

Dynamic Temporal Planning for Multirobot Systems

C. Ugur Usug and Sanem Sariel-Talay

Computer Engineering Department

Istanbul Technical University, Istanbul, Turkey
{usugc,sariel}@itu.edu.tr

Abstract

The use of automated action planning techniques is essential
for efficient mission execution of mobile robots. However, a
tremendous effort is needed to represent planning problem
domains realistically to meet the real-world constraints.
Therefore, there is another source of uncertainty for mobile
robot systems due to the impossibility of perfectly
representing action representations (e.g., preconditions and
effects) in all circumstances. When domain representations
are not complete, a planner may not be capable of
constructing a valid plan for dynamic events even when it is
possible. This research focuses on a generic domain update
method to construct alternative plans against real-time
execution failures which are detected either during runtime
or earlier by a plan simulation process. Based on the
updated domain representations, a new executable plan is
constructed even when the outcomes of existing operators
are not completely known in advance or valid plans are not
possible with the existing representation of the domain. A
failure resolution scenario is given in the realistic Webots
simulator with mobile robots. Since TLPlan is used as the
base temporal planner, makespan optimization is achieved
with the available knowledge of the robots.

 Introduction

The achievement of the overall mission is the highest

priority goal of a multirobot system, and this problem is

treated previously as task allocation and selection problem.

Although several optimization criteria could be considered

for the efficiency of the mission execution (i.e., the cost of

task execution is taken into account), the use of automated

onboard high-level action planning techniques is crucial

for online generation of action sequences while satisfying

precedence and resource constraints. This research focuses

on continual high-level action planning and scheduling

issues for efficient completion of multirobot missions.

 Temporal planners, capable of generating efficient

sequences of durative actions, are convenient to be used

with real robot missions. There have been significant

advances in devising efficient temporal planners for

continually enhanced benchmark planning domains.

However, these algorithms operate at a high level and are

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not completely capable of dealing with hardware or

physical environment limitations. In particular, real world

is partially observable and involves different sources of

uncertainty due to noisy sensor information, unexpected

outcomes of actions and failures.

 Failure detection and diagnosis is investigated in earlier

planning frameworks (de Jonge, Roos and Witteveen 2009)

and plan repairing methods are proposed for recovering

from failures (van der Krogt and de Weerdt 2005 and

Micalizio 2009). However, in some real-world cases, a

planner may not come up with a valid (re)plan with the

available operators at hand (Brenner and Nebel 2009,

Göbelbecker et al. 2010) but with unforeseen opportunistic

features or outcomes of actions. This is due to lack of

detailed and realistic representations (e.g., preconditions

and effects) of actions (i.e., real-world instantiations of

planning language operators) in a planning domain or the

abstraction of the problem for reducing complexity. When

action representations are incorrect or incomplete as for

many real-world problems, learning methods are required.

However, even for simple learning methods, a certain

amount of background knowledge is needed.

 This paper presents a dynamic temporal planning

framework for mobile robots to handle action failures due

to environmental issues. Different from earlier studies, the

presented solution constructs alternative plans even when

guidance by experts, relevant new information or repairing

operators for replanning is not available. Real outcomes of

existing operators may not be completely known in

advance (e.g., due to abstraction) or valid plans are not

possible with the existing representation of the domain.

The proposed framework includes a domain update

procedure that provides flexible reasoning tools to replan

accordingly for the resolution of a failure by using the

intuitive principle of locality of failure. Background

knowledge needed for updating the existing domain

operators is almost negligible and a generic approach is

applied by searching for effects in existing operators that

may resolve the failure. After the required domain updates

are performed, a replanning approach is employed as

opposed to repairing since makespan (near-) optimal

solutions are targeted (Cushing, Benton and Kambhampati

2008). TLPlan (Bacchus and Ady 2001) is used as the

forward chaining temporal planner in the system to

construct makespan-optimized plans. Low and high-level

planning procedures of the robot system are made

compatible by using efficient domain (e.g., map)

representations.

 The rest of the paper is structured as follows. The next

section presents the formulation of the investigated

problem. The following section describes the dynamic

temporal planning framework as a proposed solution to the

presented problem and the developed algorithms for

domain updates and replanning. The experimental results

are presented in the following section and then, the paper is

concluded with suggestions for future work.

