
K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 271–281, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Gene Based Adaptive Mutation Strategy for Genetic
Algorithms

Sima Uyar, Sanem Sariel, and Gulsen Eryigit

Istanbul Technical University, Electrical and Electronics Faculty
Department of Computer Engineering, Maslak TR-34469 Istanbul, Turkey

{uyar, sariel, gulsen}@cs.itu.edu.tr

Abstract. In this study, a new mechanism that adapts the mutation rate for each
locus on the chromosomes, based on feedback obtained from the current
population is proposed. Through tests using the one-max problem, it is shown
that the proposed scheme improves convergence rate. Further tests are
performed using the 4-Peaks and multiple knapsack test problems to compare
the performance of the proposed approach with other similar parameter control
approaches. A convergence control scheme that provides acceptable perform-
ance is chosen to maintain sufficient diversity in the population and
implemented for all tested methods to provide fair comparisons. The effects of
using a convergence control mechanism are not within the scope of this paper
and will be explored in a future study. As a result of the tests, promising results
which promote further experimentation are obtained.

1 Introduction

Genetic algorithms belong to a class of biologically inspired optimization approaches
that model the basic principles of classical Mendelian genetics and Darwinian theory
of evolution. Due to their robust nature, genetic algorithms are used in a wide variety
of applications. However one of the major drawbacks is that performance largely
depends on the appropriate setting of some parameters: population size, crossover and
mutation rates. These parameters interact with each other, making it even harder to
find optimal settings. However mutation rate is considered to be the most sensitive of
these parameters. Mutation has been traditionally regarded as a background operator
that mainly works as an insurance policy protecting alleles from being lost from the
population. There has been extensive work to investigate the exact nature of mutation
and to find optimal settings for different classes of problems [2], [7], [8]. It has also
been shown in further studies [2], [3], [12] that using a varying mutation rate strategy
overcomes the difficulties of finding optimal mutation rate settings. The techniques
developed to set the parameters are classified separately by Eiben et al. [5] Angeline
[1] and Smith et al. [10] but the main underlying principles of the different
classifications are similar. Parameter setting methods can be classified into two major
categories: parameter tuning and parameter control. In parameter tuning, the
parameter values are set in advance, before the run and are kept constant during the
whole execution of the algorithm. In parameter control, parameters are initialized at
the start of execution and their values are allowed to change during the run. The type

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Durchschnittliche Neuberechnung
 Downsample-Auflösung: 1800 dpi
 Downsampling für Bilder über: 2700 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Nein

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages false
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Average
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Average
 /DetectBlends true
 /GrayImageDownsampleType /Average
 /PreserveEPSInfo true
 /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 1800
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

272 S. Uyar, S. Sariel, and G. Eryigit

of the change is defined in [5] to be one of the following: deterministic (the parameter
value is updated according to some deterministic rule), adaptive (the parameter value
is updated based on some feedback taken from the population) or self-adaptive (the
parameter is evaluated and updated by the evolutionary algorithm itself).

In this study, an adaptive mutation rate strategy that increases or decreases the
mutation rate for each locus on the chromosome, based on feedback obtained from the
current population is introduced. Even though using feedback from the current state of
the search seems to be a useful approach, it has not been studied much within the
scope of canonical genetic algorithms [12]. This approach is tested against previously
published methods for mutation rate control on a chosen set of test problems. The
results are seen to be promising and promote further study. The rest of this paper is
organized as follows: Section 2 introduces the proposed mutation rate adaptation
approach section 3 presents the experimental setup, section 4 discusses the results of
the experiments, and section 5 provides a conclusion and possible directions for future
work.

2 A Genetic Algorithm with Gene Based Adaptive Mutation

Mutation as an insurance policy against permanent loss of genes is considered to be
the most sensitive of the required GA parameters. Determining the optimum fixed
mutation rate for different types of problems requires an empirical analysis. In this
paper, a Gene Based Adaptive Mutation (GBAM) method is proposed. This approach
experiments with adaptive mutation rate values during the run using feedback from
the population. Therefore, instead of using a fixed optimum value for a mutation rate,
a range can be specified which provides more flexibility. Different from other known
mutation adaptation strategies, GBAM has its own mutation rate value for each locus.
An adaptive approach for adjusting mutation rates for the gene locations based on the
feedback obtained by observing the relative success or failure of the individuals in the
population is used. Since the mutation rates at each locus depend mainly on whether
the individuals with a specific allele value for that locus is successful or not, GBAM
is more suited to problems in which the representation is binary.

