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Abstract

The effects of blade mistuning have been studied
extensively in the past although most of the
research efforts have been directed towards
understanding its qualitative aspects. Addressing
the quantitative aspects of the mistuning problem,
especially for industrial designs, has been
somewhat limited in the past, mainly due to the
need for using reduced-order and thus simplified
models in such analyses. In other words, it has been
difficult to translate previous mistuning results
directly for high-cycle fatigue predictions for a
given bladed-disc.

A new method for the dynamic analysis of
mistuned bladed discs is presented. The method is
based on exact calculation of the response of the
mistuned system using response levels of the tuned
assembly and a modification matrix constructed
from the Frequency Response Function (FRF)
matrix of the tuned system and a matrix describing
the mistuning. The main advantages of the method
are its efficiency and accuracy, which allows the
use of large finite element models of practical
bladed disc assemblies in parametric studies of
mistuning effects on vibration amplitudes. A new
method of calculating the FRF matrix of the tuned
system using a sector model is also developed so as
to improve the efficiency of the method further,
making the proposed method a very attractive tool
for mistuning studies of practical design.

1. Introduction

Small variations of individual blade characteristics
in a bladed assembly inevitably arise during blade
manufacturing and assembling processes. It is well
known that the dynamic response of a mistuned
bladed disc can be altered significantly from that of
its tuned counterpart so that the response of
amplitudes of individual blades may vary widely
within the same assembly (Dye and Henry, 1969),
(Ewins, 1969) and (Whitehead, 1966). This

situation has posed a very important practical
problem for a long time and efforts of many
investigators have been, and continue to be,
devoted to predicting and controlling these
mistuning effects. Surveys of recent studies of
mistuning are given in (Ewins, 1991) and (Slater,
1999).

The current trend in the turbomachinery
industry is to avoid the various simplifying
assumptions during the modelling process and to
seek quantitative answers to questions related to
mistuning. Using realistic finite element models for
the complete bladed disc, including mistuning
effects is, however, still too expensive in spite of
the advances in finite element modelling and
computer hardware during recent years. The
common practice in industry is to make use of the
cyclic symmetry properties of the tuned system to
obtain the natural frequencies and mode shapes of
the whole tuned bladed disc assemblies. Although
very desirable, there is no method readily available
to use the models based on cyclic symmetry for
mistuning studies. Attempts at using detailed finite
element models for mistuned bladed discs have
been made recently. An original approach has been
developed in (Bladh et al., 1998) and (Castanier et
al. 1997) to reduce the size of the large-scale finite
element models of mistuned bladed discs. The
developed technique is similar to the Ritz
procedure and is based on expansion of the
mistuned bladed disc amplitudes into a series of
mode shapes calculated for two specially chosen
subsystems of the tuned bladed disc. Some
investigation of the validity of this technique can be
found in reference (Frey, 1998). A different method
is proposed in (Yang and Griffin, 1998), where
model reduction is carried out by representation of
mode shapes as a limited sum of the system modes
that are called “nominal” modes by the authors.
These can be the modes of the tuned bladed disc or
of the bladed disc with a specified mistuning
pattern. Both of the above mentioned approaches
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are dependent on the nominal mode shapes chosen
for the expansions of the mistuned system response
as well as on the number of these mode shapes.

The present paper introduces a new method for
the analysis of forced vibration of mistuned bladed
discs. The method is based on an exact relationship
between the response levels of the tuned and the
mistuned bladed discs, the tuned system being
described by a sector model using the cyclic
symmetry properties of the assembly. An exact
relationship between the tuned and the mistuned
system is derived using Woodbury-Sherman-
Morrison formula for the inverse of a perturbed
matrix (Sherman and Morrison, 1949) and
(Woodbury, 1950). This formula was applied in
reference (Level et al., 1996) for response
reanalysis of a simple linear system and was
proposed and used successfully for calculations of
modifications in the non-linear analysis of systems
with friction dampers in references (Sanliturk et al.,
1999). An important feature of the method
proposed here is the reduction of the system model
to a manageable size without introducing any loss
of accuracy during the reduction process, such as is
usually incurred when including only a subset of
the model degrees of freedom reflecting the interest
of the eventual application. Any subset of nodes of
interest can be chosen from the whole set of
assembly nodes for the mistuning analysis without
any adverse effect. Accordingly, the method allows
mistuning analysis of bladed discs using large finite
element models that are used at present only in the
analysis of tuned bladed discs based on cyclic
symmetry approach.

