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Abstract 

The use of automated action planning techniques is essential 
for efficient mission execution of mobile robots. However, a 
tremendous effort is needed to represent planning problem 
domains realistically to meet the real-world constraints. 
Therefore, there is another source of uncertainty for mobile 
robot systems due to the impossibility of perfectly 
representing action representations (e.g., preconditions and 
effects) in all circumstances. When domain representations 
are not complete, a planner may not be capable of 
constructing a valid plan for dynamic events even when it is 
possible. This research focuses on a generic domain update 
method to construct alternative plans against real-time 
execution failures which are detected either during runtime 
or earlier by a plan simulation process. Based on the 
updated domain representations, a new executable plan is 
constructed even when the outcomes of existing operators 
are not completely known in advance or valid plans are not 
possible with the existing representation of the domain. A 
failure resolution scenario is given in the realistic Webots 
simulator with mobile robots. Since TLPlan is used as the 
base temporal planner, makespan optimization is achieved 
with the available knowledge of the robots. 

 Introduction   

The achievement of the overall mission is the highest 

priority goal of a multirobot system, and this problem is 

treated previously as task allocation and selection problem. 

Although several optimization criteria could be considered 

for the efficiency of the mission execution (i.e., the cost of 

task execution is taken into account), the use of automated 

onboard high-level action planning techniques is crucial 

for online generation of action sequences while satisfying 

precedence and resource constraints. This research focuses 

on continual high-level action planning and scheduling 

issues for efficient completion of multirobot missions. 

 Temporal planners, capable of generating efficient 

sequences of durative actions, are convenient to be used 

with real robot missions. There have been significant 

advances in devising efficient temporal planners for 

continually enhanced benchmark planning domains. 

However, these algorithms operate at a high level and are 
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not completely capable of dealing with hardware or 

physical environment limitations. In particular, real world 

is partially observable and involves different sources of 

uncertainty due to noisy sensor information, unexpected 

outcomes of actions and failures. 

 Failure detection and diagnosis is investigated in earlier 

planning frameworks (de Jonge, Roos and Witteveen 2009) 

and plan repairing methods are proposed for recovering 

from failures (van der Krogt and de Weerdt 2005 and 

Micalizio 2009). However, in some real-world cases, a 

planner may not come up with a valid (re)plan with the 

available operators at hand (Brenner and Nebel 2009, 

Göbelbecker et al. 2010) but with unforeseen opportunistic 

features or outcomes of actions. This is due to lack of 

detailed and realistic representations (e.g., preconditions 

and effects) of actions (i.e., real-world instantiations of 

planning language operators) in a planning domain or the 

abstraction of the problem for reducing complexity. When 

action representations are incorrect or incomplete as for 

many real-world problems, learning methods are required. 

However, even for simple learning methods, a certain 

amount of background knowledge is needed.  

 This paper presents a dynamic temporal planning 

framework for mobile robots to handle action failures due 

to environmental issues. Different from earlier studies, the 

presented solution constructs alternative plans even when 

guidance by experts, relevant new information or repairing 

operators for replanning is not available. Real outcomes of 

existing operators may not be completely known in 

advance (e.g., due to abstraction) or valid plans are not 

possible with the existing representation of the domain. 

The proposed framework includes a domain update 

procedure that provides flexible reasoning tools to replan 

accordingly for the resolution of a failure by using the 

intuitive principle of locality of failure. Background 

knowledge needed for updating the existing domain 

operators is almost negligible and a generic approach is 

applied by searching for effects in existing operators that 

may resolve the failure. After the required domain updates 

are performed, a replanning approach is employed as 

opposed to repairing since makespan (near-) optimal 

solutions are targeted (Cushing, Benton and Kambhampati 

2008). TLPlan (Bacchus and Ady 2001) is used as the 



forward chaining temporal planner in the system to 

construct makespan-optimized plans. Low and high-level 

planning procedures of the robot system are made 

compatible by using efficient domain (e.g., map) 

representations.  

 The rest of the paper is structured as follows. The next 

section presents the formulation of the investigated 

problem. The following section describes the dynamic 

temporal planning framework as a proposed solution to the 

presented problem and the developed algorithms for 

domain updates and replanning. The experimental results 

are presented in the following section and then, the paper is 

concluded with suggestions for future work. 