In GBAM, there are two different mutation rates defined for each locus: pm1 for
those genes that are "1" and pm0 for those that are "0". In the reproduction phase, the
appropriate mutation rate is applied based on the gene allele value. Initially all of the
mutation rates are set to an initial value in the specified boundaries. Then for each
generation, the mutation probabilities pm1 and pm0 for each locus are updated based on
feedback taken from the relative success or failures of those individuals having a "1"
or "0" at that locus. The update rule for the two mutation rate values for one gene
location can be seen in Eq.1. This update rule is applied separately for each locus. The
pmi value for a locus corresponds to the rate of mutation, which will be applied when
the gene value is i in the corresponding gene location. Savg is the average fitness of the
individuals with an allele “1” for the corresponding gene location. Pavg is the average
fitness of the population, γ is the update value for the mutation rates. For a
maximization problem, if the ratio of Savg to Pavg is greater than 1 or all the genes at that
locus are 1, i.e. the average fitness value of the individuals having the allele "1" for
that locus is higher than those having "0", the allele value “1” for the corresponding
locus is assumed to generate more successful results. Therefore, a decrease in pm1, and

A Gene Based Adaptive Mutation Strategy for Genetic Algorithms 273

an increase in pm0 for the corresponding locus are implemented. Similarly, if the Savg to
Pavg ratio is less than 1 or all the genes at that locus are 0, then the opposite operations
are implemented on the mutation rate values. In the case of a minimization problem,
the operations in Eq. 1 should be exchanged. As a result of the updates at each
generation, pmi values are allowed to oscillate within the limits defined by lower and
upper bounds. If an update causes a mutation rate to exceed the limits, it is set to the
corresponding boundary value. All GBAM parameters are determined empirically.

()
() 











=∀∨<−=∧+=

=∀∨≥+=∧−=
=

++

++
+

0 1/,

1 1/,

0011

0011

 genePSpppp

 genePSpppp
p

avgavgmmmm

avgavgmmmm

m γγ

γγ
(1)

As will be shown in the analysis of the experiments, GBAM allows rapid
convergence. For unimodal objective functions, this rapid convergence provides a
valuable refinement. However, the premature convergence problem, which may cause
the program to get stuck at local optima, arises especially for the multimodal
objective functions. This problem is explored in detail in [9] for self-adaptive
mutations, however the results can easily be extended to adaptive mutation schemes
too. One way to remedy this is to implement a mechanism to maintain sufficient
diversity in the population for escaping local optima. As a result of preliminary
experimentation, a method that complements (pmi=1.0) the genotype of a predefined
percentage of the population during the reproduction phase when the population
converges, and then resets the mutation rates to their initial values is observed to
generate acceptable results. This convergence control method is used in GBAM to
enable the program to escape from possible local optima.

3 Experimental Design

The aim of the experiments is to show that GBAM requires fewer generations to
reach the optimum as well as exploring its performance compared to other parameter
control approaches found in literature, based on two different types of problems. The
testing phase consists of two stages. In the first stage, GBAM is compared with a
simple canonical genetic algorithm using a fixed mutation rate to determine whether
the addition of the proposed adaptive mutation rate strategy causes a performance
improvement by reducing the amount of fitness evaluations to reach the optimum.
There is no convergence control used at this stage. The one-max problem, which is
unimodal and easy for the simple genetic algorithm, is used for this stage of the tests.
In the second stage of the testing phase, representative parameter control approaches
for each type of change scheme (deterministic, adaptive and self-adaptive) developed
for canonical genetic algorithms are chosen from literature and are compared with
GBAM. Two test problems are used during this stage: 4-Peaks and the multiple
knapsack problems. For both of these problems, all tested approaches are equipped
with the convergence control mechanism explained in Section 2 to provide fair
comparisons. The results are evaluated based on their solution quality and the number
of fitness evaluations it takes each approach to find those results.

274 S. Uyar, S. Sariel, and G. Eryigit

3.1 Test Problems

One-Max: The main aim of this problem is to maximize the number of 1s in a binary
represented string of length L. The optimum for this function is L.

