
Learning Guided Planning for Robust Task Execution in Cognitive Robotics

Sertac Karapinar and Sanem Sariel-Talay and Petek Yildiz and Mustafa Ersen
Artificial Intelligence and Robotics Laboratory

Computer Engineering Department
Istanbul Technical University, Istanbul, Turkey
{karapinarse,sariel,petekyildiz,ersenm}@itu.edu.tr

Abstract

A cognitive robot may face failures during the execution of
its actions in the physical world. In this paper, we investi-
gate how robots can ensure robustness by gaining experience
on action executions, and we propose a lifelong experimen-
tal learning method. We use Inductive Logic Programming
(ILP) as the learning method to frame new hypotheses. ILP
provides first-order logic representations of the derived hy-
potheses that are useful for reasoning and planning processes.
Furthermore, it can use background knowledge to represent
more advanced rules. Partially specified world states can also
be easily represented in these rules. All these advantages of
ILP make this approach superior to attribute-based learning
approaches. Experience gained through incremental learning
is used as a guide to future decisions of the robot for robust
execution. The results on our Pioneer 3DX robot reveal that
the hypotheses framed for failure cases are sound and ensure
safety in future tasks of the robot.

Introduction
A cognitive robot possesses abilities to plan to attain its
goals, to execute its plan and to reason about dynamic cases.
Plan execution may fail in the physical world due to un-
expected outcomes (Pettersson 2005; Karapinar, Altan, and
Sariel-Talay 2012). Robustness is crucial for success, and
the robot should gain experience in the physical world and
use this experience in its future tasks. We investigate incre-
mental learning methods for cognitive robots. Our approach
is based on applying an experimental learning process to
learn from action execution failures, and then applying an
adaptive planning strategy to use experience gained through
learning. This work builds on our earlier work (Karapinar,
Altan, and Sariel-Talay 2012; Yildiz, Karapinar, and Sariel-
Talay 2013). Learning is from experimentation and failures
that are experienced in the physical world. We use an Induc-
tive Logic Programming (ILP) approach.

As a motivating example to illustrate the learning prob-
lem, consider a cognitive robot equipped with an arm and
a two-finger gripper. During the long-term operation of the
robot, it may need to take the same action several times in
different contexts. Considering a chess playing scenario, the
robot interacts with chess pieces by pick up, put down, push

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and move actions. To ensure robustness, the robot needs to
monitor its execution. Let’s assume that the robot always
fails in picking up the knight piece. This failure might occur
because of several reasons such as the shape of the piece,
its weight, a vision problem or improper grasp position. In
this case, the robot needs to find another way to complete
a move with another action. Action push may be an al-
ternative to pick up if there is a free way to the intended
position. Therefore, the action selection mechanism of the
robot should take the gained experience into account after
action execution failures. An efficient learning mechanism
is needed to match the execution context and the failure situ-
ation in such cases and to update the knowledge base so that
the recovery precautions are included in the plan.

In this work, we discuss how the experience gained from
failures can be used to guide planning and how hypothe-
ses can be generalized by using ILP. There exist methods
that learn stochastic models of actions (Pasula, Zettlemoyer,
and Kaelbling 2007), effects of actions (Hermans, Rehg,
and Bobick 2011; Usug and Sariel-Talay 2011; Usug, Al-
tan, and Sariel-Talay 2012) and control rules for planning
(Borrajo and Veloso 1994; Estlin and Mooney 1997; Aler,
Borrajo, and Isasi 2002; Fernandez, Aler, and Borrajo 2004;
Duran 2006). Our approach differs from earlier work in the
way learning outcomes are applied. In our approach, action
execution experience gained in the real world is used to pro-
vide feedback to the robot to improve its performance on
its future tasks. Context situations (the actions, the objects
in interest and their relations) are considered for derivation
of hypotheses which are expressed in first-order logic sen-
tences. Derived hypotheses are then used to devise heuris-
tics for planning. We propose a hybrid heuristic guidance
method for failure prevention.

In this paper, we first review the literature on applying
adaptive planning strategies. Then, we describe the details
of our learning-guided adaptive planning method. We then
present the empirical results and a discussion on the gener-
alization of hypotheses followed by the conclusions.

Background
In this section, we formulate planning, learning and learning
guided planning problems for robust task execution by cog-
nitive robots, and in the following section, we present our
solution to this problem.

