interrelation constraints and each robot takes part in a suitable task execution

for itself in which the decision is made in a completely distributed manner. The

video of this scenario is available at the website-ref: SarielKh2Mov.

108

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

(t)

Figure 7.4: Khepera II robots achieve the overall complex mission of
pushing/carrying the objects to the final destinations and inspecting the area.

Figure 7.5: Real scenario mission graph with interrelated tasks

109

7.4. Summary and Discussion

We have described the details of the implementation of DEMiR-CF on

interrelated, resource constrained tasks of a mission. The full functionality of

the proposed approach is validated on multi-robot complex mission execution.

The scalability of the approach is validated through experiments. Real robot

implementations are given and scenarios with interrelated tasks for which robots

interact with objects in the environment are presented. The rough schedule

generation scheme by calculating a topologically ordered task list is shown to be

an efficient approach that can be applied to robots with limited computational

capabilities. The CTSP is solved by each robot implementing incremental task

selection, distributed task allocation and contingency handling mechanisms by

DEMiR-CF to achieve the overall CMAP for complex missions.

110

8. DISCUSSION AND CONCLUSION

DEMiR-CF is a multi-robot cooperation framework to solve the Cooperative

Mission Achievement Problem (CMAP). The CMAP asks for achieving a

complex mission of either independent or interrelated tasks with multi-robot

requirements for their execution. The problem should be solved in a cost efficient

manner while simultaneously handling unplanned events and contingencies.

The Coordinated Task Selection Problem (CTSP) that we formulate is a task

selection problem for a robot participating in a multi-robot team running to

solve the CMAP . Each robot involved in the CMAP proceeds by generating

incremental solutions to the CTSP at runtime until the mission is completed.

DEMiR-CF is designed for complex missions including interrelated tasks that

require diverse (heterogeneous) capabilities and simultaneous execution. The

framework combines The Dynamic Priority Based Task Selection Scheme,

Distributed Task Allocation and Coalition Maintenance Schemes as cooperation

components and Plan B Precaution Routines. These components are integrated

into a single framework to provide an overall system that finds efficient solutions

for real-time task execution.

The Dynamic Priority Based Task Selection Scheme forms the basis of

incremental task selection for each robot. Each robot maintains a rough schedule

of future tasks before deciding on an active task to execute. Rough schedules

ensure ways to consider the problem as a whole although the decisions are

made locally by each robot. The Distributed Task Allocation Scheme ensures

the selection of appropriate robots for corresponding tasks in a decentralized

way. Coalition Maintenance and The Dynamic Task Switching Scheme ensures

dynamic reconfiguration of allocations. Plan B Precaution Routines ensure

system consistency, coherence and robustness in a decentralized way. Robots

model system tasks and the states of other robots to maintain an up-to-date

representation of the current status of the execution environment. Plan B

Precaution Routines include both recovery routines that failing robots can

execute and warning mechanisms that aim to correct behaviors of other robots

in the system.

111

DEMiR-CF is different from earlier work by ensuring both instantaneous

assignment procedures incrementally and forming rough schedules to consider

the problem as a whole from global perspectives. The rough schedule

generation process uses polynomial time even for complex tasks. Combinatorial

task exchange mechanisms as in market-based approaches are not used in

DEMiR-CF. Auctions are used by robots to announce intentions about task

execution and to select the appropriate task executers to deal with world

information incompleteness. Only single items are allocated incrementally

during task execution. Contingency handling mechanisms are directly integrated

into the dynamic task selection mechanisms, which in turn facilitate recovering

from failures dynamically and efficiently, reconfiguring robots during runtime,

and maintaining system consistency. These utilities are ensured by autonomous

robots implementing DEMiR-CF in a completely distributed manner without

central authorities and/or complete knowledge injected manually.

DEMiR-CF has been evaluated in different domains in both simulations and

in real environments with robots. WEBOTS simulator and US NAVY’s

ALWSE-MC simulator are used as simulation environments and Khepera II

robots are used as physical real hardware to carry out experiments.

The Multiple Traveling Robot Problem (MTRP) is a generalization of the well

known Traveling Salesman Problem (TSP) where each target should be visited

by at least one robot, optimizing an objective which could be minimization of

time, minimization of path length traversed by robots, etc. This domain forms a

basis for several types of complex missions, such as search and rescue operations.