4-Peaks: The fitness function for the 4-Peaks problem where each individual consists
of 100 bits is given in Eq.2 where z(x) is the number of contiguous 0s ending in
Position 100, o(x) is the number of contiguous 1s starting in Position 1, and T is a
threshold. The problem has two global and two local optima. As explained in [4], by
increasing T, the basins of attraction surrounding the inferior local optima increase in
size exponentially while the basins around the global optima decrease at the same
rate. Therefore, increasing T makes it harder for a GA to escape the local optima.

TxzTxo

otherwise

ifT
REWARD

>∧>



 +

=
)()(

0

100

() ()() REWARDxzxoMAXxf += ,)(
(2)

Multiple Knapsack Problem: In the 0/1 Multiple Knapsack Problem (Mkp), there
are m knapsacks of capacity cj, n objects of profit pi. The weights for the objects are
different for each knapsack. wij represents the ith object’s weight for the jth knapsack.
A feasible vector solution for this problem can be defined as a vector

),...,,(21 nxxxx = where }1,0{∈ix , such that j

n

i iij cxw ≤∑ =1
* for mj ,..2,1= . The

value “0” for an object in the vector representation means that the object is not placed
in any of the knapsacks. Otherwise, the object is placed in all of the knapsacks. The
main objective is to find a feasible vector with maximum profit

∑ == n
i ii pxxP 1 *)(. The feasible vector solution should satisfy the constraint that

no knapsack is overfilled. A penalty value is added to the objective function to enable
the feasible individuals to have more survivability. The penalized objective function
of [6] defined in Eq. 3 is used in this study.

∑ ∑= ==
−

+
−= n

i j

n

i iij
mj

ij

i
ii cxw

w

p
xpxf

1 1..2,1
))*,0(max(max*

}min{

)1}(max{
*)((3)

3.2 Parameter Control Approaches Chosen for Comparisons

There are different formulations and implementations of various parameter control
techniques in literature. A representative scheme that is shown to give good
performance is chosen from each category and used for the comparisons.
Deterministic Approach: Deterministic mutation rate schedule provides the
mutation rate to be deterministically altered at each generation. The mutation rate
decreases from a value (generally 0.5) to the optimum mutation rate (generally 1/L)
without using any feedback from the population. The deterministic mutation rate
schedule suggested in [10] was reported in [12] as being successful for hard
combinatorial problems. Time-varying mutation rate pt is calculated based on the

A Gene Based Adaptive Mutation Strategy for Genetic Algorithms 275

formula given in Eq. 4. In this formula, }1,...,1,0{ −∈ Tt denotes the generation number,
and T is the maximum number of generations.

1

*
1

2
2

−









−
−+= t

T

L
pt (4)

Self-Adaptive Approach: In the self-adaptive approach, the parameters are encoded
into the chromosomes and undergo mutation and recombination. The idea is that
better parameter values lead to better individuals and these parameter values will
survive in the population since they are brought together with the surviving
individuals. In [3] a self-adaptation mechanism of a single mutation rate per
individual is proposed. The mutation of this mutation rate p ∈]0,1[gives the new
mutation rate p’ ∈]0,1[according to Eq. 5. In this equation γ is the learning rate
which controls the adaptation speed and it is taken as 0.22 in [3]. An individual
consists of a bit string and an individual mutation rate p. The new individual is
determined through bit wise mutation of n bits using the mutated mutation rate value
p’. The mutation rate is not allowed to go below 1/L. In this approach the crossover is
applied only to the binary vector and has no effect on p.

1)))1,0(.exp(.
1

1(' −−
−

+= N
p

p
p γ (5)

Adaptive Approach: Adaptive GA proposed in [11] is a kind of individually
adaptive mutation rate strategy. The probabilities of crossover and mutation are
adapted depending on the fitness values of the individuals. The adaptation of the pc

and pm allows the individuals having fitness values of over-average to maintain their
genetic material, while forcing the individuals with sub-average fitness values to
disrupt. Therefore, the method auto-controls the convergence situation. The method is
tested with only SGA in [11]. In Adaptive GA both the mutation and the crossover
rates are adapted. However, since the effects of the crossover rate adaptation are not
addressed in this study, only the mutation rate adaptation strategy of the Adaptive GA
is used as a comparison method. The mutation rate adaptation rule is given in Eq. 6.
In this equation, ƒ denotes the fitness value of the individual, ƒmax denotes the best
fitness value of the current generation, and ƒavg denotes the average fitness value of the
current generation. In [11], the constants k2 and the k4 are chosen as 0.5.