Planning
Cognitive robots need automated onboard action planning
for online generation of action sequences against exoge-
nous events. A planning task Π can be described on a state
space S containing a finite and discrete set of states includ-
ing an initial state s0 and a goal state sG, and a state tran-
sition function st+1 = f(ot, st) where ot ∈ O(st) is an
operator applied in state st. Planning operators o ∈ O
are defined as symbolically abstracted representations of
actions a ∈ A and can be formalized as a tuple o =
{pre(o), add(o), del(o), cost(o)} where pre(o) defines the
preconditions, add(o) and del(o) define the effects of the
operator and cost(o) represents the cost of the correspond-
ing action. ot ∈ O(st) is defined as the set of applicable op-
erators in each state st ∈ S determined by checking precon-
ditions of the operators to satisfy pre(ot) ⊆ st. By applying
ot at state st, a new state st+1 = add(ot) ∪ (st \ del(ot)) is
observed. Planning task is achieved by a planner to reach sG
from s0 by selecting a sequence of operators from O(st) at
successive states st and executing the corresponding actions
at ∈ A in the given order. Classical planners accept this
model as a compact representation of the planning domain
(∆). Some planners use control formulas if they are defined
in ∆ while selecting ot. After searching the whole space of
operators, the planner constructs a valid plan P = o0:G by
considering an optimization criteria (e.g., makespan) and the
duration/cost of each operator.

In our work, we use TLPlan (Bacchus and Ady 2001),
a forward-chaining temporal planner. This planner uses
search control formulas that are expressed in terms of Lin-
ear Temporal Logic (LTL) formulas. These rules enable the
planner to reduce its search space by pruning unpromising
branches that lead to dead-ends or suboptimal plans in the
search tree. These rules can be from either select rules to
decide on which action to select or reject rules for rejection.
TLPlan uses ∪ (until), 2 (always), 3 (eventually),© (next)
from LTL temporal modalities and GOAL as an additional
one. ∪ states that a formula is true until another becomes
true. 2 means a formula is true in all world states. © spec-
ifies that a formula is true in the next world state. 3 means
a formula is true now or becomes true in some future state.
GOAL is used to specify whether a formula appears in sG.

Having generated a valid plan P , the robot can execute
each corresponding action ot → at ∈ A in sequence in the
physical world. If all goes well with execution, the robot
successfully attains sG. However, due to non-deterministic
actions and different sources of uncertainty in physical en-
vironments, several failures (Karapinar, Altan, and Sariel-
Talay 2012) may be encountered. Our primary focus is ac-
tion execution failures. Some of these failures are encoun-
tered due to misbeliefs or lack of knowledge about some
environmental features.

Learning
The robot should maintain background knowledge KB =
(F , H) where F is the set of facts and H is the set of hy-
potheses. Whenever needed, the robot infers new hypothe-
ses (H) based on its observations such that KB |= H , and

updates its KB according to this inference result. H is
said to improve the robot’s performance on its future tasks.
The problem that we investigate asks for developing a learn-
ing method to map from action execution contexts to fail-
ure cases. This is needed to either handle or prevent from
failures for robustness. Since the robot can observe its exe-
cution and environment during its whole lifetime, an incre-
mental and continual approach is needed. Furthermore, the
learning algorithm should be able to represent hypotheses by
logic-based sentences since the knowledge base of a cogni-
tive robot is represented symbolically to reason and plan for
achieving its goals. Since the robot has partial observabil-
ity, the facts that it can extract from the world do not always
include the values of all of the variables that describe the
world. An Inductive Logic Programming approach meets
all these requirements. For this reason, it is the approach
that we use in our solution.

Integrating Planning and Learning
The main object of this study is developing methods to use
experience on the future tasks of a robot. Alternative solu-
tions exist for using the gained experience. Several learning
systems have been developed to acquire search control rules
automatically such as HAMLET (Borrajo and Veloso 1994)
using lazy learning, EVOCK (Aler, Borrajo, and Isasi 2002;
Fernandez, Aler, and Borrajo 2004) using genetic program-
ming, and SCOPE (Estlin and Mooney 1997) and Grasshop-
per (Leckie and Zukerman 1998) using inductive learn-
ing. SCOPE uses Explanation-Based Learning (EBL) on
UCPOP planner. Grasshopper (Leckie and Zukerman 1998)
learns control rules to guide PRODIGY planner for improv-
ing planning speed by using inductive learning.