Another sample domain involves space exploration operations, where the total

path length of robots needs to be minimized. The integrated components that

make up the DEMiR-CF framework are successfully implemented for the MTRP

domain.

MTRP experiments are performed in four sets. In the first set of experiments,

new heuristic cost functions are proposed and evaluated for single robot

route construction. The performance of the proposed heuristic cost functions

are compared with optimal results that are generated by using an Integer

Programming formulation running on a commercial IP solver, CPLEX. It has

been observed that the DEMiR-CF results generated with the use of the designed

heuristic cost function deviate from the optimal solutions by at most 15.24% for

a large TSP instance.

112

In the second set of experiments, the task allocation approach of DEMiR-CF is

compared with both the Prim Allocation approach and the Integer Programming

approach. As expected, both DEMiR-CF and the Prim Allocation methods have

tractable computational complexities compared to the Integer Programming

approach. However, as the results presented in Section 5. reveal, DEMiR-CF

integrated with new heuristic cost functions produces results that are close to

the optima for the multi-robot case of the problem.

In the third set of experiments, the performance of DEMiR-CF under real-time,

dynamic conditions is evaluated. Online task handling scenarios in environments

where map information is not available are presented. It has been shown that,

even when the map information is not available, robots can efficiently reconfigure

themselves according to changes in the environment and incrementally select

tasks suitable for themselves through decisions that take into account the most

recent information.

In the fourth set of the experiments, real robot scenarios are presented against

robot failures to validate the robustness of DEMiR-CF.

The results of the experiments support our thesis that in a dynamic execution

environment an incremental task selection approach eliminates redundant efforts

that are introduced by allocating all tasks from scratch if there is an unexpected

change. The rough schedule generation scheme forms loose commitments, which

if needed, can be canceled in the future. Thus, it offers a way to reconsider

the problem globally when it is appropriate. The approach is efficient with its

polynomial computational and communication complexities. Plan B precautions

ensure that the CMAP is successfully solved at the end of mission execution. If

real resources permit, failures are handled to maintain system consistency. Even

though a certain amount of additional communication overhead is injected into

the system by the Plan B Precaution Routines, communication efficiency is also

achieved as experimental results illustrate.

DEMiR-CF is also evaluated in NAVY domains where the cooperation of

underwater vehicles is required for homeland security missions, such as the mine

countermeasure mission. This domain has a challenging structure since it is

performed underwater and communication is achieved through acoustic modems.

In this domain, the robot team is modeled as a heterogeneous team and the

mission consists of different types of tasks, requiring different vehicles. The

domain is modeled to include both the coverage problem and the MTRP.

113

The coverage problem is solved by having robots generate rough schedules for

the regions to be covered and negotiate over these regions. While covering the

environment, robots simultaneously sense “mine like objects” to generate new

online tasks. They transmit this information to different types of robots that

can visit targets and perform correct classification. With this mode of operation,

the problem turns into the MTRP and is solved in a decentralized way for

continually generated online tasks. Depending on the types of robots, different

types of rough schedules are generated by either coverage or classification robots.

Regions are represented as rough schedules for the coverage tasks, whereas target

sets are formed as rough schedules for the classification tasks.

The online task handling performance of DEMiR-CF is validated through

experiments. The robustness of the framework against both communication and

robot failures and the efficiency with which it responds to dynamic changes in

the environment are tested in simulations.

As a final domain, object construction domain is selected to use and validate

the full functionality of DEMiR-CF. Complex missions investigated in this

domain involve tasks with resource constraints and interrelations. Multi-robot

task allocation problem is better viewed as a scheduling problem if there are

interrelations among tasks. Therefore, this domain forms the basis of the design

objective of DEMiR-CF. A topological list generation approach for forming

rough schedules is used to solve the CTSP and to resolve the constraints on

tasks. Applicable cost functions are proposed for separate tasks for robots to

achieve an overall complex mission. The scalability of DEMiR-CF is validated

through experiments. Efficiency is analyzed and validated both in theory

and in experiments. As results illustrate, the CTSP is solved by each robot

implementing the incremental task selection, distributed task allocation and

contingency handling mechanisms of DEMiR-CF to achieve the overall CMAP

for complex missions.

In conclusion, in this PhD thesis, DEMiR-CF has been designed and implemented

as a generalized framework for cooperative multi-robot mission achievement.