Problem Statement 

A planning domain is as a tuple               where   

is a set of constants,   is a set of types,   is a set of 

predicates and   is a set of planning operators representing 

real-world actions that can be executed by robots. A 

planning problem is modeled as            where   and 

  are initial and goal states, respectively. Each world state 

includes a set of facts including the representations of 

resources and robots in the system (    ). An operator 

    is represented with a set of parameters         , a 

set of preconditions        and add/delete effects 

             . An operator   is only applicable in the 

current state   if         . Whenever   is applied, the 

world state   is transformed to a successor    which is 

represented as                  .  

 A temporal plan  , a solution to a problem   , satisfying 

            optimization with a sequence of 

instantiated and scheduled operator instances, which 

correspond to real-world actions (              ). 

Each action   is represented with a set of arguments 

      , a set of allocated robots for execution and a start 

time       in the constructed temporal plan. Action   has 

       representing the total duration (i.e., the amount of 

duration between       and the time step that         
effects are available) of the corresponding real-world 

action.              is a simulation control function 

(performed prior to execution) of plan   from current state 

  to achieve goal state  . A valid plan is a plan for which  

             function value is true. An executable plan is 

a valid plan of which real-world execution is possible with 

the existing resources. In some situations, even when a 

plan   is valid, its runtime execution may fail. In this case, 

  becomes non-executable during the execution of action 

        in state        . The cause of failure is represented 

as           and it has an attribute list of         defined 

in   and each element       of this list has a value 

               in  . It is assumed that   is detected as just 

the subject of the action or encountered objects by the low 

level components (e.g., perception and path planning 

modules) of the robot. Note that, a non-executable plan 

may still be treated as valid from the point of view of the 

planner even if c is encoded in the planning domain. The 

corresponding domain update procedure transforms the 

planning problem from    to    .     includes the encoded 

cause.  Even for    ,  the planner may still fail to find an 

executable plan although an executable plan exists if   
  is 

transformed to     .      should include necessary updates 

to generate an executable plan.  

 The problem that is investigated in this paper is updating 

the domain representation appropriately whenever an 

execution failure occurs (i.e., telling the cause of the 

failure in the knowledge base). The domain updates should 

be made in such a way to autonomously find an executable 

plan involving alternative actions different than the failed 

ones. Note that, before the domain is updated, these 

alternative actions may not be applicable for achieving the 

goal state. Therefore, an executable (also valid) plan is to 

be found at      even when no valid plan is found at     or 

there are several valid but non-executable plans (i.e., with 

non-executable actions   for which                ) 

generated by replanning. 

 The presented problem involves two types of action 

failures, namely, temporary and permanent failures. 

Temporary failures occur at runtime and can be resolved 

by replanning. Temporarily failed actions become 

available whenever replanning is possible in some way. 

When an action permanently fails, there is no way to 

execute that action to achieve the goals. 

 As a motivating example to illustrate the above 

mentioned problem, a single-robot scenario can be given 

with an object, located on one end of a corridor, to be 

moved to the other end. The robot is capable of executing 

several actions such as pick/drop objects by its gripper, 

move from one location to another and push movable 

objects. However, since the environment is unstructured, 

the move action fails temporarily while transferring the 

object due to an unknown obstacle on the pathway to the 

destination. This failure is detected by the path planner 

module of the robot after updating its map and path plan 

accordingly. Although a valid plan is impossible for this 

case, there indeed exists a valid and executable plan 

according to which the robot pushes this obstacle until the 

target is reachable. However, push action is not designed to 

have such a related effect (“clear the pathway to reach at 

the target”) to be included in the replan.  

Dynamic Temporal Planning Framework 

One way to handle a real-time execution failure is 

changing the initial and goal state representations (Fox et 

al. 2006) to reconstruct a valid plan for the new 



representation. However, it is not guaranteed that this new 

plan is executable. Additional precautions should be taken 

to prevent generating such plans (Cushing and 

Kambhampati 2005). There may be different intuitive 

solutions to the presented problem: (1) disabling the failed 

actions, (2) suspending the failed actions, (3) incremental 

or subgoal planning. Disabling the failed actions may 

prevent their use in the constructed plan although needed. 

The second method overcomes this problem by just 

suspending the selection of the failed action for a certain 

time period. In this case, since the duration of suspension is 

domain-dependent and unpredictable, a complicated 

reasoning process is needed to estimate the realistic 

duration for the suspension. Incremental or subgoal 

planning is another method, however, in this case, 

suboptimal solutions may be observed or the planner may 

fail to find a subplan to achieve subgoals. 