In some of these works, previously generated plans with
hand-coded rules are used as training examples for learning.
Two types of rules are learned: select rules from positive
examples and reject rules from negative examples. Learned
rules may be incorrect, incomplete or too many for effective
search. In such cases, they can be corrected by both gen-
eralization and specialization (Borrajo and Veloso 1996), or
improvements through optimization (Aler, Borrajo, and Isasi
2002) and removing non-useful ones (Cohen 1990) accord-
ing to a utility function to generate high-utility rule set. In
most of the existing approaches, control-rules are learned
from planning failures to speed-up planning (Katukam and
Kambhampati 1994). They learn reject rules to prevent
the planner from dead-ends or depth-limit failures by using
EBL. In another work (Duran 2006), both macro-operators
and control rules are learned to combine their benefits. The
learned control rules are for deciding when to use macro-
operators. A similar study (Rintanen 2000) presents use
of plan operators with control rules in domain-independent
planning. Apart from learning search control rules, there
exist methods to learn action representations in a planning
framework. One of the most important works in the area ad-
dresses learning stochastic models of action outcomes (Pa-
sula, Zettlemoyer, and Kaelbling 2007). In that work, proba-
bilistic STRIPS rules for operators are learned from training
data.

One of the most relevant studies (Haigh and Veloso 1999)

integrates planning, monitoring and learning processes. The
system estimates action costs and probabilities from real-
world executions to avoid failures by creating control rules.
Learner uses regression trees to learn correlations between
features of the environment, action costs and situations, then
generates situation-dependent rules. Control rules are used
to decide which goals and which actions to be selected. Sim-
ilarly, ROBEL (Morisset and Ghallab 2008) learns robust
ways of performing tasks. The main problem that we would
like to tackle differs from that of these systems in the way
learning is accomplished and its results are used. First, the
derived hypotheses are needed to be integrated with rea-
soning. Second, the features that are learned correspond
to context situations which may involve features of objects
and their relations. These facts necessitate knowledge-based
learning methods to be integrated with planning systems.

Learning Guided Planning
Our work builds on our earlier work on an experimental
learning approach for framing hypotheses on failure cases
(Karapinar, Altan, and Sariel-Talay 2012). We extend this
work by an adaptive planning strategy that uses these hy-
potheses (Yildiz, Karapinar, and Sariel-Talay 2013). In this
section, we first present an overview of our previous learn-
ing method, and then the details of our new method to devise
heuristics for planning.

Lifelong Experience-based Learning
We use Inductive Logic Programming (ILP) as a part of our
continual planning, execution and learning framework for
cognitive robots (Karapinar, Altan, and Sariel-Talay 2012).
The main purpose in learning is finding a set of hypotheses
that are consistent with the observed data during the exe-
cution of a constructed plan. Each hypothesis is expressed
by a set of first-order logic sentences. ILP helps to build,
update or abandon hypotheses as the robot acquires new ob-
servations. ILP based-learning is provided by the FOIL al-
gorithm (Quinlan 1990). It helps robots build their experi-
ence through observing different states of execution during
their lifetime. Framed hypotheses involve either known or
observed features of objects, their relations and the observ-
able features of world states as contexts of failures. Each
hypothesis is associated with a weight (w) based on its con-
fidence on correctly modeling observations. Note that only
the relevant facts from the world state and the outcome of an
observed action are taken into account.

Mapping from Hypotheses to Heuristics
Lifelong learning procedure continually frames new hy-
potheses during execution. These hypotheses are to be used
to improve the performance of the robot on its future tasks.
We analyze three ways of using hypotheses: (i) deriving new
control formulas (ii) updating the models of operators cor-
responding to the failed actions (iii) setting an adaptive cost
computation method for the operators. In the first approach,
the selection of a failed operator is completely abandoned to
prevent its selection on specific contexts. In the second ap-
proach, the preconditions of the failed operators are updated

to prevent their selection in specific branches during search.
In the third approach, the cost values of failed operators are
updated to set preference models.