The second section of the paper describes an
exact relationship between the response amplitudes
of the mistuned and the tuned bladed discs as well
as how to perform the response calculations for the
mistuned system at those co-ordinates where the
system is mistuned or amplitudes are controlled.
The section explores also how the tuned system can
be used during the forced response analysis of a
mistuned assembly. An original technique is
presented for the calculation of both forced
response levels and the Frequency Response
Function (FRF) matrix of tuned bladed discs using
a sector model. This method allows one to obtain a
tuned assembly’s response properties under
arbitrarily distributed harmonic loads over all
bladed disc sectors, a feature essential for the
analysis of mistuned bladed discs. Mistuning
devices or ‘elements’ are defined in the third
section to facilitate simulation of the different
mistuning conditions encountered in practice. An
approach to establish a relationship between
mistuning elements and blade-alone frequency

mistuning is also described. The last section of the
paper presents a case study of a mistuned turbine
bladed disc with mistuned blades and with
damaged blades which have very large deviations
in blade-alone natural frequencies.

2. A new method for forced response
analysis of mistuned bladed discs

2.1 An exact relationship between the response
of tuned and mistuned bladed discs

The equation of motion for forced vibration of a
bladed disc such as that shown in Fig.1 can be
written in a customary form in the frequency
domain as:

fqZqDMK =ω=+ω− )()( 2 i (1)

where q is a vector of complex response amplitudes
for nodal displacements; f is a vector of complex
amplitudes of harmonic nodal loads; K, M and D
are stiffness, mass and structural damping matrices
of the system, respectively; )(ωZ  is the dynamic
stiffness matrix; ω  is excitation frequency; and

1−=i . One can also include other terms
representing gyroscopic and stiffening effects due
to rotation in the dynamic stiffness matrix, if
required.

It is proposed here to represent the dynamic
stiffness matrix of a mistuned bladed disc as a sum
of two matrices; a matrix corresponding to the
tuned bladed disc, 0Z , and a mistuning matrix,

Z∆ , which reflects the deviation from the tuned
system. As a result, the matrix equation for the
forced response of a mistuned bladed disc (1) can
be written as:

Fig. 1 Finite element model of a bladed disc
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[ ] fqZZ =ω∆+ω )()(0 (2)

and so the response of the mistuned bladed disc is
expressed as:

[ ] fZZq 1
0 )()( −ω∆+ω= (3)

However, calculation of the response levels by
direct solution of Eq.(2), or using the inverse of a
matrix as implied by the above equation, is
extremely costly, especially for the analysis of a
complete mistuned bladed disc assembly when a
realistic finite element model is to be used. The
major idea in this paper is to obtain the forced
response levels for a mistuned bladed disc with
high accuracy without the need for:

(i) a matrix inversion;
(ii) a complete finite element model for the
whole assembly,
(iii) inclusion of all the degrees of freedom in
the response analysis.

It is shown in references (Sherman and
Morrison, 1949) and (Woodbury, 1950) that the
inverse of the sum of two matrices may be obtained
using the so-called Sherman-Morrison-Woodbury
identity which relates the inverse of the sum of two
matrices to the inverse of one of the summands,
transformed with the use of the second summand:
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This identity is valid for any matrix Z0 (N×N) and
any matrix ∆Z= TUV , expressed by multiplication
of two rectangular matrices U (N×n) and V (N×n) if
Z0 and UZVI 1

0
−+ T  are invertible. Here I is an

identity matrix, N is the total number of degrees of
freedom for the system considered, and n is number
of degrees of freedom where modifications are
made and forced response analysed.

For the mistuning problem addressed in this
paper, the matrix 0Z  is the dynamic stiffness
matrix of the tuned bladed disc and the matrix Z∆
represents the “mistuning matrix” which can itself
be represented as a multipli cation of two matrices.
This representation can be done in various ways,
one of which is to collect all nonzero rows into a
matrix V T (n×N) and to construct the matrix U
(N×n) using unit vectors corresponding to nonzero
rows of the matrix V. Inserting Eq.(4) into Eq.(3),
one can obtain an expression for the response of the
mistuned bladed disc in terms of that of the tuned
system and the modification matrices U and V as
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where [ ] 1
00 )()( −ω=ω ZA  is the receptance (FRF)

matrix for the tuned bladed disc, and 0q  is a vector
representing the amplitudes of the tuned assembly
due to the external force vector, f.