 The solution that is presented in this paper involves a 

dynamic temporal planning framework for a multirobot 

system to handle temporary action failures. The 

constructed solution to the presented problem involves a 

generic reasoning approach about the cause of the failure 

and updating the domain representation appropriately. 

Depending on the quality of the reasoning about the failure 

cause, the results of the update procedure can be more 

specific when semantic attachments can be made. For 

example, if an obstacle-related cause is given, only the 

attributes of cause which change the location of the object 

should be considered for replanning. However, if no such 

reasoning is available, irrelevant preconditions including 

attributes such as the color of the obstacle may also be 

considered. After appropriate domain updates are 

performed, a new executable plan can be constructed if 

any, even when there is not a valid plan with the given 

operator representations.  

 The overall framework employs four interleaved 

processes, namely, planning, execution, monitoring, and 

recovering from failures if any. Temporal planning is 

continually performed as in Algorithm 1 for robust 

continual mission execution. There are four execution 

states: start, executing, suspended and failed. In state start, 

a new plan is constructed and the robots start executing this 

renewed plan. State executing is active whenever robots 

are in execution of the plan. State failed is activated when 

an action failure occurs, and state suspended is activated 

until the execution is ended completely after state failed. 

 The algorithm starts with state start for planning (line 

22) using the existing domain representation. TLPlan 

(Bacchus and Ady 2001) is used as a forward chaining 

temporal planner to provide makespan optimality at the 

action planner side. When a plan is constructed, it is sent to 

the robots.  

 In state executing, the algorithm is suspended on 

WAITMESSAGE subroutine waiting for any messages from 

the robots (at line 7). Each message contains the state of 

action execution for a specified action, perceptual 

information about the domain and the cause of failure if 

any. Receiving a message, Algorithm 1 resumes and calls 

the MONITOR subroutine (Algorithm 2). Algorithm 1 

remains in state executing until a failure message is 

received from a robot in the domain or VALID        

subroutine returns false when the corresponding plan 

becomes invalid. In this case, a stop-execution message is 

sent to all robots. Receiving a stop message, each robot 

stops the execution of its action. 

 

Algorithm 1 DYNAMICTEMPORALPLANNING       

       Input: current state  , goal state    

       Output: returns success or failure: messages to robots are sent 

  1:              

  2:        

  3:                  

  4:   for      do 

  5:       if                    then 

  6:            if VALID        

  7:                       WAITMESSAGE   
  8:                          MONITOR        

  9:            else 

10:                  SENDALLROBOTSSTOPEXECUTION   
11:                                     

12:       else if                 then 

13:            if VALID        then  

14:                UPDATEDOMAINDESCRIPTION            
15:                               

16:       else if                    then 

17:            for all robots stop execution do 

18:                        WAITMESSAGE   
19:                  MONITOR        

20:                            

21:        else  

22:                PLANNER        

23:             if      then 

24:                  return NOPLAN 

25:                                

26:             SENDPLANTOROBOTS    
27:  return SUCCESS 

  

 Whenever the plan is no longer executable by the robots, 

the cause of the failure is encoded in the domain 

representation and state failed is activated. Then, the 

validity of the failed plan is checked for the updated state 

information. If the failed plan is still treated as valid from 

the planner’s perspective, replanning cannot handle this 

failure case. In this case, UPDATEDOMAINDESCRIPTION 

subroutine is called to make the required domain updates 

and handle the failure. The body of this subroutine is given 

in Algorithm 3. After the required changes are performed 



in the domain representation, Algorithm 1 waits for 

execution-stopped messages from all robots. After then, the 

state is changed to start and a new plan is constructed. 

 

Algorithm 2 MONITOR         

       Input: message    , currrent state   

       Output: status of planning, current state   

  1:                     

  2:                

  3:                     

  4:                          

  5:   if                  then 

  6:             APPLYSTARTEFFECTS      
  7:   else if                   then 

  8:             APPLYENDEFFECTS      
  9:             MERGE          
10:   else if                  then 

11:             MERGE          
12:                         

13:   else if                  then 

14:             MERGE          
15:   return        

 

 Algorithm 2 is used to monitor the status of the existing 

plan and to parse messages coming from robots. 

Monitoring of the existing plan is performed by simulating 

the plan from the current world state. The plan is simulated 

by applying the start and end effects of the actions to the 

fact base. The perceptions are applied on the current state, 

when finished, failed and stop messages are received and 

the status is set to executing. However, when a failed 

message is received, it is set to failed.  