Several performance tests are carried out for different domain implementations

of the framework. It is demonstrated that the framework is an efficient,

complete, scalable and robust decentralized framework for a multi-robot system.

Furthermore, DEMiR-CF is shown to be applicable on even very small and

simple robots with cheap computational capabilities, such as Khepera II.

114

8.1. Future Work

If embedding a commercial program such as CPLEX IP solver on robots

is possible and the requirements of the decision frequency and change in

task allocations do not affect the response time of the system, an Integer

Programming method may be used to generate rough schedules of robots.

In this case, redundant allocations can be implemented to reach globally

optimum results for the current situation. This approach can also be successfully

integrated to the incremental assignment approach that we propose. However,

as we mentioned earlier, if there are computational limitations on the robot

hardware, a heuristic cost evaluation is inevitable for the system.

In the current design of the DEMiR-CF, planning activity is performed for the

MTRP domain. Route construction is a high-level path planning problem and is

solved by DEMiR-CF by integrating it with task allocation. For more complex

tasks, a global plan with interrelations between tasks is given to the robots

initially. DEMiR-CF is capable of changing the structure of given plans during

runtime in a decentralized way. Online tasks are integrated into the task graph.

However, this research area desires more investigation for both constructing a

global plan by the robots and satisfying and resolving conflicts in the global plan

as investigated in MPCP.

There are no previously designed test-beds for multi-robot systems research.

Although comparisons and results are provided, usually it is hard to evaluate

and compare implemented systems with the insufficient implementation details

presented in the publications. Even though RoboCup leagues present test-beds

for the comparison of the architectures, research papers can only present ad-hoc

implementations without comparisons for real robots. Therefore, a formalism

and designs of test-beds are greatly needed to improve the field and find better

ways to make the robots do the right thing.

115

BIBLIOGRAPHY

Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P. N. and Hull, D.,
2002. Morse Decompositions for Coverage Tasks. The International
Journal of Robotics Research, 21(4), 331–344.

Alami, R. and Botelho, S. C., 2001. Plan-Based Multi-robot Cooperation.
In Advances in Plan-Based Control of Robotic Agents.

Alami, R., Ingrand, F. and Qutub, S., 1998. A Scheme for Coordinating
Multi-Robot Planning Activities and Plans Execution. In
Thirteenth European Conference On Artificial Intellingence.

ALWSE. http://nswcpc.navsea.navy.mil/analysis/capabilities.asp, 2006.

Balch, T. and Arkin, R. C., 1994. Communication in Reactive Multiagent
Systems. Autonomous Robots, 1(1), 1–25.

Balch, T. and Arkin, R. C., 1998. Behavior-based Formation Control
for Multi-robot Teams. IEEE Transactions on Robotics and
Automation.

Balch, T. and Parker, L., 2002. Robot Teams: From Diversity to
Polymorphism. AK Peters.

Berhault, M., Huang, H., Keskinocak, P., Elmaghraby, W., Griffin, P.
and Kleywegt, A., 2003. Robot Exploration with Combinatorial
Auctions. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS).

Boddy, M. S., Bennett, B. H., Isle, B. A. and Isle, R. A., 2004. NASA
Planning and Scheduling Applications: Emerging Technologies and
Mission Trends. Technical Report NASA Grant NAG-2-1631,
Adventium Labs.

Botelho, S. and Alami, R., 1999. M+: a Scheme for Multi-robot Cooperation
Through Negotiated Task Allocation and Achievement. In IEEE
Intl. Conf. on Robotics and Automation (ICRA).

Brucker, P., 2001. Scheduling Algorithms. Springer Verlag.

Brucker, P., 2002. Scheduling and Constraint Propagation. Discrete Applied
Mathematics, 123, 227–256.

Brucker, P. and Knust, S., 2006. Complex Scheduling. Springer Verlag.

116

Brucker, P., Knust, S., Schoo, A. and Thiele, O., 1998. A branch bound
algorithm for the resource-constrained project scheduling problem.
European Journal of Operational Research, 107, 272–288.

Brumitt, B. L. and Stentz, A., 1998. GRAMMPS: A Generalized Mission
Planner for Multiple Robots in Unstructured Environments. In
IEEE Intl. Conf. on Robotics and Automation (ICRA).

Burgard, W., Moors, M., Stachniss, C. and Schneider, F. E., 2005.
Coordinated Multi-Robot Exploration. IEEE Transactions on
Robotics and Automation, 21(3), 376–386.

