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Abstract
Robots may encounter undesirable outcomes due to fail-
ures during the execution of their plans in the physi-
cal world. Failures should be detected, and the underly-
ing reasons should be found by the robot in order to
handle these failure situations efficiently. Sometimes,
there may be more than one cause of a failure, and they
are not necessarily related to the action in execution.
In this paper, we propose a temporal and Hierarchical
Hidden Markov Model (HHMM) based failure isola-
tion method. These HHMMs run in parallel to deter-
mine causes of unexpected deviations. Experiments on
our Pioneer 3-AT robot show that our method success-
fully isolates failures suggesting possible causes.

Introduction
An autonomous robot may face several failure situations
during the execution of its actions to achieve a goal (Karap-
inar, Altan, and Sariel-Talay 2012) due to non-deterministic
actions or different sources of uncertainty in physical dy-
namic environments. A monitoring system is pivotal in order
to achieve goals robustly in the face of uncertainties. While
detecting failures is one of the central problems for robust
execution (Pettersson 2005; Usug, Altan, and Sariel-Talay
2012; Karapinar et al. 2013), the robot should also identify
the reasons of the failure for efficient recovery. Isolation of
a failure requires an inference process to find the underlying
reason behind the failure. In this research, our focus is on a
probabilistic failure isolation method. We address action ex-
ecution failures that may arise due to hardware/sensor limi-
tations, limited knowledge on some environmental features
(Bouguerra, Karlsson, and Saffiotti 2008) or external events.

Monitoring and reasoning about failures requires inter-
preting data from one or more sensors (e.g., vision, force,
touch, pressure). Therefore, in order to detect a failure, the
robot needs to interpret the scene and apply certain reason-
ing tools to come up with correct conclusions. To achieve
complete isolation of the failure, the robot needs to maintain
a priori information on the models of failures that are likely
to occur in the environment. In some cases, the reason of a
failure may not be directly related to the action that is be-
ing executed. The reason of the failure may be depending on
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a previous action that is executed by the robot or an exter-
nal event. For example, in the blocks world domain, when
the base block structure is not properly formed, the execu-
tion of a stack action on the existing tower may fail, and the
whole structure may be completely destroyed. In order to
isolate these types of failures, a temporal reasoning model is
needed. Furthermore, there may be more than one cause of
a failure. To deal with such cases, a probabilistic temporal
model is useful to identify the possible failure cases.

We propose a Hidden Markov Model (HMM) based isola-
tion method to determine causes of the failures. Our method
includes parallel Hierarchical HMMs (HHMMs) running for
tracking modelled failure types. The HMM model provides
temporal analysis of states and propagates temporal failure
information over time after a deviation occurs. Multiple hy-
potheses are tracked at the same time to identify underlying
causes in a probabilistic manner. Our main contribution lies
in modelling each failure type as a distinct HHMM running
in parallel considering action-failure type relations.

The rest of the paper is organized as follows. First, model-
based fault isolation methods are reviewed. Then, our pro-
posed method is explained in detail. Afterwards, experimen-
tal results on a number of case scenarios are presented. Then,
the paper is ended with concluding remarks.

Related Work
Failure detection and isolation (diagnosis) is an intensively
investigated issue for robot systems (Pettersson 2005; Fritz
2005) due to the need for safe plan execution. Monitoring
can take place both in plan level and action level. A com-
mon approach to detect failures is using an observer-based
approach (Pettersson 2005). In this approach, predefined
models and inconsistencies between the expected and ob-
served outcomes are used to detect failures (Nan, Khan, and
Iqbal 2008; Steinbauer and Wotawa 2009). Uncertainties
may arise over the reasons of failures. This is handled with
semantic-knowledge based execution monitoring where the
robot estimates a probability distribution according to its ex-
pectations (Bouguerra, Karlsson, and Saffiotti 2007).

