
 

ABSTRACT  
Mutation rate parameter is considered to be one of the 

most sensitive of the parameters that a genetic algorithm 
works with. It has been shown that through using a mutation 
rate variation scheme that adapts the mutation rate parameter 
during the run of the algorithm, the time to find the optimum 
is decreased. In this study, a mutation rate adaptation scheme, 
that adapts the mutation rate separately for each gene 
location on the chromosome based on the feedback taken 
from the success and failure rates of the individuals in the 
current population, is proposed. Through tests using the one-
max problem, it is shown that the proposed mutation 
adaptation scheme allows faster convergence than the other 
similar approaches chosen for comparisons. The results are 
very promising and promote further research. 
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1. Introduction 
 

Genetic algorithms [3] (GA) belong to a class of 
biologically inspired optimization approaches that model the 
basic principles of classical Mendelian genetics and 
Darwinian theory of evolution. Due to their robust nature, 
genetic algorithms are used in a wide variety of applications. 
However one of the major drawbacks of working with 
genetic algorithms is that performance largely depends on 
the appropriate setting of some parameters: namely 
population size, crossover and mutation rates. These 
parameters interact with each other, making it even harder to 
find optimal settings. However mutation rate is considered to 

be one of the most sensitive of these parameters. It has been 
traditionally regarded as a background operator that mainly 
works as an insurance policy [10], protecting alleles from 
being lost from the population but it has been shown that  
the mutation rate value largely affects the general behavior of 
the algorithm. There has been extensive work to investigate 
the exact nature of mutation [1], [4] [5], [8].  

The techniques developed to set these parameters are 
classified by Eiben et al. [2] as: parameter tuning and 
parameter control. For parameter tuning, the parameter 
values are set in advance, before the run and are kept 
constant during the whole execution of the algorithm. In 
parameter control techniques, parameters are initialized at the 
start of execution and are allowed to change during the run. 
Parameter control techniques are classified mainly into three 
groups based on the type of change they introduce: 

• deterministic: the parameter value is updated according 
to some deterministic rule,  

• adaptive: the parameter value is updated based on some 
feedback taken from the population 

• self-adaptive: the parameter is evaluated and updated 
by the evolutionary algorithm itself. 

In this study, an adaptive mutation rate strategy that uses 
feedback obtained from the current population and increases 
or decreases the mutation rate accordingly for each locus on 
the chromosome is introduced. Even though using feedback 
from the current state of the search seems to be a useful 
approach, it has not been studied much within the scope of 
canonical GAs [11]. This approach is tested against 
previously published methods for mutation rate control, on a 
simple one-max problem. The results are seen to be 
promising and promote further study. 
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The rest of this paper is organized as follows: Section 2 
introduces the proposed mutation rate adaptation approach. 
In section 3 the different tested methods are presented. In 
section 4, the experimental setup and the results are given 
and discussed; Section 5 provides a conclusion, based on the 
results while providing possible directions for future work 
and concludes the paper. 

 
2. Gene Based Adaptive Mutation GA 
 

In this paper, a Gene Based Adaptive Mutation (GBAM) 
method is proposed. This approach experiments with 
varying mutation rate values during the run, using feedback 
from the population.  

Different from other known mutation adaptation strategies, 
in GBAM each locus has its own mutation rate value. An 
adaptive approach for adjusting mutation rates for the gene 
locations based on the feedback obtained by observing the 
relative success or failure of the individuals in the population 
is used.  

In GBAM, there are two different mutation rates defined 
for each locus: a mutation rate value pm1 for those genes 
that have an allele value of  "1" at that locus and another 
mutation rate value pm0 for those that have a "0". In the 
reproduction phase, the appropriate mutation rate is applied 
based on the gene allele value. Initially all mutation rates are 
set to a default value in the specified boundaries. During the 
GA run, the mutation probabilities pm1 and pm0 for all loci 
are updated at each generation using the feedback taken 
from the relative success or failures of those individuals 
having a "1" or "0" at that locus respectively. For a 
maximization problem, the update rule for the mutation rate 
subunits for one gene location can be seen in Eq.1. This 
update rule is applied separately for each locus. 
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The pmi (i=0,1) value for a locus corresponds to the rate of 
mutation subunit that will be applied when the gene value is  
i in the corresponding gene. Savg is the average fitness of the 
individuals with an allele "1" for the corresponding gene 
location. Pavg is the average fitness of the population. γ is the 
update value for the mutation rates.  