Chaimowicz, L., Campos, M. F. M. and Kumar, R. V., 2002. Dynamic
Role Assignment for Cooperative Robots. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), pages 293–298.

Cox, J. S., Durfee, E. H. and Bartold, T., 2005. A distributed framework for
solving the Multiagent Plan Coordination Problem. In AAMAS,
pages 821–827.

Dahl, T. S., Mataric, M. J. and Sukhatme, G. S., 2004. Emergent Robot
Differentiation for Distributed Multi-Robot Task Allocation. In
Distributed Autonomous Robotic Systems (DARS).

Davids, A., 2002. Urban Search and Rescue robots: From Tragedy to
Technology. IEEE Intelligent Systems, 17(2), 81–83.

Decker, K., 1996. Foundations of Distributed Artificial Intelligence, chapter
TAEMS: A Framework for Environment Centered Analysis and
Design of Coordination Mechanisms, pages 429–448. John Wiley
and Sons.

desJardins, M., Durfee, E., Ortiz, C. and Wolverton, M. J., 1999. Survey
of Research in Distributed, Continual Planning. AI Magazine, 20
(4), 13–22.

Dias, M. B. and Stentz, A., 2002. Opportunistic Optimization for
Market-Based Multirobot Control. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS).

Dias, M. B., Zlot, R. M., Kalra, N. and Stentz, A.,
2005. Market-Based Multirobot Coordination: A Survey and
Analysis. Technical Report CMU-RI-TR-05-13, Carnegie Mellon
University, Robotics Institute.

Dias, M., 2004. TraderBots: A New Paradigm for Robust and Efficient
Multirobot Coordination in Dynamic Environments. Phd thesis,
Robotics Institute, Carnegie Mellon University.

Dias, M., Zinck, M., Zlot, R. M. and Stentz, A., 2004. Robust Multirobot
Coordination in Dynamic Environments. In IEEE Intl. Conf. on
Robotics and Automation (ICRA).

117

Dudek, G., Jenkin, M., Milios, E. and Wilkes, D., 1996. A Taxonomy for
Multi-Agent Robotics. Autonomous Robots, 3(4), 375–397.

Durfee, E. H., 2001. Scaling Up Agent Coordination Strategies. IEEE
Computer, 34(7), 39–46.

Finin, T., Labrou, Y. and Mayfield, J., 1997. KQML as an agent
communication language, chapter Software Agents. The MIT press,
Cambridge, MA.

FIPA ACL. http://www.fipa.org/specs/fipa00061/SC00061G.pdf, 2002.

Gancet, J., Hattanberger, G., Alami, R. and Lacroix, S., 2005. Task
Planning and Control for a Multi-UAV System: Architecture and
Algorithms. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS).

Gerkey, B. and Mataric, M. J., 2002. Sold!: Auction Methods for Multirobot
Coordination. IEEE Trans. Robot. Automat., 18(5), 758–768.

Gerkey, B. and Mataric, M. J., 2004. A Formal Analysis and Taxonomy of
Task Allocation. Intl. J. of Robotics Research, 23(9), 939–954.

Ghiani, G., Guerriero, F., Laporte, G. and Musmanno, R., 2003.
Real-Time Vehicle Routing: Solution Concepts, Algorithms and
Parallel Computing Strategies. European Journal of Operational
Research, 151, 1–11.

Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S.,
Smith, T. and Stentz, A., 2002. A Distributed Layered
Architecture for Mobile Robot Coordination: Application to Space
Exploration. In 3rd Intl. NASA Workshop on Planning and
Scheduling for Space.

Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S.,
Smith, T. and Stentz, A., 2003. Market-Based Multi-Robot
Planning in a Distributed Layered Architecture. In Multi-Robot
Systems: Swarms to Intelligent Automata, Proc. Of Intl. Workshop
on Multi-Robot Systems.

Hazon, N. and Kaminka, G. A., 2005. Redundancy, Efficiency, and
Robustness in Multi-Robot Coverage. In IEEE Intl. Conf. on
Robotics and Automation (ICRA).

Horling, B. and Lesser, V., 2005. A Survey of Multi-Agent Organizational
Paradigms. The Knowledge Engineering Review, 19(4), 281–316.

Huhns, M. N. and Stephens, L. M., 1999. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence, chapter Multiagent
Systems and Societies of Agents, pages 80–120. The MIT Press.