Problem Statement

A planning domain is as a tuple where

is a set of constants, is a set of types, is a set of

predicates and is a set of planning operators representing

real-world actions that can be executed by robots. A

planning problem is modeled as where and

 are initial and goal states, respectively. Each world state

includes a set of facts including the representations of

resources and robots in the system (). An operator

 is represented with a set of parameters , a

set of preconditions and add/delete effects

 . An operator is only applicable in the

current state if . Whenever is applied, the

world state is transformed to a successor which is

represented as .

 A temporal plan , a solution to a problem , satisfying

 optimization with a sequence of

instantiated and scheduled operator instances, which

correspond to real-world actions ().

Each action is represented with a set of arguments

 , a set of allocated robots for execution and a start

time in the constructed temporal plan. Action has

 representing the total duration (i.e., the amount of

duration between and the time step that
effects are available) of the corresponding real-world

action. is a simulation control function

(performed prior to execution) of plan from current state

 to achieve goal state . A valid plan is a plan for which

 function value is true. An executable plan is

a valid plan of which real-world execution is possible with

the existing resources. In some situations, even when a

plan is valid, its runtime execution may fail. In this case,

 becomes non-executable during the execution of action

 in state . The cause of failure is represented

as and it has an attribute list of defined

in and each element of this list has a value

 in . It is assumed that is detected as just

the subject of the action or encountered objects by the low

level components (e.g., perception and path planning

modules) of the robot. Note that, a non-executable plan

may still be treated as valid from the point of view of the

planner even if c is encoded in the planning domain. The

corresponding domain update procedure transforms the

planning problem from to . includes the encoded

cause. Even for , the planner may still fail to find an

executable plan although an executable plan exists if
 is

transformed to . should include necessary updates

to generate an executable plan.

 The problem that is investigated in this paper is updating

the domain representation appropriately whenever an

execution failure occurs (i.e., telling the cause of the

failure in the knowledge base). The domain updates should

be made in such a way to autonomously find an executable

plan involving alternative actions different than the failed

ones. Note that, before the domain is updated, these

alternative actions may not be applicable for achieving the

goal state. Therefore, an executable (also valid) plan is to

be found at even when no valid plan is found at or

there are several valid but non-executable plans (i.e., with

non-executable actions for which)

generated by replanning.

 The presented problem involves two types of action

failures, namely, temporary and permanent failures.

Temporary failures occur at runtime and can be resolved

by replanning. Temporarily failed actions become

available whenever replanning is possible in some way.

When an action permanently fails, there is no way to

execute that action to achieve the goals.

 As a motivating example to illustrate the above

mentioned problem, a single-robot scenario can be given

with an object, located on one end of a corridor, to be

moved to the other end. The robot is capable of executing

several actions such as pick/drop objects by its gripper,

move from one location to another and push movable

objects. However, since the environment is unstructured,

the move action fails temporarily while transferring the

object due to an unknown obstacle on the pathway to the

destination. This failure is detected by the path planner

module of the robot after updating its map and path plan

accordingly. Although a valid plan is impossible for this

case, there indeed exists a valid and executable plan

according to which the robot pushes this obstacle until the

target is reachable. However, push action is not designed to

have such a related effect (“clear the pathway to reach at

the target”) to be included in the replan.

Dynamic Temporal Planning Framework

One way to handle a real-time execution failure is

changing the initial and goal state representations (Fox et

al. 2006) to reconstruct a valid plan for the new

representation. However, it is not guaranteed that this new

plan is executable. Additional precautions should be taken

to prevent generating such plans (Cushing and

Kambhampati 2005). There may be different intuitive

solutions to the presented problem: (1) disabling the failed

actions, (2) suspending the failed actions, (3) incremental

or subgoal planning. Disabling the failed actions may

prevent their use in the constructed plan although needed.

The second method overcomes this problem by just

suspending the selection of the failed action for a certain

time period. In this case, since the duration of suspension is

domain-dependent and unpredictable, a complicated

reasoning process is needed to estimate the realistic

duration for the suspension. Incremental or subgoal

planning is another method, however, in this case,

suboptimal solutions may be observed or the planner may

fail to find a subplan to achieve subgoals.

 The solution that is presented in this paper involves a

dynamic temporal planning framework for a multirobot

system to handle temporary action failures. The

constructed solution to the presented problem involves a

generic reasoning approach about the cause of the failure

and updating the domain representation appropriately.