avgm

avgm

ffkp

ffffffkp

<=

≥−−=

),/()(

4

maxmax2
(6)

4 Experimental Results

As explained in the previous section, the experiments consist of two stages. For all the
tests in each stage, the program implementation for each chosen approach on each test
problem is run 100 times. In this section the results of each stage will be given
separately. In tables, µ denotes mean values, σ standard deviations and the 99% CI

276 S. Uyar, S. Sariel, and G. Eryigit

confidence intervals. Some parameter settings are kept constant through all tests. A
population consists of 250 individuals. Parent selection is done through tournament
selection with tournament sizes of two. Recombination is done through two-point
cross over at a fixed rate of 1.0. The new population is determined using elitism
where the best individual replaces the worst individual in the next generation.

4.1 Exploring the Effects of GBAM on Number of Generations to Find
Optimum

The GBAM approach is expected to reduce the number of generations to locate an
optimal individual. To investigate just the effect of the proposed mutation rate
adaptation approach, GBAM and a simple canonical genetic algorithm (SGA) is
applied to the One-Max problem. Since the problem space is unimodal, no
convergence control is implemented. Maximum number of generations for both
GBAM and SGA are 500. The mutation rate for SGA is 1/L, where L is the string
length. For GBAM, the initial mutation rate is 0.02 and this mutation rate value is
allowed to change between a lower bound of 0.0001 and an upper bound of 0.2 with
update value γ=0.001 in Eq.1. These settings are determined empirically to provide
the best performance for each approach. Tests are performed for three different string
lengths: L=200, L=400, L=800. Both GBAM and SGA are able to locate the optimum
individuals for all tested string lengths. The statistical calculations are given in
Table1. Here 99%CI shows the 99% confidence interval of the difference between the
means of GBAM and SGA. Based on the results in Table-1, it can be said with 99%
certainty that the true mean value for the reduction in number of generations to reach
the optimum when using GBAM for the one-max problem with the chosen parameter
settings lies within the given CI ranges. This result confirms the expectation that
GBAM locates the optimal individual much quicker than a SGA under similar
circumstances.

Table 1. Statistical calculations for number of generations to reach the optimum

L=200 L=400 L=800

µ σ µ σ µ σ
GBAM 48.09 2.56 99.28 34.27 217.33 39.23
SGA 91.08 7.33 169.65 14.04 332.19 23.18
99%CI 41.45 to 44.53 62.97 to 79.97 103.1 to 126.64

4.2 Comparison of GBAM with Other Parameter Control Methods

The aim of this second testing stage is to compare the performance of GBAM with the
different parameter control approaches explained in section 3.2. Two kinds of test
problems are used during these tests: 4-Peaks (section 3.1.2) and Mkp (section 3.1.3).
For 4-Peaks problem, the methods given in [4] are tested for different T values
between 11 and 25 and it is seen that after the value of 19 it becomes hard for simple
GAs to find the optimum. Therefore in this study T=11 is chosen to test an easy 4-

A Gene Based Adaptive Mutation Strategy for Genetic Algorithms 277

Peaks problem and T=27 a difficult one. These values are chosen to compare the
effectiveness of the algorithms for different levels of difficulty. The global best fitness
value is 199, while local best fitness value is 100. The number of maximum
generations is selected as 3500 for this problem. As a testbed for the Mkp Weing-7
and Weish-30 datasets [13] are selected. In Weing-7, there are 2 knapsacks and 105
objects. In Weish-30, there are 5 knapsacks and 90 objects. The known optima are
reported as 1095445 for Weing-7 and as 11191 for Weish-30 in [13]. The number of
maximum generations is selected as 6000. Because the chosen penalty approach
assigns high negative fitness values to infeasible individuals, for the Mkp instances,
the mutation rate adaptation is done based on only the feasible individuals.

A convergence control mechanism is implemented for each of the algorithms
except the Adaptive GA which has its own convergence control. The implemented
mechanism takes the complement of the 25% of the population when 90% of all the
genes are converged for all gene locations. Chromosome length (L) is equal to 100 for
4-Peaks, and to the number of objects for the Mkp instances. The initial mutation rate
for SA is 2/L. In GBAM, the initial mutation rate is 1/L for all problem instances. The
upper and lower bounds for the mutation rate in GBAM are 0.2 and 0.0001
respectively, with an update amount of γ=0.001. The comparison criteria for the tests
are chosen as the best fitness values and the number of generations to reach the best
fitness both averaged over 100 runs. The following abbreviations are used in Table-2
and Table-3: SA (Self Adaptive), Adap (Adaptive), Det (Deterministic) and GBAM.