ILOG-CPLEX-9.0-UserMan. http://elib.zib.de/pub/Packages/mp-testdata/
tsp/tsplib/tsp/index.html, 2007.

118

Jarnik, V., 1930. O jistem problemu minimalnim (About a certain minimal
problem). Prace Moravske Prirodovedecke Spolecnosti, 6, 57–63.

Jennings, J. J., Whelan, G. and Evans, W. F., 1997. Cooperative
Search and Rescue with a Team of Mobile Robots. In International
Conference on Advanced Robotics (ICAR).

Jennings, N. R., 1996. Foundations of Distributed Artificial Intelligence,
chapter Coordination Techniques for Distributed Artificial
Intelligence, pages 187–210. John Wiley and Sons.

Kalra, N., Ferguson, D. and Stentz, A., 2005. Hoptiles: A Market-Based
Framework for Planned Tight Coordination in MultiRobot Teams.
In IEEE Intl. Conf. on Robotics and Automation (ICRA).

Kaminka, G. A. and Tambe, M., 2000. Robust Multi-Agent Teams via
Socially-Attentive Monitoring. Journal of Artificial Intelligence
Research, 12, 105–147.

Kitano, H., 2000. Robocup rescue: A grand challenge for multi-agent systems.
In Proceedings of ICMAS.

Koes, M., Nourbakhsh, I. and Sycara, K., 2005. Heterogeneous Multirobot
Coordination with Spatial and Temporal Constraints. In AAAI
National Conference on Artificial Intelligence.

Kose, H., Kaplan, K., Mericli, C., Tatlidede, U. and Akin, L.,
2005. Market-Driven Multi-Agent Collaboration in Robot Soccer
Domain, chapter Cutting Edge Robotics, pages 407–416. Pro
Literatur Verlag.

Lagoudakis, M. G., Berhault, M., Koenig, S., Keskinocak, P.
and Kleywegt, A., 2004. Simple Auctions with Performance
Guarantees for Multi-Robot Task Allocation. In IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS).

Lagoudakis, M. G., Markakis, E., Kempe, D., Keskinocak, P.,
Kleywegt, A., Koenig, S., Tovey, C., Meyerson, A. and
Jain, S., 2005. Auction-Based Multi-Robot Routing. In Robotics:
Science and Systems (RSS).

Lawler, E. L., Lenstra, J. K., Kan, R. and Shmoys, D. B., 1985. The
Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. John Wiley & Sons, New York, NY.

Lemaire, T., Alami, R. and Lacroix, S., 2004. A Distributed Task Allocation
Scheme in Multi-UAV Context. In IEEE Intl. Conf. on Robotics
and Automation (ICRA).

Malone, T. W. and Crowston, K., 1994. The Interdisciplinary Study of
Coordination. ACM Computing Surveys, 26(1), 87–119.

119

Michel, O., 1998. Webots: Symbiosis Between Virtual and Real Mobile Robots.
In Proceedings of the First International Conference on Virtual
Worlds.

Moravec, H. and Elfes, A. E., 1985. High Resolution Maps from Wide Angle
Sonar. In Proceedings of the 1985 IEEE International Conference
on Robotics and Automation, pages 116 – 121.

Muller, H. J., 1996. Negotiation principles, pages 211–229. John Wiley & Sons,
New York, NY. ISBN 0-471-006750.

Nilsson, N. J., 1986. Principles of Artificial Intelligence. Morgan Kaufmann
Publishers.

Ossowski, S., 1999. Co-ordination in Artificial Agent Societies, Social Structure
and Its Implications for Autonomous Problem-Solving Agents.
Springer Verlag.

Paquet, S., 2006. Distributed Decision-Making and Task Coordination in
Dynamic, Uncertain and Real-Time Multiagent Environments. Phd
thesis, Laval University, Quebec.

Parker, L. E., 1998. ALLIANCE: An Architecture for Fault Tolerant
Multi-Robot Cooperation. IEEE Trans. Robot. Automat., 14(2),
220–240.

Parker, L. E., 2004. Current Research in Multi-Robot Systems. Journal of
Artificial Life and Robotics 7.

Parker, L. E. and Tang, F., 2006. Building Multi-Robot Coalitions through
Automated Task Solution Synthesis. Proceedings of the IEEE,
Special Issue on Multi-Robot Systems.