We investigate these three approaches in a scenario with
several objects to be picked up and moved to a destination.
The objects have several observable features some of which
are predefined. Assume that the following is a hypothesis
framed after observations taken from this environment.

category(box) ∧ color(red)⇒ pickupFail

Based on this hypothesis, a search control formula can
be constructed in LTL according to the context of the given
hypothesis as following:

2(∀[obj : object(obj)](box(category, obj))

∧(red(color, obj)) ∧ ∀[robot : agent(robot)]

=⇒ © (¬holding(robot, obj)))

This formula specifies that if the given context is satisfied
by the world state (including the features of the objects), the
robot believes that it will fail in the execution of action pick
up, and the effects of the operator will not appear in the next
world state. The formula represents a reject rule for a failed
operator by inserting the distinctive effects of the operator
(e.g., holding for pick up operator) in its consequent part.

The precondition update for the given hypothesis can be
done in the following way:
(def-defined-predicate (pickupFailContext ?obj)
(and
(= (category ?obj) box)
(= (color ?obj) red)
)

)
(def-adl-operator (pickup ?robot ?obj)
(pre
(and
(not (pickupFailContext ?obj))
(handempty ?robot)
(....)

)
)
(del (...))
(add (...))

)

This precondition update prevents the selection of opera-
tor pick up for the context defined in the hypothesis repre-
senting a failure case.

The cost update method also considers the context of the
failure case and increases the cost of the operator by a fac-
tor to prevent its selection in a future plan according to the
following equation.

cost′ = cost + w ∗ k (1)

where the update factor is proportional to the weight of
the corresponding hypothesis. The gain value, k, is set
to a number to guarantee that the cost penalty is greater
than the maximum cost value of any other operator. We
analyzed the effects of these three methods in our previous
work (Yildiz, Karapinar, and Sariel-Talay 2013). According
to this analysis, we adopted a hybrid approach which

integrates precondition update and cost update methods
to prevent the selection of a failed operator, but also to
ensure its selection when there is no alternative way. Based
on the derived hypotheses, our hybrid method proposes
the necessary updates to guide the future planning tasks.
We consider three states after executing an action, namely
success, fail-safe and fail-unsafe of which we
repeat definitions here for convenience.

Definition 1 (success state) If all the desired effects
of the action occurs in the environment, the situation is
specified as success.

Definition 2 (fail-safe state) If the state of an execu-
tion is not success but the state does not change, the
situation is specified as fail-safe. For example, the
robot fails in picking up an object but the state of the object
is not changed.

Definition 3 (fail-unsafe state) If the execution of an
action fails and there is any damage and/or dangerous
situation (e.g., an undesirable state is observed) or the robot
cannot judge whether there is any harmful situation, the
situation is specified as fail-unsafe. For example, the
robot fails in picking up an object and the state of the object
is changed. It may be broken into pieces.

If the state corresponds to a success, ∆ is not updated.
In a fail-safe state, the robot is allowed to select the
same action but with a price. In this case, the cost of the op-
erator is increased by a factor proportional to the weight of
the hypothesis. In a fail-unsafe state, the precondition
of the failed operator is updated. In both of these cases, the
antecedent part (context) of the hypothesis is used to either
encode new preconditions or update the cost function.

Experimental Results
We have implemented our service robot scenario in the sim-
ulation environment. The robot is tasked to move five dif-
ferent objects to its destination. These objects and their at-
tributes are: obj1 is a tall, plastic bottle, obj2 is a small, blue
box, obj3 is a small, green box, obj4 is a small, yellow ball
and obj5 is a tray. Before learning, the plan is constructed to
move all these objects on the tray. The constructed plan is
illustrated in Figure 1. During the execution of its plan, the
robot discovers that it cannot place the bottle on top of the
tray, and cannot pick up the ball. After observing these sit-
uations, it derives new hypotheses and use these hypotheses
to guide its future planning tasks. A new plan for the same
scenario is constructed based on the gained experience. The
new plan, illustrated on the right hand side of the figure, ex-
cludes all the failed operators. As expected, its plan duration
is longer than that of the initial case although the number of
operators is less. However, it is safer than the previous plan.

Robot Experiments
Our real-world experiments are set in our laboratory envi-
ronment with our Pioneer 3-DX robot equipped with a stan-
dard gripper in front of it, a sonar ring and an RGB-D sensor.