Table 2. Statistical results of 4-Peak Problem Instances

Table-2 and Table-3 are given in two parts: one is for the best fitness values and
the other is for the number of generations to locate the individual with the best fitness.
To assess the success of an approach, both parts should be considered together. Based
on the results in these tables, GBAM seems to be promising for all of the tested
problems. For the 4-Peaks problem, GBAM finds the global optimum for all of the T
values, while none of the other methods can. The confidence intervals also do not

278 S. Uyar, S. Sariel, and G. Eryigit

Table 3. Statistical results of MKP Problem Instances

intersect, showing that in 99% of all trials, the mean values for all approaches will fall
within these intervals, confirming that GBAM performs better in these cases. For
Mkp, GBAM generates most successful results of all, both in the average fitness value
and the number of generations needed to find the best fitness. The 99% confidence
intervals for the average fitness values for the Weing-7 instance intersect for Det and
GBAM, however it should be noted that the number of generations for GBAM to
reach its best fitness value is much less than that for Det.

The best fitness values averaged over 100 runs for all generations can be seen in
Fig 1 for the tested problems. The deterministic approach behaves as expected with
increasing best fitness values for each generation. The convergence intervention
applied to this algorithm is not effective due to the nature of the approach since
convergence occurs towards the end of the run. However in GBAM convergence can
occur in earlier steps, because this method forces the population to converge fast. In
GBAM after the population converges and 25% of the population is complemented,
the mutation rate values for the genes are again reset to the initial values. However,
due to elitism, previously found good individuals are not lost. In GBAM the overall
best individual fitness values are highest of all approaches, and they are found in
earlier generations as mentioned before. The best fitness values found for the Mkp
which are higher than 1095000 for Weing-7 (listed as succesful in [12]) and 11150 for
Weish-30 can be seen in Table-4. Based on the graphical results in Fig. 1, the rise of
the plot for GBAM is fastest of all the tested methods.

A Gene Based Adaptive Mutation Strategy for Genetic Algorithms 279

 0

 25

 50

 75

 100

 125

 150

 175

 200

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

F
itn

es
s

Generations

GBAM

Adap

Det

SA

4-Peaks T=11

 800000

 825000

 850000

 875000

 900000

 925000

 950000

 975000

 1e+06

 1.025e+06

 1.05e+06

 1.075e+06

 1.1e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

F
itn

es
s

Generations

GBAM
Det

Adap

SA

MKP Weing-7

 0

 25

 50

 75

 100

 125

 150

 175

 200

 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

F
itn

es
s

Generations

GBAM

Det

Adap

SA

4-Peaks T=27

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

F
itn

es
s

Generations

GBAM
Det

Adap

SA

MKP Weish-30

Fig. 1. Avg. best fitnesses over 100 runs

5 Conclusion and Future Work

In this study, a mutation rate adaptation approach (GBAM) for each gene location in a
binary representation, based on the relative performance of individuals is proposed.
GBAM is expected to increase the convergence rate. This has been confirmed through
tests performed on a simple one-max problem. However, especially in multimodal
problems, fast convergence may cause the population to get stuck on local optima. To
overcome this problem, a convergence control mechanism that introduces diversity
when the population converges, is added. This convergence control is applied to all
tested algorithms but since GBAM again adapts the mutation rate parameter, it
quickly converges after the introduction of diversity and thus is able to locate good
solutions in fewer generations even for multimodal problems. This fact has been
shown through tests using two instances of both the multiple knapsack problem and a
problem with a fitness landscape that has local optima with large basins of attraction.
In both cases GBAM is shown statistically to perform better than the other tested
methods both in locating the optima and also in reaching the optima in fewer
generations. One major drawback is that GBAM increases the computational costs
since at every generation new mutation rate values for all gene locations (as many as
the length of a chromosome) are recalculated. On the other hand, among the other
tested methods, the deterministic approach seems to be able to reach acceptable
fitness values with almost no additional computational costs, however it takes much

280 S. Uyar, S. Sariel, and G. Eryigit

Table 4. Best fitness values higher than selected thresholds observed in 100 runs for MKP
(1095000 for Weish-30 and 11150 for Weing-7)

longer. So for problems similar to the ones used in this study, in the cases where it is
more important to find good results in fewer generations, GBAM seems to be the
better choice among the tested methods.