Model-based failure diagnosis has been investigated by
many researchers previously (Frank, Ding, and Marcu
2000). Structural abstraction is used for model-based diag-
nosis in earlier works (Friedrich, Stumptner, and Wotawa
1999; Chittaro and Ranon 2004). In some model-based fault



detection and isolation systems, HMMs are used to mon-
itor processes (Hovland and McCarragher 1996) or to di-
agnose failures in different domains (Kwon and Kim 1999;
Ying et al. 2000; Ocak and Loparo 2001; Ge, Du, and Xu
2004; Lee et al. 2004; Li et al. 2005). Dynamic Bayesian
Networks and Particle Filters are also used for failure diag-
nosis (Flores-Quintanilla et al. 2005; Verma et al. 2004). In
another work, a hierarchical representation is used for failure
diagnosis (Verma, Simmons, and Fernandez 2002) to handle
a single fault. HMMs are also used in a mobile robot sys-
tem to estimate the most appropriate mode for the robot in
execution (Peynot et al. 2011). Logic programming with sit-
uation calculus is studied in order to explain the unexpected
deviations in task execution using hypotheses and their costs
(Gspandl et al. 2012). Extended action models are also pro-
posed in a control loop that integrates monitoring, diagnosis
and recovery (Micalizio 2013).

Our HMM-based failure isolation method differs from
earlier work because of its ability in recognizing failures hi-
erarchically in parallel and its usage of relations between
actions and failure types. Our system can determine that a
failure, which can not be observed directly from sensory in-
formation, may be caused by multiple fault sources, and it
may provide explanations for the causes of a failure if there
is no clear indication.

Probabilistic Failure Isolation
Given an initial and goal state, the robot takes consecutive
actions in order to reach the goal. In the symbolic level, the
robot maintains the models of its operators corresponding
to the actions that it can execute in the real world. Each
action is represented by a set of facts to be satisfied before
executing it, namely, preconditions, and effects that occur
in the world after the action is executed by the robot. In an
object manipulation scenario, the robot’s goal is to trans-
port objects to a destination. Initially, all objects are in their
initial positions. The robot is capable of executing some ac-
tions namely move-to-loc, pick-up, put-down and move-to-
obj. Action move-to-loc is executed in order to move the
robot to a location, whereas action move-to-obj moves the
robot to a desired object location. Action pick-up is to pick
up an object by the robot’s gripper. Similarly, action put-
down is executed for releasing an object from its gripper on
the ground. Several types of failures may be faced during
the execution of the actions. For example, the robot may fail
in executing action pick-up on an object because of a wrong
grasp position. Another failure may occur if the robot’s vi-
sion system fails. Yet in another scenario, the object may
be manipulated by another agent instantly. In such cases,
the isolation model should give relevant explanations for the
causes of these situations that may lead to failures.

HHMM-based Failure Isolation
Hidden Markov Models (HMMs) (Baum and Petrie 1966)
are probabilistic temporal structures to model Markov pro-
cesses. Since failures that occur during the execution of a
plan generally propagate over time, the problem of identi-
fying failures should be analysed temporally. Furthermore,

uncertainties in sensing and non-determinism make HMM-
based models suitable for the failure isolation problem.

An HMM consists of five components namely, states, ob-
servations, transition model, observation model and the ini-
tial state distribution. There areN hidden states in an HMM.
Each hidden state is denoted with si ∈ S where S is the set
of hidden states. Transition model, A = aij , defines the prob-
ability of transferring from state si to state sj where si, sj
∈ S . Observations, denoted with the yt, represent the obser-
vations of the model gathered at time t. Observation model,
denoted by B = bsi(y), defines the probability of gathering
the observation y at state si. Initial state distribution proba-
bilities are represented with π = πi.

An HHMM (Fine, Singer, and Tishby 1998) is a derived
structure of an HMM in which each state in the model is
itself an HMM. Once a state is activated in the HHMM, its
sub-HMM becomes active. Transitions can only occur inside
that sub-HMM until a final state is reached in it. After then, a
transition occurs to the upper parent state. Similar transitions
take place to the other parent states sequentially.