Pinedo, M. L., 2005. Planning and Scheduling in Manufacturing and Services.
Springer Verlag.

Prim, R. C., 1957. Shortest connection networks and some generalisations. Bell
System Technical Journal, 36.

Randall and Smith, R. G., 1983. Negotiaton as a Metaphor for Distributed
Problem Solving. Artificial Intelligence, 20(1), 63–109.

Reinelt, G., 1991. TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing 3, pages 376–384.

Reinelt, G., 1994. The Traveling Salesman: Computational Solutions for TSP
Applications. Springer-Verlag.

Rekleitis, I. M., Lee-Shue, V., New, A. P. and Choset, H., 2004. Limited
Communication Multi-Robot Team Based Coverage. In IEEE Intl.
Conf. on Robotics and Automation (ICRA).

120

Sandholm, T. W., 1999. Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, chapter Distributed Rational
Decision Making, pages 202–258. The MIT Press.

Sariel, S. and Akin, H. L., 2005. A Novel Search Strategy for Autonomous
Search and Rescue Robots. In RoboCup, volume 3276 of Lecture
Notes in Computer Science, pages 459–466. ISBN 3-540-25046-8.

Sariel, S. and Balch, T., 2005a. Real Time Auction Based Allocation of Tasks
for Multi-Robot Exploration Problem in Dynamic Environments.
In Integrating Planning into Scheduling: Papers from the 2005
AAAI Workshop, WS-05-06, pages 27–33.

Sariel, S. and Balch, T., 2005b. Robust Multi-Robot Coordination
in Noisy and Dangerous Environments. Technical
Report GIT-GVU-05-17, GVU Center, Georgia Institute of
Technology.

Sariel, S. and Balch, T., 2006a. Distributed Autonomous Robotic Systems
(DARS) 7, chapter A Distributed Multi-Robot Cooperation
Framework for Real Time Task Achievement, pages 187–196.
Springer Verlag.

Sariel, S. and Balch, T., 2006b. Dynamic and Distributed Allocation of
Resource Constrained Project Tasks to Robots. In Multi-Agent
Robotic Systems (MARS) Workshop at the Third International
Conference on Informatics in Control, Automation and Robotics.

Sariel, S. and Balch, T., 2006c. Efficient Bids on Task Allocation for
Multi-Robot Exploration. In The 19th International The Florida
Artificial Intelligence Research Society (FLAIRS) Conference.

Sariel, S., Balch, T. and Erdogan, N., 2006a. Robust Multi-Robot
Cooperation Through Dynamic Task Allocation and Precaution
Routines. In The International Conference on Informatics in
Control, Automation and Robotics (ICINCO).

Sariel, S., Balch, T. and Erdogan, N., 2007a. Incremental Multi-Robot
Task Selection for Resource Constrained and Interrelated Tasks. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

Sariel, S., Balch, T. and Stack, J. R., 2006b. Distributed Autonomous
Robotic Systems (DARS) 7, chapter Empirical Evaluation of
Auction-Based Coordination of AUVs in a Realistic Simulated Mine
Countermeasure Task, pages 197–206. Springer Verlag.

Sariel, S., Balch, T. and Stack, J. R., 2006c. Distributed Multi-AUV
Coordination in Naval Mine Countermeasure Missions. Technical
Report GIT-GVU-06-04, GVU Center, Georgia Institute of
Technology.

121

Sariel, S., Erdogan, N. and Balch, T., 2007b. An Integrated Approach
To Solving The Real-World Multiple Traveling Robot Problem.
In The 5th International Conference on Electrical and Electronics
Engineering.

SarielKh2Mov. http://www2.itu.edu.tr/∼sariel/videos/KheperaII-Movies.html,
2007.

SarielMCMMov. http://www2.itu.edu.tr/∼sariel/videos/MCM-Movies.html,
2007.

Shehory, O. and Kraus, S., 1998. Methods for Task Allocation via Agent
Coalition Formation. Artificial Intelligence, 101, 165–200.

Simmons, R. and Apfelbaum, D., 1998. A Task Description Language for
Robot Control. In Conference on Intelligent Robotics and Systems.

Smith, R. G., 1980. The Contract Net Protocol: High Level Communication
and Control in a Distributed Problem Solver. IEEE Transaction on
Computers C-, 29(12), 1104–1113.