As a result of the updates at each generation, pmi values 
are allowed to oscillate within the limits defined by lower 
and upper bounds. If an update causes a mutation rate to 
exceed the upper limit, the corresponding mutation rate is set 
to the upper bound value and if it causes a mutation rate to 
go below the lower limit, the corresponding mutation rate is 
set to the lower bound value. Another parameter that GBAM 
uses is the initial mutation rate value. All parameters are 
determined empirically.  

As will be shown in the analysis of the experiments, GBAM 
provides rapid convergence. For unimodal objective 
functions, this rapid convergence provides a valuable 
refinement. However, the fast convergence feature may 
cause the program to get stuck at local optima, especially for 
the multimodal objective functions. This problem is explored 
in detail in [6] for self-adaptive mutations, however the 
results can easily be extended to adaptive mutation schemes 
too. For the purposes of this paper, a unimodal function is 
used for the tests. The problems that may arise as a result of 
fast convergence are not within the scope of this paper and 
will be explored in detail in a future study. 
 
3. Approaches Chosen for Comparisons 

The aim of the experiments is to show that GBAM 
provides faster rates of convergence, as well as exploring its 
convergence behavior compared to other similar parameter 
control approaches found in literature.  

As given in Section 1, parameter control approaches are 
categorized based on the type of change that is applied to the 
parameter. There are different formulations and 
implementations of each type of parameter control found in 
literature. A representative scheme, which is shown to give 
good performance, is chosen from each category and used 
for the comparisons. 

3.1. Deterministic Approach 

The deterministic mutation rate schedule provides the 
mutation rate to decrease from a value (generally, 0.5) to the 
optimum mutation rate (generally 1/L) without using any 
feedback from the population. The deterministic mutation 
rate schedule implementation proposed in [7] was reported 
in [11] as having the most succeful results for hard 
combinatorial problems. Based on this method, the time-
varying mutation rate is calculated using the formula given 
in Eq. 2. In this formula, t is the current generation number 
and T is the maximum number of generations. In the original 
proposal for Eq. 2, the k value is chosen as 1.  
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3.2. Self-Adaptive Approach 

In the self-adaptive approach, the parameters are encoded 
into the chromosomes and undergo mutation and 
recombination. The basic idea is that better parameter values 
lead to better individuals and these parameter values will 
survive in the population since they belong to the surviving 
individuals. Bäck et al. [3] refer to this approach also as on-
line learning. In their work, they propose a self-adaptation 
mechanism of a single mutation rate per individual. The 
mutation of this mutation rate value gives the new mutation 
rate through Eq. 3. In this equation, γ is the learning rate and 
controls the adaptation speed. It is taken as 0.22 in [3] and 
also in this study.  
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3.3. Individually Adaptive Approach 

In this study, an individually adaptive GA method (AGA) 
[29] is chosen for the comparisons. In this method, the 
probabilities of crossover and mutation are adapted 
depending on the fitness values of the individuals. The 
adaptation of the pc and pm allows the individuals having 
fitness values of over-average to maintain their genetic 
material, while forcing the individuals with sub-average 
fitness values to disrupt. The mutation rate adaptation rule is 
given in Eq. 4. In this equation, ƒ denotes the fitness value 
of the individual, ƒmax denotes the best fitness value of the 
current generation, and ƒavg denotes the average fitness 
value of the current generation. In [9], the constants k2 and 
the k4 are chosen as 0.5.  
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4. Experiments 
The GBAM approach is expected to reduce the number of 

generations (or fitness evaluations) to locate an optimal 
individual. To investigate this effect, the one-max problem, 
which is unimodal and easy for a simple GA, is used for the 
tests. The main aim of this problem is to maximize the 
number of 1s in a binary represented string of length L. The 
optimum for this function is L. More formally the fitness 
function can be defined as in Eq. 5 where xi represents the ith 
character in the string. 
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Tests are performed for four different string lengths: 
L=200, L=400, L=800 and L=1600 to explore the effects of 
the length of the string on the number of generations required 
to first locate the optimum. For all tests, the program 
implementation for each chosen approach is run 50 times. 
All parameter settings are determined empirically to provide 
the best performance for each approach. Some settings are 
the same for all approaches:  

• number of generations: 1500 
• population size: 250 individuals 
• parent selection: tournament selection with tournament 

sizes of two  
• recombination: two-point cross over with pc=1.0  
• population dynamics: strictly generational 

Some extra parameters are used by the methods chosen 
for comparisons. The settings for these values are given in 
Table-1 where DET is used for the deterministic approach, 
SA for the self adaptive approach, AGA for the adaptive GA 
approach and GBAM for the gene based adaptive mutation 
approach proposed in this study. 