Depending on the quality of the reasoning about the failure

cause, the results of the update procedure can be more

specific when semantic attachments can be made. For

example, if an obstacle-related cause is given, only the

attributes of cause which change the location of the object

should be considered for replanning. However, if no such

reasoning is available, irrelevant preconditions including

attributes such as the color of the obstacle may also be

considered. After appropriate domain updates are

performed, a new executable plan can be constructed if

any, even when there is not a valid plan with the given

operator representations.

 The overall framework employs four interleaved

processes, namely, planning, execution, monitoring, and

recovering from failures if any. Temporal planning is

continually performed as in Algorithm 1 for robust

continual mission execution. There are four execution

states: start, executing, suspended and failed. In state start,

a new plan is constructed and the robots start executing this

renewed plan. State executing is active whenever robots

are in execution of the plan. State failed is activated when

an action failure occurs, and state suspended is activated

until the execution is ended completely after state failed.

 The algorithm starts with state start for planning (line

22) using the existing domain representation. TLPlan

(Bacchus and Ady 2001) is used as a forward chaining

temporal planner to provide makespan optimality at the

action planner side. When a plan is constructed, it is sent to

the robots.

 In state executing, the algorithm is suspended on

WAITMESSAGE subroutine waiting for any messages from

the robots (at line 7). Each message contains the state of

action execution for a specified action, perceptual

information about the domain and the cause of failure if

any. Receiving a message, Algorithm 1 resumes and calls

the MONITOR subroutine (Algorithm 2). Algorithm 1

remains in state executing until a failure message is

received from a robot in the domain or VALID

subroutine returns false when the corresponding plan

becomes invalid. In this case, a stop-execution message is

sent to all robots. Receiving a stop message, each robot

stops the execution of its action.

Algorithm 1 DYNAMICTEMPORALPLANNING

 Input: current state , goal state

 Output: returns success or failure: messages to robots are sent

 1:

 2:

 3:

 4: for do

 5: if then

 6: if VALID

 7: WAITMESSAGE
 8: MONITOR

 9: else

10: SENDALLROBOTSSTOPEXECUTION
11:

12: else if then

13: if VALID then

14: UPDATEDOMAINDESCRIPTION
15:

16: else if then

17: for all robots stop execution do

18: WAITMESSAGE
19: MONITOR

20:

21: else

22: PLANNER

23: if then

24: return NOPLAN

25:

26: SENDPLANTOROBOTS
27: return SUCCESS

 Whenever the plan is no longer executable by the robots,

the cause of the failure is encoded in the domain

representation and state failed is activated. Then, the

validity of the failed plan is checked for the updated state

information. If the failed plan is still treated as valid from

the planner’s perspective, replanning cannot handle this

failure case. In this case, UPDATEDOMAINDESCRIPTION

subroutine is called to make the required domain updates

and handle the failure. The body of this subroutine is given

in Algorithm 3. After the required changes are performed

in the domain representation, Algorithm 1 waits for

execution-stopped messages from all robots. After then, the

state is changed to start and a new plan is constructed.

Algorithm 2 MONITOR

 Input: message , currrent state

 Output: status of planning, current state

 1:

 2:

 3:

 4:

 5: if then

 6: APPLYSTARTEFFECTS
 7: else if then

 8: APPLYENDEFFECTS
 9: MERGE
10: else if then

11: MERGE
12:

13: else if then

14: MERGE
15: return

 Algorithm 2 is used to monitor the status of the existing

plan and to parse messages coming from robots.

Monitoring of the existing plan is performed by simulating

the plan from the current world state. The plan is simulated

by applying the start and end effects of the actions to the

fact base. The perceptions are applied on the current state,

when finished, failed and stop messages are received and

the status is set to executing. However, when a failed

message is received, it is set to failed.

 Algorithm 3 implements the appropriate domain

updates. At lines (5) to (9), the failed action is locked by

defining a new predicate () with the name of

the operator (concatenated with string “_locked”) and its

parameters in the domain. This predicate is added to the

preconditions of the failed operator. Then, a corresponding

fact () is included in the domain description. At

lines (15) to (19), a new pseudo operator () is

created for the failed action-cause pairs , if

not created before. Line (21) assigns the pseudo operator to

the corresponding failed action and cause pair. This pseudo

operator diverges from the original domain operators by its

specific preconditions, effects and parameters for

representing the failure cause. It has additional

preconditions for restricting its selection (for preventing

cycling plans) only when the corresponding failed action is

locked and the related cause is given as an argument. It has

also additional effects for unlocking the failed action. The

preconditions are generated by MAKEFAILURE

PRECONDITIONS subroutine (Algorithm 4). This subroutine

first searches for the domain operators which possess

related effects to the attributes of cause.