Stack, J. and Manning, R., 2004. Increased autonomy and Cooperation
in Multi-AUV Naval Mine Countermeasures. In Proceedings of
Undersea Defence Technology.

Tews, A., 2001. Adaptive Multi-robot Coordination for Highly Dynamic
Environments. In International Conference On Computational
Intelligence for Modelling (CIMCA).

Toth, P. and Vigo, D., 2001. The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics.

Vail, D. and Veloso, M., 2003. Dynamic Multi-robot Coordination.
Multi-Robot Systems: From Swarms to Intelligent Automata, 2,
87–98.

Vig, L. and Adams, J. A., 2005. Issues in Multi-robot Coalition Formation.
In Multi-Robot Systems. From Swarms to Intelligent Automata.
Volume III, pages 15–26.

WEBOTS. Webots User Guide 5.1.11, 2006.

Weglarz, J., 1999. Project Scheduling: Recent Models, Algorithms and
Applications. Kluwer.

Wikipedia-Cooperation. http://en.wikipedia.org/wiki/Cooperation, 2007.

Zlot, R. and Stentz, A., 2006. Market-based Multirobot Coordination for
Complex Tasks. Intl. J. of Robotics Research, 25(1).

122

APPENDIX

123

A. TSP HEURISTICS

In the following heuristic function definitions, TTSP is a partial tour and k is a
city not on TTSP , and {i, j} is one of the edges of TTSP .

Minimum Spanning Tree Heuristic (MST): In this method, either the
Prim’s algorithm or the Kruskal’s algorithm may be used to generate the MST
for the given set of the cities. A depth first search of T is constructed. After
introducing shortcuts into the depth first search, it is ensured that cities are
visited only once.

Nearest Merger Heuristic (NMH): This method corresponds to the
Kruskal’s minimum spanning tree algorithm. The algorithm starts with n partial
tours, each of which consists of a single city, then, successively merges the tours
until a single tour containing all cities is obtained. Each time trees to be merged
are chosen so that mincij : i ∈ TTSP and j ∈ T ′

TSP is as small as possible.

Nearest Neighborhood Heuristic (NNH): The algorithm starts with an
empty tour T. Cities k and j, for which c(j, k) minimized are found. i, j is
replaced by i, k and k, j to obtain a new tour including k. The algorithm
continues until all cities are added to TTSP .

Nearest Insertion Heuristic (NIH): The algorithm starts with an empty
tour TTSP . Cities k and j, for which c(j, k) minimized are found. i, j is the edge
of TTSP which minimizes c(i, k) + c(k, j) − c(i, j), and it is replaced by i, k and
k, j to obtain a new tour including k. The algorithm continues until all cities are
added to TTSP .

Cheapest Insertion Heuristic (CIH): The algorithm starts with an empty
tour TTSP . If TTSP does not include all cities, for each k, the edge i, j of TTSP

which minimizes c(TTSP , k) = c(i, k) + c(k, j) − c(i, j) is found. Then, the city k

minimizing c(TTSP , k) is found. If i, j is the edge of TTSP for which c(TTSP , k) is
minimized, it is replaced by i, k and k, j to obtain a new tour including k. The
algorithm continues until all cities are added to the TTSP .

Farthest Insertion Heuristic (FIH): The algorithm starts with an
empty tour TTSP . City k, which is the farthest of all the cities out of TTSP ,
is inserted to TTSP . The algorithm continues until all cities are added to the TTSP .

Christofides Algorithm (CA): MST of the given set of cities is constructed.
Minimum matching M∗ for the set of all odd-degree vertices in TTSP is
constructed. An Eulerian tour for the Eulerian Graph that is the union of the
TTSP and M∗ is found, and it is converted into a tour using the shortcuts.

124

Except from the FIH and the NNH, all the algorithms presented above have
worst case solutions bounded by 2∗OPT . The NNH is bounded by (log n)*OPT,
whereas the CA is bounded by 1.5*OPT.

125

B. TSPLIB INSTANCES

TSPLIB is a library of sample instances for the TSP (and related problems) from
various sources and of various types (Reinelt, 1991). Each instance is given with
the coordinates of the cities to be visited. In our experiments, these instances
are used for the performance analysis, and the first node is taken as the initial
location of the robot in each instance. While the cities are marked with red x
markers, the initial nodes and the robot locations are indicated with blue circles
in the following graphs.