 Algorithm 3 implements the appropriate domain 

updates. At lines (5) to (9), the failed action is locked by 

defining a new predicate (            ) with the name of 

the operator (concatenated with string “_locked”) and its 

parameters in the domain. This predicate is added to the 

preconditions of the failed operator. Then, a corresponding 

fact (       ) is included in the domain description. At 

lines (15) to (19), a new pseudo operator (       ) is 

created for the failed action-cause pairs            , if 

not created before. Line (21) assigns the pseudo operator to 

the corresponding failed action and cause pair. This pseudo 

operator diverges from the original domain operators by its 

specific preconditions, effects and parameters for 

representing the failure cause. It has additional 

preconditions for restricting its selection (for preventing 

cycling plans) only when the corresponding failed action is 

locked and the related cause is given as an argument. It has 

also additional effects for unlocking the failed action. The 

preconditions are generated by MAKEFAILURE 

PRECONDITIONS subroutine (Algorithm 4). This subroutine 

first searches for the domain operators which possess 

related effects to the attributes of cause. 

 

Algorithm 3 UPDATEDOMAINDESCRIPTION (msg,  S, ) 

       Input: message    , planning domain  , 

                    current state  , current failed plan   

       Output: updated planning domain   

  1:                 

  2:                       

  3:                               
  4:              

  5:                       CONCAT                          

  6:                                            
  7:                                             

  8:            GENERATEFACT                             

  9:                 

10:                      

11:                        

12:                                  

13:            GETPSEUDOOPERATOR(         ) 

14:   if             then 

15:                                               

16:                            

17:                                 

18:                       MAKEFAILUREPRECONDITIONS(       ) 

19:                                           

20:                      

21:       SETPSEUDOOPERATOR(                 ) 

22:   else 

23:              GETPREDECESSORACTION( ,        ,  ) 

24:                             

25:                     GETEXECUTEDOPERATORS(         ) 

26:                                          

27:       SETEXECUTEDOPERATORS(                      ) 
28:                            

29:                                  

30:       MAKEFAILUREPRECONDITIONS(                  ) 

 

Algorithm 4 MAKEFAILUREPRECONDITIONS ( , ,    ) 

     Input: failure cause  , planning domain  ,  

                  current state  , executed operator list   

     Output: disjunctive precondition list         

  1:            

  2: for each    in   but not in   do 

  3:      for each effect    in                   do 

  4:           for each attribute       in         do 

  5:                 if    affects       then 

  6:                                           

  7:                                                          

  8: return         

 

Then, it creates a precondition list as a disjunction of the 

inequality statements between the attributes of       and 



their values in failed state        . Therefore, these 

inequality statements ensure enabling the failed actions 

when the status of cause is changed in a desired way. If the 

pseudo operator is created earlier, and the plan is still non-

executable, that means the alternative action does not 

produce the desired effect for resolving the failure. In this 

case, lines (23) to (30) in Algorithm 3 remove the related 

effects of this alternative action from the list of the 

preconditions of the pseudo operator. Therefore, it is not 

considered as an alternative action in future plans. An 

inappropriate alternative action is not considered in a 

future plan for the resolution of the related failure. 

  In the proposed framework, low-level path planning and 

high-level action planning procedures are successfully 

integrated by a common representation framework. Since 

there is a tight coupling between these procedures, 

topological mapping approach is convenient to be used. 

This approach provides the desired flexibility in 

representation and abstraction in both levels. The 

topological map is represented as a graph of the traversable 

nodes representing free spaces in the environment and the 

connecting edges between them. The map is generated 

incrementally during the mission execution. In this 

incremental approach, a new node is generated at a certain 

distance to the previous node (Simmons and Koenig 1995), 

whenever the robot has sharp turns or detects new 

obstacles (Ranganathan and Dellaert 2009). When new 

obstacles are detected on the path, invalid edges are 

removed from the map. The path planner provides such 

information to update the map, when pairs of nodes in 

interest become disconnected. The nodes of the map could 

also be represented as the facts for locations or objects in 

the action planning domain. If the failure cause is a 

discovered obstacle on the path, this information could be 

encoded in the knowledge base to be used in both levels.  

Experimental Results 

A failure resolution scenario is analyzed for presenting the 

solution in the realistic Webots simulator with two mobile 

robots. This scenario includes a temporary action failure 

case to test and validate the success of the proposed 

method. There are 6 operators available in the planning 

domain: operator (move-to-loc ?robot ?loc) is to forward 

robots to a destination,  operator (move-to-obj ?robot ?obj) 

is to forward robots to a position nearby an object to act on 

it, operators (pick ?robot ?smallObj) and (drop ?robot 

?smallObj) are for picking/dropping a small object by the 

grippers of the robots, operator (push ?robot ?largeObj) is 

used to change the position of a large object by dragging, 

and operator (paint ?robot ?obj ?color) to paint an object.  