Before Learning

fail-unsafe cases:

category(bottle) ˄

 size(tall) -> putonFail

category(ball) ˄

 color(yellow) ˄

 size(small) -> pickFail

(pick robot1 obj1)

(puton robot1 obj1 obj5)

(pick robot1 obj2)

(puton robot1 obj2 obj5)

(pick robot1 obj3)

(puton robot1 obj3 obj5)

(pick robot1 obj4)

(puton robot1 obj4 obj5)

(pick robot1 obj5)

(move-to-loc robot1 dest)

(putdown robot1 obj5)

(pick robot1 obj1)

(putdown robot1 obj1)

(pick robot1 obj2)

(putdown robot1 obj2)

(pick robot1 obj3)

(putdown robot1 obj3)

(pick robot1 obj4)

(putdown robot1 obj4)

Plan duration: 22.48sec.

(pick robot1 obj1)

(move-to-loc robot1 dest)

(putdown robot1 obj1)

(move-to-obj robot1 obj2)

(pick robot1 obj2)

(puton robot1 obj2 obj5)

(pick robot1 obj3)

(puton robot1 obj3 obj5)

(pick robot1 obj5)

(move-to-loc robot1 dest)

(putdown robot1 obj5)

(pick robot1 obj2)

(putdown robot1 obj2)

(pick robot1 obj3)

(putdown robot1 obj3)

(move-to-obj robot1 obj4)

(push robot1 obj4 dest)

Plan duration: 43.39sec.

obj1:tall, plastic bottle

obj2:small, blue box

obj3:small, green box

obj4:small, yellow ball

obj5:tray

After Learning

Figure 1: In an initial plan to move the given objects to a
destination, all objects are moved together on top of the tray.
However, in the execution, the bottle cannot be placed on top
of the tray, and the ball cannot be picked up. After learning,
the plan is updated to select alternative actions for these two
objects. The changed plan steps are given in gray.

The objects used in the experiment are from four main cate-
gories, namely, rectangular prism box, cylindrical box, plas-
tic bowling pin and ball. Our robot grasping one of the ob-
jects used in the experiment is illustrated in Figure 2. We use
LINE-MOD (Hinterstoisser et al. 2012) to recognize these
objects in the scene for interpretation of the world state. This
method is originally proposed for textureless objects where
local invariant descriptors cannot be used for matching be-
tween the model and the scene. To handle this situation, a
multi-modal template matching approach is used in LINE-
MOD. For recognizing an object, LINE-MOD takes into ac-
count both surface normals to model the shape of the object
and color gradients to distinguish objects in different colors.
As well as different shaped objects from different categories,
we have used different colored objects of the same category
to see the effects of the vision algorithm.

Figure 2: Our Pioneer 3-DX robot grasping one of the ob-
jects used in the experiments.

In our first experiment, we measure the success of the ac-
tion pick up on all the objects five times for each. The dis-
tance of an object from the robot is computed by taking the
center of the recognized and aligned object template as a ref-

Table 1: Pick up success for the given objects
Category Shape Color Material Size Success

box prism green paper small true
box prism black paper large true
box cylinder green plastic large true
box cylinder red plastic large false
pin orange plastic small false
pin green plastic small true
ball sphere purple plastic small true
ball sphere white foam small true

erence. The robot can detect a failure by using its RGB-D
sensor when it is far from the object, the sonar sensor ring
when it gets closer, and the gripper position sensor during
grasping.

Table 1 shows the results of the first experiment. As these
results illustrate, the robot fails in executing action pick up
for one of the boxes and one of the bowling pins. The reason
behind the former failure is due to the physical deformation
of the object that causes the sonar sensors fail in determining
whether the object is in front. But this is not an observable
attribute by the robot. Instead, the observable physical at-
tributes of the given objects are considered for deriving hy-
potheses. In the latter case, the alignment of the registered
vision template is the main problem. The robot sometimes
confuses the orange pin’s template with that of the green one
(Figure 3), which causes a difference in the distance calcu-
lation, and results in a failure, most of the time, while ap-
proaching the object. The sonar sensor does not give accu-
rate values either since the top part of the plastic pin is nar-
row. All the observations taken by the robot are fed into the
ILP learner to frame hypotheses on failure cases for action
pick up on different objects. The hypothesis space generated
after the observations are given below.

color(green)⇒ pickupSuccess

category(ball) ∧ shape(sphere)⇒ pickupSuccess

category(box) ∧ shape(prism) ∧ color(black) ∧
material(paper)⇒ pickupSuccess

category(box) ∧ color(red)⇒ pickupFailSafe

category(pin) ∧ color(orange)
⇒ pickupFailUnsafe

Figure 3: In some cases, the robot confuses the orange plas-
tic bowling pin with the green one. (left) The mask of the
orange pin from which the template is extracted. (right) The
case where the object cannot be recognized well.