Algorithm 3 UPDATEDOMAINDESCRIPTION (msg, S,)

 Input: message , planning domain ,

 current state , current failed plan

 Output: updated planning domain

 1:

 2:

 3:
 4:

 5: CONCAT

 6:
 7:

 8: GENERATEFACT

 9:

10:

11:

12:

13: GETPSEUDOOPERATOR()

14: if then

15:

16:

17:

18: MAKEFAILUREPRECONDITIONS()

19:

20:

21: SETPSEUDOOPERATOR()

22: else

23: GETPREDECESSORACTION(, ,)

24:

25: GETEXECUTEDOPERATORS()

26:

27: SETEXECUTEDOPERATORS()
28:

29:

30: MAKEFAILUREPRECONDITIONS()

Algorithm 4 MAKEFAILUREPRECONDITIONS (, ,)

 Input: failure cause , planning domain ,

 current state , executed operator list

 Output: disjunctive precondition list

 1:

 2: for each in but not in do

 3: for each effect in do

 4: for each attribute in do

 5: if affects then

 6:

 7:

 8: return

Then, it creates a precondition list as a disjunction of the

inequality statements between the attributes of and

their values in failed state . Therefore, these

inequality statements ensure enabling the failed actions

when the status of cause is changed in a desired way. If the

pseudo operator is created earlier, and the plan is still non-

executable, that means the alternative action does not

produce the desired effect for resolving the failure. In this

case, lines (23) to (30) in Algorithm 3 remove the related

effects of this alternative action from the list of the

preconditions of the pseudo operator. Therefore, it is not

considered as an alternative action in future plans. An

inappropriate alternative action is not considered in a

future plan for the resolution of the related failure.

 In the proposed framework, low-level path planning and

high-level action planning procedures are successfully

integrated by a common representation framework. Since

there is a tight coupling between these procedures,

topological mapping approach is convenient to be used.

This approach provides the desired flexibility in

representation and abstraction in both levels. The

topological map is represented as a graph of the traversable

nodes representing free spaces in the environment and the

connecting edges between them. The map is generated

incrementally during the mission execution. In this

incremental approach, a new node is generated at a certain

distance to the previous node (Simmons and Koenig 1995),

whenever the robot has sharp turns or detects new

obstacles (Ranganathan and Dellaert 2009). When new

obstacles are detected on the path, invalid edges are

removed from the map. The path planner provides such

information to update the map, when pairs of nodes in

interest become disconnected. The nodes of the map could

also be represented as the facts for locations or objects in

the action planning domain. If the failure cause is a

discovered obstacle on the path, this information could be

encoded in the knowledge base to be used in both levels.

Experimental Results

A failure resolution scenario is analyzed for presenting the

solution in the realistic Webots simulator with two mobile

robots. This scenario includes a temporary action failure

case to test and validate the success of the proposed

method. There are 6 operators available in the planning

domain: operator (move-to-loc ?robot ?loc) is to forward

robots to a destination, operator (move-to-obj ?robot ?obj)

is to forward robots to a position nearby an object to act on

it, operators (pick ?robot ?smallObj) and (drop ?robot

?smallObj) are for picking/dropping a small object by the

grippers of the robots, operator (push ?robot ?largeObj) is

used to change the position of a large object by dragging,

and operator (paint ?robot ?obj ?color) to paint an object.

 The overall goal in the planning problem is transferring

the small red objects to a target location behind the

obstacle. However, the robots are not informed about the

existence of the obstacle which blockades the corridor.

 During the execution of the move-to-loc action, one of

the robots detects the obstacle and the path planner returns

a failure since it is impossible to generate a path from the

current position to the destination. The failure cause of the

action move-to-loc is reported as obstacle with its

estimated location. This new information is encoded in the

knowledge base (). If there is a valid solution at this

step, replanning is performed. At this moment, it is

assumed that there is no knowledge of how to resolve this

failure (i.e., operator push would not be selected by the

planner since it does not have an effect “clear the pathway

to reach at the target”). Even when replanning is not

possible, the proposed generic domain update method is

capable of creating an alternative plan by means of the

UPDATEDOMAINDESCRIPTION subroutine. This subroutine

adds a pseudo operator for the reported cause to the

domain to transform to a new planning problem .