 The overall goal in the planning problem is transferring 

the small red objects to a target location behind the 

obstacle. However, the robots are not informed about the 

existence of the obstacle which blockades the corridor.  

 During the execution of the move-to-loc action, one of 

the robots detects the obstacle and the path planner returns 

a failure since it is impossible to generate a path from the 

current position to the destination. The failure cause of the 

action move-to-loc is reported as obstacle with its 

estimated location. This new information is encoded in the 

knowledge base (   ). If there is a valid solution at this 

step, replanning is performed. At this moment, it is 

assumed that there is no knowledge of how to resolve this 

failure (i.e., operator push would not be selected by the 

planner since it does not have an effect “clear the pathway 

to reach at the target”). Even when replanning is not 

possible, the proposed generic domain update method is 

capable of creating an alternative plan by means of the 

UPDATEDOMAINDESCRIPTION subroutine. This subroutine 

adds a pseudo operator for the reported cause to the 

domain to transform to a new planning problem     .  

 MAKEFAILUREPRECONDITIONS subroutine searches for 

the operators in the domain and finds push and paint as 

related operators to the cause (obstacle) since they have 

the effects to change the attributes of an object. A new 

pseudo operator pseudo1 is created with preconditions 

related to both the failed action (move-to-loc) and the 

effects x and y coordinates and color of the operators push 

and paint, respectively. The domain is updated with the 

inclusion of a disabling fact (move-to-loc_locked obstacle) 

of the failed action and the new pseudo operator. All 

domain updates including the change made on the disabled 

action are illustrated in Figure 1. Overall plan execution is 

illustrated in Figure 2. Based on the updated domain 

information, a new executable plan is generated. The new 

plan includes push action for the first robot. Action paint is 

not included in the final plan since its cost is higher than 

that of push. If proper reasoning is possible, the selection 

(def-adl-operator (move-to-loc ?loc) 

 (pre 
      … 

     (not (move-to-loc_locked ?loc)) 
 ) 

 … 
) 
(def-adl-operator (pseudo1 ?obj ?loc) 

 (pre 
     … 

     (and 
  (= ?obj obstacle) 
  (move-to-loc_locked ?loc) 

  (or 
    (not (xcoord ?obj obs_x)) 

    (not (ycoord ?obj obs_y)) 
    (not (color ?obj red))  
       ) 

     ) 
 ) 

 (del (move-to-loc_locked ?loc)) 
) 

Figure 1:  Domain updates for the resolution of the failure. 



of action push could be enforced. Note that, the duration of 

action push is to be specified before the construction of the 

plan. In the implementation, this value is calculated based 

on the estimated length of the corridor. The incrementally 

constructed topological map for the first robot is presented 

in Figure 3. Just a single robot’s map is illustrated for 

simplification purposes. 

 

   (a) (b) (c) 

   

(d) (e) (f) 

Figure 2: The overall plan execution of moving red objects to 

their destinations. (a-b) Initial plan is executed. In (b), the domain 

updates are performed due to the failure and a new plan is 

generated. (c-f) the new plan involves pushing the obstacle to an 

appropriate location before red objects are moved. 

Conclusion 

In this paper, the realistic constraints of robotic mission 

execution are investigated and a dynamic replanning 

framework is proposed against environmental failures. The 

proposed method can efficiently handle temporary failures. 

Appropriate domain updates are performed to replan and 

generate alternative executable plans even when the 

domain representation is not completely specified. An 

example failure resolution scenario in Webots simulator is 

given to validate the proposed approach. As the simulation 

scenario illustrates, executable plans are generated by 

replanning with new pseudo operators in the updated 

domains. These initial experiments in the given scenario 

illustrate that the proposed domain update method and the 

dynamic replanning framework is promising for robust 

mission execution of robotic systems. The near future work 

includes extending the algorithm to handle permanent 

failures and porting the framework on real robots. 
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Figure 3: The topological map is created and updated 

incrementally. (a) The nodes of the graph represent the robot, 

object, and target locations. (b) The path planner recognizes the 

obstacle on the path to the target and updates the map. (c) 

Whenever the obstacle is removed from the path, the map is 

updated accordingly. 
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