Even though as a result of these preliminary tests, the overall performance of
GBAM seems to be very promising for the chosen type of problems, there is still
more work to be done to be able to make healthy generalizations. First of all, the
parameter settings for GBAM, such as the lower and upper bound values, initial
mutation rate and the mutation update value have been determined experimentally.
More experiments need to be performed to see the effects of these parameters on
performance more thoroughly. Secondly, the test problem set can be extended to
include different types of problem domains. Thirdly, a convergence control

A Gene Based Adaptive Mutation Strategy for Genetic Algorithms 281

mechanism has been implemented for this study, however its effects have not been
thoroughly examined. More rigorous experimentation needs to be performed to be
able to fully understand the exact nature of the convergence control method. Finally,
it is observed that the adaptive nature of the proposed mutation mechanism might be
suitable to be used in dynamic environments. Since the mutation rate adapts itself
based on the relative fitness of individuals, it would also be able to adapt to a change
in the environment causing a change in the fitness values of the individuals and it
would not need to explicitly detect the change in the environment. Based on these
observations, it seems to be a promising line of further study to use GBAM in
dynamic environments in its pure form or even in combination with other approaches
developed previously to cope with changing environments.

Acknowledgement. The authors would like to thank Jens Gottlieb for his helpful
suggestions regarding the penalty function for MKP.

References

1. Angeline P. J.: Adaptive and Self-adaptive Evolutionary Computation. Computational
Intelligence, A Dynamic System Perspective, IEEE (1995) 152-161

2. Bäck T.: Optimal Mutation Rates in Genetic Search. Proc. of 5th International Conference
on Genetic Algorithms, Morgan Kaufmann (1993)

3. Bäck T., Schlütz M.: Intelligent Mutation Rate Control in Canonical Genetic Algorithms.
Proc. Int. Symp. on Methodologies for Intelligent Syst. (1996) 158-167

4. Baluja S., Caruana. R.: Removing the Genetics from the Standard Genetic Algorithm.
Proc. 12. Int. Conf. on Machine Learning, Morgan Kaufmann, (1995) 38-46

5. Eiben A. E., Hinterding R., Michalewicz Z.: Parameter Control in Evolutionary
Algorithms. IEEE Trans. on Evolutionary Computation, Vol. 3, No.2. (1999) 124-141

6. Gottlieb J.: On the Feasibility Problem of Penalty-Based Evolutionary Algorithms for
Knapsack Problems. Proc. of EvoWorkshops, Lecture Notes in Computer Science Vol.
2037, Springer (2001) 50-59

7. Hinterding R., Gielewski H., Peachey T. C.: The Nature of Mutation in Genetic
Algorithms. Proc. 6. Int. Conf. on GAs, Morgan Kaufmann (1995) 65-72

8. Ochoa G.: Setting the Mutation Rate: Scope and Limitations of the 1/L Heuristic. Proc.
Genetic and Evolutionary Comp. Conf., Morgan Kaufmann (2002)

9. Rudolph G.: Self-Adaptive Mutations May Lead to Premature Convergence. IEEE Trans.
on Evolutionary Computation, Vol. 5., No. 4. (2001) 410-414

10. Smith J. E., Fogarty T. C.: Operator and Parameter Adaptation in Genetic Algorithms. Soft
Computing 1, Springer-Verlag (1997) 81-87

11. Srinivas, M., Patnaik, L. M.: Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms. IEEE Trans. on Systems, Man and Cybernetics, Vol. 24. No. 4. (1994) 656-
667

12. Thierens D.: Adaptive Mutation Control Schemes in Genetic Algorithms. Proc. of
Congress on Evolutionary Computing, IEEE (2002)

13. weing7.dat, weish30.dat: http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/

	Introduction
	A Genetic Algorithm with Gene Based Adaptive Mutation
	Experimental Design
	Test Problems
	Parameter Control Approaches Chosen for Comparisons

	Experimental Results
	Exploring the Effects of GBAM on Number of Generations to Find Optimum
	Comparison of GBAM with Other Parameter Control Methods

	Conclusion and Future Work
	References