 MAKEFAILUREPRECONDITIONS subroutine searches for

the operators in the domain and finds push and paint as

related operators to the cause (obstacle) since they have

the effects to change the attributes of an object. A new

pseudo operator pseudo1 is created with preconditions

related to both the failed action (move-to-loc) and the

effects x and y coordinates and color of the operators push

and paint, respectively. The domain is updated with the

inclusion of a disabling fact (move-to-loc_locked obstacle)

of the failed action and the new pseudo operator. All

domain updates including the change made on the disabled

action are illustrated in Figure 1. Overall plan execution is

illustrated in Figure 2. Based on the updated domain

information, a new executable plan is generated. The new

plan includes push action for the first robot. Action paint is

not included in the final plan since its cost is higher than

that of push. If proper reasoning is possible, the selection

(def-adl-operator (move-to-loc ?loc)

 (pre
 …

 (not (move-to-loc_locked ?loc))
)

 …
)
(def-adl-operator (pseudo1 ?obj ?loc)

 (pre
 …

 (and
 (= ?obj obstacle)
 (move-to-loc_locked ?loc)

 (or
 (not (xcoord ?obj obs_x))

 (not (ycoord ?obj obs_y))
 (not (color ?obj red))
)

)
)

 (del (move-to-loc_locked ?loc))
)

Figure 1: Domain updates for the resolution of the failure.

of action push could be enforced. Note that, the duration of

action push is to be specified before the construction of the

plan. In the implementation, this value is calculated based

on the estimated length of the corridor. The incrementally

constructed topological map for the first robot is presented

in Figure 3. Just a single robot’s map is illustrated for

simplification purposes.

 (a) (b) (c)

(d) (e) (f)

Figure 2: The overall plan execution of moving red objects to

their destinations. (a-b) Initial plan is executed. In (b), the domain

updates are performed due to the failure and a new plan is

generated. (c-f) the new plan involves pushing the obstacle to an

appropriate location before red objects are moved.

Conclusion

In this paper, the realistic constraints of robotic mission

execution are investigated and a dynamic replanning

framework is proposed against environmental failures. The

proposed method can efficiently handle temporary failures.

Appropriate domain updates are performed to replan and

generate alternative executable plans even when the

domain representation is not completely specified. An

example failure resolution scenario in Webots simulator is

given to validate the proposed approach. As the simulation

scenario illustrates, executable plans are generated by

replanning with new pseudo operators in the updated

domains. These initial experiments in the given scenario

illustrate that the proposed domain update method and the

dynamic replanning framework is promising for robust

mission execution of robotic systems. The near future work

includes extending the algorithm to handle permanent

failures and porting the framework on real robots.

Acknowledgments

Authors would like to thank Dogan Altan, Sami Dikici and

Sertac Karapinar for their contribution in the simulation

experiments.

Figure 3: The topological map is created and updated

incrementally. (a) The nodes of the graph represent the robot,

object, and target locations. (b) The path planner recognizes the

obstacle on the path to the target and updates the map. (c)

Whenever the obstacle is removed from the path, the map is

updated accordingly.

References

Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proceedings of
IJCAI, 417-424.

Brenner, M., and Nebel, B. 2009. Continual planning and acting
in dynamic multiagent environments. In AAMAS, 19(3):297-331

Cushing W., and Kambhampati S. 2005. Replanning: A new
perspective. In Proceedings of ICAPS.

Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Replanning
as a deliberative re-selection of objectives. Arizona State
University, Tech. Rep.

de Jonge, F.; Roos, N.; Witteveen, C. 2009. Primary and
secondary diagnosis of multi-agent plan. In AAMAS, 18(2): 267-
294.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proceedings of
ICAPS, 212-221.

Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; Nebel, B.
2010. Coming up with good excuses: What to do when no plan
can be found. In Proceedings of The International Conference on
Automated Planning and Scheduling (ICAPS), 81-88.

Micalizio, R. 2009. A distributed control loop for autonomous
recovery in a multiagent plan. In Proceedings of IJCAI, 1760-
1765.

Ranganathan A., and Dellaert F. 2009. Bayesian surprise and
landmark detection. In Proceedings of ICRA, 1240-1246.

Simmons R., and Koenig S. 1995. Probabilistic Robot Navigation
in Partially Observable Environments. In Proceedings of IJCAI,
1080-1087.

van der Krogt, R., and de Weerdt, M. 2005. Plan repair as an
extension of planning. In Proceedings of The International
Conference on Automated Planning and Scheduling (ICAPS),
161-170.