In our approach (Altan and Sariel-Talay 2014), the type
of a failure that may occur during the execution of an ac-
tion is modelled as a distinct HHMM which is similar to
the HHMM representation explained above. Parent states
represent actions, and lower level HMMs corresponds to
their execution states. This representation forms a two-level
HHMM. Each model is denoted by Mi where i is the in-
dex of the corresponding failure type. In this representation,
there are two hidden states, namely success and failure. Dur-
ing the execution of an action in the plan, a lower level HMM
is activated under the corresponding node, and its model is
updated. Once the action comes to an end, this lower level
HMM is used to refine a result to the upper level of the cor-
responding HHMM. The problem is to find models that in-
clude latent variables labelled with failure and have failure
probabilities over a given threshold.

Hierarchical HMMs are used to represent failure mod-
els instead of classical HMMs because a hierarchy between
the plan and its actions is needed in order to isolate persis-
tent failures on a specific object or event. For instance, the
robot’s vision system may fail to recognize a specific object
in the environment all the time. Causes of failures that are
addressed in this paper are: vision failures for all objects, lo-
calization failures, hardware limitations (gripper) and exter-
nal events. Vision(X) failure model for a specific object(X)
represents a faulty situation in the vision algorithm for that
object (i.e., error on detection the object itself or its rela-
tions). Model HardwareLimitation indicates the situations
that are beyond the capabilities of the robot. ExternalEvent
stands for external events that change the world outside the
control of the robot. Localization failures model the faulty
situations where the robot cannot localize itself. Depending
on the action that is being executed at a given world state and
its parameters, the related failure models are activated. The
relations that define which action is related to which failure
type are given in Table 1 for a specific object(X).

At the very beginning of the execution of the plan, the first
state for each failure type is activated considering observa-
tions in the initial state. During the execution of each action,



if that action and a failure type are related, the correspond-
ing failure type’s HHMM is activated for that time step, and
this model is considered as an active model. Perceptions are
gathered from the sensors of the robot (e.g., pressure sen-
sor, RGB-D sensor, etc.) and these observations are mapped
into a probability distribution which depends on the statisti-
cal analysis of the sensory input. Depending on the observa-
tions made at the current state, the new state’s contents are
defined considering the previous state.

Table 1: Action-Failure relations used in the model.
Action Failure Type

move-to-obj(X) Vision(X), ExternalEvent
Localization(Robot)

move-to-loc(destination) Localization(Robot)

pick-up(X) ExternalEvent, Gripper(Robot)
Vision(X), Localization(Robot)

put-down(X) Gripper(Robot)

If a failure model is not related to the action in execu-
tion, it is considered as a passive model, and the last state of
the corresponding HHMM’s time interval is augmented in
such a way that corresponding state also includes that time
step without generating a new state. This procedure goes
on until the robot reaches the goal state or a failure is de-
tected. We assume that failure detection is done by applying
an observer-based approach. In case of a failure, the Viterbi
algorithm (Viterbi 1967) is invoked to label latent variables
with either success or failure in each HHMM.

Algorithm 1 FailureIsolation(P ,M )
Input: Plan P , failure models M
Output: list, the list of the candidate causes of a failure
while P != ∅ and status == success do

action = POP (P )
while (status = execute(action)) == inExecution do

updateLowerLevelModels(M,action)
end while
labelLowerLevelLatents(M, t)
transitToUpperLevel(M, t)
updateModels(M,action)

end while
for all Mi do

labelUpperLevelLatents(Mi)
end for
list = isolateModels(M)
return list

In order to explain the proposed solution, Algorithm 1-2
are presented. Algorithm 1 accepts a plan and failure models
as parameters. Plan P includes a sequence of actions to be
executed by the robot. An action can be in one of the fol-
lowing states: inExecution, success and failure. inExecution
corresponds to the state in which the robot executes that ac-
tion. success stands for the state that the robot reached the
expected outcomes of the corresponding action. failure cor-
responds to the situations where the expected outcomes of
an action are not met. During the execution of each action,
all HHMM-structured models’ lower levels related to the

corresponding failure types are considered as active mod-
els and updated by the updateLowerLevelModels(M,action)
function where M is the set of HHMM failure models. Af-
ter execution of the corresponding action, a transition to
the upper level occurs with the transitToUpperLevel(M ,t)
function by using the maximum failure probability in the
related model’s lower level for the corresponding action’s
time interval. updateModels(M,action) updates all HHMMs’
upper levels considering the action-failure type relations.
The content of this routine is explained in Algorithm 2.
labelUpperLevelLatents(Mi) procedure assigns the hidden
values of each state in each model in the upper levels
while labelLowerLevelLatents(M , t) assigns the values of
the lower level at time t using the Viterbi algorithm (Viterbi
1967). isolateModels(M ) procedure presents a list of possi-
ble causes among the failure models considering calculated
probabilities in case of a failure.