This hypothesis space suggests that operator pick up
should be penalized (i.e., its cost function and preconditions
are updated) when executing it in two different contexts: a
red colored box and an orange colored bowling pin. These

hypotheses provide a preference model for the robot. By ad-
justing the cost of action pick up based on these hypotheses,
the robot is guided to select another action (e.g., push) to
move these objects (if it does not fail either) or to pick up
alternative objects (for which pick up is known to succeed)
depending on the context of the task. Let’s assume, based
on a new observation, the following hypothesis is added into
the hypothesis space:

category(pin) ∧ color(orange)⇒ pushFailSafe

In this case, action push fails in a fail-safe mode but action
pick up should be avoided for the given context. When there
is no alternative to push, given a new task on an orange pin,
the planner is expected to come up with a plan that includes
operator push. As expected, our hybrid heuristic method can
guide the planner in this way. However, both precondition
update and control formula update methods fail in finding a
valid plan. When planning efficiency is analyzed, it has been
observed that as the number of objects that fit in the context
cases increase, the planning time decreases as the experience
is used to guide planning in the way encountered failures
are taken into account (Yildiz, Karapinar, and Sariel-Talay
2013).

Discussion
The main superiority of the ILP learner to conventional clas-
sifiers is its knowledge-based representation. It can repre-
sent hypotheses in first-order logic and incorporate back-
ground knowledge. To illustrate why it is better in our sys-
tem, let’s consider the Blocks World planning domain with
pick up and stack actions. We analyze the hypotheses de-
rived after the failure of action stack in different contexts.

After detecting the failure, all the relevant facts from the
world state is included in the observation. We use an intu-
itive approach for getting the relevant facts from the state:
using spatial locality of the objects. In the StackFailure
case, the facts related to the objects (the block in hand and
the one on the top of the stack to put on) involved in the
parameter list of the action and the objects that are in close
proximity to these objects (the stacked objects all the way to
the table) are considered.

Let’s assume that we want to stack three blocks on top
of each other. The first stack action (stack(b, c)) succeeds
but the second stack action (stack(a, b)) fails. Given the
observations, the following hypotheses are derived:

holding(b) ∧ clear(c) ∧ ontable(c)⇒ StackSuccess

holding(a) ∧ clear(b) ∧ ontable(c) ∧ on(b, c) ⇒
StackFailure

Since there is only a single observation of a failed stack,
the derived hypothesis includes all the observed state infor-
mation in its antecedent part. As one of the strengths of ILP,
this hypothesis can be generalized to abstractions if the ca-
sual model of the world exists. For example, if the following
rules exist in KB:

∀x ontable(x) ∧ clear(x)⇒ Tower(1)

∀x, n (n > 1) ∧ Tower(n− 1) ∧ on(x, Tower(n− 1)) ∧
clear(x)⇒ Tower(n)

By using this background knowledge, the hypotheses are
generalized as follows:

Tower(1)⇒ StackSuccess

Tower(2)⇒ StackFailure

If the robot detects a failure after the execution of the third
stack in a four-block scenario, the derived hypothesis space
is given below:

Tower(n) ∧ (1 ≤ n ≤ 2)⇒ StackSuccess

Tower(3)⇒ StackFailure

Obviously, an attribute-based learner cannot determine such
relations easily. It needs to encode all pairwise relations in-
stead. For this specific example, the real cause of the fail-
ure may be related to a vision problem, the instability of
the robot’s arm after a certain height or displacement of the
blocks in the horizontal line leading to imbalance. If there is
no quantitative or qualitative measurement way for these is-
sues, it is difficult to isolate the failure. However, even when
the actual underlying reason cannot be identified, the robot
believes that it will fail in executing action stack to put on a
block on top of a tower with three or more blocks, and then
plans accordingly in its future tasks.

Conclusions
Our approach for robust task execution includes an
experience-based learning method, ILP, to learn from ac-
tion execution failures. The incremental learning process
is used to frame hypotheses for relating different contexts
to failure situations. In the derived hypotheses, the observ-
able attributes of and the relations among the objects and the
relevant facts of the world are specified. The results of the
learning process are then used to guide the future decisions
on planning for robust execution. ILP also enables using
background knowledge to interpret the observations. Back-
ground knowledge can be used to generalize hypotheses. On
the other hand, attribute-based learners do not incorporate
background knowledge. Since ILP can use partial specifica-
tions of the world states, it can deal with the missing data
problem. All these advantages of ILP make it more efficient
for the experimental learning process.