 
Table-1 Extra parameter settings 

DET k=1.2   (Eq. 2) 
SA initial mutation rate = 1/L 

lower mutation rate limit = 0.0001 
AGA k2=1/L (Eq. 4) 
GBAM initial mutation rate = 0.02 

mutation rate lower limit = 0.0001 
mutation rate upper limit = 0.2 
mutation update amount  = 0.001 

 
  The statistical calculations for the number of generations 
required to locate the optimum individuals are given in 
Table-2, where µ is the mean number of generations needed 
to locate the best individual, σ is the standard deviation of 
this value, CI is the 99% confidence interval calculated for 
the location of the mean. Since one-max is a unimodal 
function, all approaches except for AGA are able to find the 
optimum for all string lengths. The plots of the number of 
generations needed to find the optimum for all methods 
averaged over 50 runs are given in Fig. 1. 
  As can be seen from Fig. 1 and Table-2, GBAM reduces 
the number of steps required to find the optimum solution. 
Based on the results in Table-2, GBAM seems to generate 



 

promising results for all of the L values. SA and SGA seem 
to generate very close results, which is to be expected since 
the advantage of using SA comes from not having to find 
optimal mutation rates before the run. However in this study, 
SGA is implemented using optimal rates for each test 
problem, causing SA and SGA to perform similarly. The 
drawback of deterministic approach is the high generation 
number needed to locate the best fitness value. However, 
when L value is increased, the results become acceptable. 
Because the initial mutation rate value is 0.4 approximately, 
which is unnecessarily high for small L values. Although the 
AGA performs well for the small values of L compared to 
SA, SGA, and DET, when the L value increases, its 
performance decreases. The reason of this is that when the L 
value increases the k2 value in Eq. 4 becomes very small.        

  Table-2 Statistical calculations for number of generations 
required to find the best individual 

 L=200 L=400 

 µµµµ σσσσ CI µµµµ σσσσ CI 

GBAM 45.56 5.41 
43.51 
47.61 

82.66 23.27 
73.84 
91.48 

SGA 79.16 5.12 
77.22 
81.10 

147.02 9.35 
143.48 
150.56 

SA 80.84 6.22 
78.48 
83.20 

149.92 10.97 
145.76 
154.08 

DET 486.36 24.79 
476.96 
495.76 

450.72 20.77 
442.85 
458.59 

AGA 73.26 6.12 
70.94 
75.58 

167.48 20.04 
159.88 
175.08 

 

 L=800 L=1600 

 µµµµ σσσσ CI µµµµ σσσσ CI 

GBAM 190.52 38.42 
175.96 
205.08 

354.96 39.25 
340.08  
369.84 

SGA 289.84 17.67 
283.14 
296.54 

612.16 31.41 
600.26 
624.06 

SA 288.66 20.54 
280.87 
296.45 

610.54 37.90 
596.17 
624.90 

DET 427.04 14.13 
421.68 
432.40 

568.50 32.82 
556.06 
580.94 

AGA 506.40 95.91 
470.05 
542.75 

* * * 

(*) AGA is not able to find the optimum in 1500 generations 
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Fig.1. Best fitness values observed through generations for all 
methods averaged over 50 runs 
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5. Conclusion and Future Work 
In this study, a mutation rate adaptation approach 

(GBAM) for each gene location in a binary representation, 
based on the relative performance of individuals is proposed. 
Because each gene location has a different parameter for 
controlling the rate of mutation at that location, the proposed 
approach is more suited for problems where the epistasis 
between genes is low to none. Since the mutation rate is 
adapted based on the fitness values of the best performing 
individuals, it is expected that GBAM fastens the 
convergence of the GA to the optimum. This has been 
confirmed through tests performed on a simple one-max 
problem. Since this problem is a unimodal function fast 
convergence to the optimum is not a problem. However for 
multimodal fitness landscapes, to escape from local optima, 
extra convergence tests should be applied, and necessary 
precautions to restore diversity should be taken.  

Even though as a result of these preliminary tests, the 
overall performance of GBAM seems to be very promising 
for the chosen type of problems, there is still more work to 
be done to be able to make healthy generalizations. First of 
all, the parameter settings for GBAM, such as the lower and 
upper bound values, initial mutation rate and the mutation 
update values have been determined experimentally. More 
experiments need to be performed to see the effects of these 
parameters on performance more thoroughly.  Secondly, 
the test problem set can be extended to include different 
types of problem domains. This also would allow the effects 
of different degrees of epistasis to be explored.  Thirdly, a 
convergence control mechanism should be added to GBAM. 
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