Algorithm 2 updateModels(M,action)
Input: Failure models M , current action
Output: Mi is updated according to observations
for all Mi do

if isRelated(Mi, action) then
addNewState(Mi)

else
extendPreviousState(Mi)

end if
end for

Algorithm 2 updates all related models according to the
action in execution and its outcomes. In order to infer this
relation, the predefined action-failure type relations and the
parameters of the executed action are used. In an active
model case, a new state is generated, and the contents of the
newly generated state are updated. Otherwise, the previous
state’s time interval is extended.

Consider the given scenario in Figure 1. All models are
initialized in the beginning. Note that in Figure 1, only vi-
sion failure model for object A, hardware limitation (partic-
ularly for the gripper) for the robot and localization failure
models are shown. After executing move-to-obj(A) action,
the localization failure model and vision failure model for
object A are updated since they are related to the action. The
next action to be executed in the plan is action pick-up(A).
Since this action is related to the vision, hardware limitation
and localization models, they are updated during the execu-
tion. However, vision failure model for object B is not up-
dated since the executed action is irrelevant for the object
B. At the end of each action, the corresponding lower level
HMM is finalized, a transition is taken, and the upper level
HMM is updated.

Experimental Results
The proposed method is tested on our Pioneer 3-AT robot
equipped with a gripper to manipulate objects. The robot
completes its sense-plan-act cycle in a completely au-
tonomous way. The world state of the robot is maintained
by using sensory and motor information. The on-board
RGB-D camera input is processed by a modified version of
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Figure 1: An example model for a manipulation scenario.

the LINE-MOD algorithm (Ersen, Sariel-Talay, and Yalcin
2013). Furthermore, a segmentation algorithm is executed
to find clusters in the point cloud of the scene. A scene inter-
pretation module maintains relevant predicates in the knowl-
edge base, and updates them according to new observations
(Ozturk et al. 2014). Experiments take place in our labora-
tory environment that contains objects placed on the ground.
The experiments are performed on three objects: a blue plas-
tic bowling pin, a beach volleyball ball, and a small plastic
purple ball. To analyse some failure cases, failures are man-
ually injected to the settings except from vision failures.

Observation probabilities are defined regarding the sta-
tistical analysis on the outputs of the sensors. Conditional
Probability Table (CPT) for the vision failures is deter-
mined by using the performance of recognition and segmen-
tation algorithms. The CPT for the localization model is cre-
ated considering the offset difference between the odometer-
based and feature-based localization of the robot. External
event failures’ CPT is defined regarding the outputs of the
scene interpretation module. For hardware (gripper) failures,
the pressure sensor outputs of the gripper are used for con-
structing its CPT. Observation sampling and failure model
update frequency is at 0.33 Hz.

Scenario I In this scenario, our robot is tasked to move
the pin (A) and the beach ball (B) to their desired destina-
tions. Although the robot can correctly localize the pin, it
fails in correctly recognizing the ball. Since the vision algo-
rithm searches the objects by considering their surface nor-
mals, it falsely detects a small ball on the left boundary of
the ball (Figure 2) due to the similarity of the objects’ sur-

face normals. This affects the parameters of the action pick-
up. Therefore, the robot fails in picking up the ball with its
gripper. After the failure, the robot is intentionally allowed
to retry the action two more times. Since the pin is success-
fully recognized, action pick-up is taken without any failure.

Figure 2: (left) The vision algorithm detects a small ball on
the boundary of the big ball. (right) The segmentation algo-
rithm correctly clusters the point cloud of the big ball.