Acknowledgements
This research is funded by a grant from the Scientific and
Technological Research Council of Turkey (TUBITAK),
Grant No. 111E-286. TUBITAK’s support is gratefully ac-
knowledged.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic program-
ming to learn and improve control knowledge. Artificial Intelli-
gence 141:141–1.
Bacchus, F., and Ady, M. 2001. Planning with resources and con-
currency a forward chaining approach. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence - Vol. 1,
417–424.
Borrajo, D., and Veloso, M. 1994. Incremental learning of control
knowledge for improvement of planning efficiency. In In AAAI-94
Fall Symposium on Planning and Learning, 5–9.

Borrajo, D., and Veloso, M. 1996. Lazy incremental learning of
control knowledge for efficiently obtaining quality plans. AI Re-
view Journal. Special Issue on Lazy Learning 11:371–405.
Cohen, W. W. 1990. Learning approximate control rules of high
utility. In In Proceedings of the Seventh International Conference
on Machine Learning, 268–276. Morgan Kaufmann.
Duran, G. 2006. Integrating macro-operators and control-rules
learning. In The International Conference on Automated Planning
and Scheduling.
Estlin, T. A., and Mooney, R. J. 1997. Learning to improve
both efficiency and quality of planning. In In Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence,
1227–1232. Morgan Kaufmann.
Fernandez, S.; Aler, R.; and Borrajo, D. 2004. Using previous
experience for learning planning control knowledge. In Proceed-
ings of the Seventeen International Florida Artificial Intelligence
Symposium (FLAIRS04). AAAI Press.
Haigh, K. Z., and Veloso, M. M. 1999. Learning situation-
dependent costs: Improving planning from probabilistic robot exe-
cution. Robotics and Autonomous Systems 29:145–174.
Hermans, T.; Rehg, J. M.; and Bobick, A. 2011. Affordance predic-
tion via learned object attributes. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA): Work-
shop on Semantic Perception, Mapping, and Exploration.
Hinterstoisser, S.; Cagniart, C.; Ilic, S.; Sturm, P.; Navab, N.; Fua,
P.; and Lepetit, V. 2012. Gradient response maps for real-time de-
tection of textureless objects. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 34(5):876–888.
Karapinar, S.; Altan, D.; and Sariel-Talay, S. 2012. A robust plan-
ning framework for cognitive robots. In Proceedings of the AAAI-
12 Workshop on Cognitive Robotics (CogRob).
Katukam, S., and Kambhampati, S. 1994. Learning explanation-
based search control rules for partial order planning. In AAAI, 582–
587.
Leckie, C., and Zukerman, I. 1998. Inductive learning of search
control rules for planning. Artificial Intelligence 101(1-2):63–98.
Morisset, B., and Ghallab, M. 2008. Learning how to combine
sensory-motor functions into a robust behavior. Artificial Intelli-
gence 172(4-5):392 – 412.
Pasula, H.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007. Learn-
ing symbolic models of stochastic domains. Journal of Artificial
Intelligence Research (JAIR) 29.
Pettersson, O. 2005. Execution monitoring in robotics: A survey.
Robotics and Autonomous Systems 53:73–88.
Quinlan, J. R. 1990. Learning logical definitions from relations.
Machine Learning 5:239–266.
Rintanen, J. 2000. Incorporation of temporal logic control into
plan operators. In In ECAI, 526–530. IOS Press.
Usug, U. C.; Altan, D.; and Sariel-Talay, S. 2012. Robots that
create alternative plans against failures. In 10th IFAC Symposium
on Robot Control.
Usug, U. C., and Sariel-Talay, S. 2011. Dynamic temporal planning
for multirobot systems. In Proceedings of the AAAI-11 Workshop
on Automated Action Planning for Autonomous Mobile Robots
(PAMR).
Yildiz, P.; Karapinar, S.; and Sariel-Talay, S. 2013. Learning
guided symbolic planning for cognitive robots. In The IEEE In-
ternational Conference on Robotics and Automation (ICRA), Au-
tonomous Learning Workshop.