126

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

ATT48 TSPLIB INSTANCE

Figure B.1: ATT48 TSPLIB instance with 48 nodes

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

ATT48 OPTIMUM

Figure B.2: Optimal open-loop route for the ATT48 TSPLIB instance

127

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

EIL51 TSPLIB INSTANCE

Figure B.3: EIL51 TSPLIB instance with 51 nodes

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

EIL51 OPTIMUM

Figure B.4: Optimal open-loop route for the EIL51 TSPLIB instance

128

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

BERLIN52 TSPLIB INSTANCE

Figure B.5: BERLIN52 TSPLIB instance with 52 nodes

0 200 400 600 800 1000 1200 1400 1600 1800

0

200

400

600

800

1000

1200

1400

BERLIN52 OPTIMUM

Figure B.6: Optimal open-loop route for the BERLIN52 TSPLIB instance

129

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

EIL101 TSPLIB INSTANCE

Figure B.7: EIL101 TSPLIB instance with 101 nodes

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

EIL101 OPTIMUM

Figure B.8: Optimal open-loop route for the EIL101 TSPLIB instance

130

BIOGRAPHY

Sanem Sariel received her B.Sc. in Computer and Control Engineering
and M.Sc. in Computer Engineering from Istanbul Technical University in 1999
and 2002 respectively. She has been serving as a research and teaching assistant
at ITU since 1999. She was awarded with a research scholarship to do research
for her Ph.D. studies in the United States in 2004 where she worked with Prof.
Tucker Balch in the BORG Laboratory at Georgia Institute of Technology on
multi-robot coordination. Sanem Sariel’s research interests lie in the area of
Distributed Problem Solving, Multi-Robot Coordination and Intelligent Agents.
The following research papers were published during her PhD research:

Book Chapters:

• S. Sariel and T. Balch,“A Distributed Multi-Robot Cooperation Framework
for Real Time Task Achievement”, Distributed Autonomous Robotic
Systems (DARS) 7, Springer Verlag ISBN:4431358781, 2006, pp. 187-196.

• S. Sariel, T. Balch and J. Stack, “Empirical Evaluation of Auction-Based
Coordination of AUVs in a Realistic Simulated Mine Countermeasure
Task”, Distributed Autonomous Robotic Systems (DARS) 7, Springer
Verlag ISBN:4431358781, 2006, pp. 197-206.

Conference Papers:

• S. Sariel, T. Balch and N. Erdogan, “Incremental Multi-Robot Task
Selection for Resource Constrained and Interrelated Tasks”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2007.

• S. Sariel, N. Erdogan and T. Balch, “An Integrated Approach To Solving
The Real-World Multiple Traveling Robot Problem”, The 5th International
Conference on Electrical and Electronics Engineering, 2007.

• S. Sariel, T. Balch and N. Erdogan, “Robust Multi Robot Cooperation
through Dynamic Task Allocation and Precaution Routines”, The Third
International Conference on Informatics in Control, Automation and
Robotics (ICINCO), 2006.

• S. Sariel and T. Balch, “Efficient Bids on Task Allocation for Multi Robot
Exploration”, The Nineteenth International Florida Artificial Intelligence
Research Society (FLAIRS) Conference, 2006.

• S. Sariel and T. Balch, “Dynamic and Distributed Allocation of Resource
Constrained Project Tasks to Robots”, Multi-Agent Robotic Systems
(MARS) Workshop at the Third International Conference on Informatics
in Control, Automation and Robotics, 2006. (Also presented at the AAAI
Workshop on Auction Mechanisms for Robot Coordination, 2006).

• S. Sariel and T. Balch, “Real Time Auction Based Allocation of Tasks
for Multi-Robot Exploration Problem in Dynamic Environments”, In
Integrating Planning into Scheduling: AAAI Workshop 2005, pp.27-33.

131

Technical Reports:

• S. Sariel, T. Balch and J. Stack, “Distributed Multi-AUV Coordination in
Naval Mine Countermeasure Missions”, GVU Tech Report GIT-GVU-06-04,
2006.

• S. Sariel, T. Balch, “Robust Multi-Robot Coordination in Noisy and
Dangerous Environments”, GVU Tech Report GIT-GVU-05-17, 2005.

• S. Sariel, “A Framework for Multi-Robot Coordination”, The International
Conference on Automated Planning and Scheduling (ICAPS), Doctoral
Consortium, 2005.

132