Figure 3(a) illustrates how the posteriors on failure types
change during the execution of each action. Five failure
types are considered. As clearly seen from the figure, dur-
ing the execution of action move-to-obj(A) and pick-up(A),
vision failure is not observed, therefore, the probabilities are
stable during these time steps. The robot directly tries to put
down the object after it picks up. Note that in the plots, let-
ters s and f next to the actions are for stating that the action
is succeeded or failed, respectively.

The vision failure probability forB starts to increase after
the execution of action move-to-obj(B) due to the conflicts
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(a) A consistent vision failure for a particu-
lar object results in an increase in the corre-
sponding probability.
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(b) A hand-made gripper failure is injected
into the system. Probabilities change accord-
ingly.
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(c) The resulting probabilities when an exter-
nal event exists in the scene.

Figure 3: Failure probabilities are continually updated in each plot during the execution of actions on the objects.

in the results of the vision algorithm and the detected sizes
of the object by segmentation. Note that even when there is
this type of vision failure, it is possible to successfully pick
up the object if the center of recognition intersects with the
center of the original object, but this is not the case in this
scenario. It is also seen from the figure that while the robot
attempts to pick upB, probability of having a gripper failure
increases due to the propagation of the failure over time.

Scenario II To test the performance of the system to de-
tect a hardware malfunction, a hand-made gripper failure is
injected to the robot. This is simulated by preventing the
gripper from closing completely and by closing the sensory
feedback to detect the state of the gripper.

The robot tries to pick up the plastic pin (A) and the small
ball (B) but fails all the time for both objects due to the sim-
ulated failure in its gripper. According to the Figure 3(b),
the robot’s belief on gripper fault increases for each trial.
Note that the robot’s belief on vision failure for A increases
since the vision algorithm locates two objects simultane-
ously within the same location with different similarity rates.
During the execution of action move-to-obj(B), the robot’s
belief on a localization failure is also increased due to the
offset difference between the odometer-based and feature-
based localization of the robot, but it is fixed in future steps.
During the execution of action move-to-obj(B), the robot’s
belief on a vision failure on B also increases since the vi-
sion algorithm detects the object with a lower similarity rate
regarding its template during that period.

Scenario III In this scenario, failures due to external
events are analysed. For this purpose, the object is manip-
ulated by a human agent. Two objects (the pin and the small
ball) are used and the pin (A) is taken out of the environment
by the human while the robot moves to that object.

According to Figure 3(c), the robot increases its belief
on an external event when the object disappears from the
robot’s view. The segmentation output also suggests this hy-
pothesis. However, the vision failure for A is also in one of
the likely hypotheses. One should also note that the posterior
probability of external event model decreases after the robot
starts to execute actions on the other object. Since their mod-

els for this failure type are not separated and the other object
is always on the sight of the robot during the execution, the
posterior starts to drop off.

Analysis of Memory Usage In all the investigated scenar-
ios, we analyze the size of the state space. We show that use
of action-failure type relations reduces the number of states
generated in our method (Table 2). In the table, the number
of states with and without using relations (Table 1) and the
percentage of gain in terms of memory utilization are pre-
sented for each scenario. The overall memory reduction is
37.7% for these scenarios.

Table 2: Analysis of State Generation on HHMMs
Scenario # of States # of States Gain

w/o relations w/ relations
Case I 242 146 39.66%
Case II 258 173 32.94%
Case III 153 91 40.52%

Conclusion
In this paper, we present a temporal model for failure isola-
tion that employs HHMMs. HHMMs are for modelling the
possible failure types. Moreover, HHMMs ensure isolation
of multiple faults and propose explanations for possible fail-
ure situations. Hierarchical structure of the HMM also pro-
vides the opportunity to isolate persistent failures on a spe-
cific object or event. Modelling each failure type as a distinct
model provides a simple yet effective representation. Updat-
ing models using the relations between the actions and the
failure types reduces the computational cost of the method.
As a future work, we are planning to use isolation results to
modify future plans of the robot after a failure occurs.
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