An effective method for calculation the FRF
matrix of the tuned bladed disc is presented in
reference by Petrov et al.  [8, 9], where natural
frequencies and mode shapes obtained from a
sector model (Fig.2a) of the tuned assembly are
used for generation of the FRF matrix for the whole
assembly.

a)

b)

Fig. 2 Finite element sector model (a) and active
nodes (b)

The expression for the FRF matrix of the whole
bladed-disc assembly derived in reference [10] has
the following form:
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where
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and BN  is a number of blades in the assembly;

2 /α π= BN ; 1=kc  for all k, except 0.5=kc  for

/ 2= Bk N  when BN  is even. ( )k
SA are so-called

‘wave’ FRF matrices corresponding to forward
travelling (wave number +k) and backward
travelling (wave number -k) waves of engine order
excitation. They can be can be expressed through
the complex natural modes of one sector only as:

forward travelling wave
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back travelling wave
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where m is a number of modes used for the FRF
matrix generation; ( )ω k

r  is a natural frequency for
the r-th mode and k-th wave (or cyclic index)
number; rη  is the damping loss factor;

Im)(Re)()( k
r

k
r

k
r iφ+φ=φ  are mass normalised mode

shapes, which are complex for all k except
0 and / 2Bk N= ; and a line over a symbol denotes

complex conjugation. It should be noted that the
matrices ( )k

SA  and ( )−k
SA  are not Hermitian

conjugates due to the presence of damping in the
considered system.

It should be noted that Eq.(5) is an exact
expression and one of its very useful properties is
the possibility it offers of obtaining the response of
a mistuned system by considering only a small
subset of the degrees of freedom. These degrees of
freedom are: (i) those where the mistuning is
applied and (ii) those where the forced response
levels are of interest, and this combination is
referred to below as the active co-ordinates.

The distribution of forces over the blade nodes
are taken into account when forced response the
tuned assembly is calculated, which can be done
efficiently even for the case when the loads are
applied to large number of nodes. Owing to

accounting for the forces at the stage of tuned
system calculation, the nodes where the forces are
applied may not be included into the set the active
nodes. An example of active nodes (shown by red
circles) and nodes where forces are applied (shown
by green circles) is given in Fig.2b.

As a result of these properties, the size of the
matrices can be reduced to any desired level
without any loss of exactness of the description of
the behaviour. This can be achieved as follows.
First, the vector of complex displacement
amplitudes is partitioned into two: the part with the
active co-ordinates (index a) and the part
containing all the other, passive, degrees of

freedom (index p), i.e. { }T
pa qqq ,= . The

modification, or mistuning, matrix, Z∆ , is also
partitioned accordingly, as illustrated below.
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Then, by also partitioning the receptance matrix for
the tuned system 0A  in the same way, the
expression in Eq.(5) can be written in the following
form:
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where 0
aaA , 0

apA , 0
paA , 0

ppA  are partitions of the

matrix, 0A , according to the unmodified and
modified co-ordinates. An important feature of
Eq.(11) is that it expresses the response of the
mistuned system as that of the tuned system minus
an expression which depends on (i) the FRF matrix
of the tuned system, (ii) the mistuning matrix and
(iii) the response of the tuned system at the active
co-ordinates. As a result, this feature allows
calculation of the mistuned response levels at the
active co-ordinates by considering only those rows
in Eq.(11) which correspond to the active
coordinates. The formulation in the next section
deals with active coordinates only, hence the index
a is dropped in subsequent development of the
formulation.

2.2 Recurrence update of the forced response

It is seen that Eq.(11) needs the inversion of a
square matrix of order n which is the number of co-
ordinates involved in the mistuning modifications.
This matrix inversion process can also be avoided
by decomposing the modification matrix into a sum
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of individual modifications, ∑
=

∆=∆
n

j
j

1

zZ , such that

each can be written as a multiplication of two
vectors, i.e. T

jjjz vu=∆ . This yields a much simpler

formula for calculating the forced response levels
of mistuned systems. If the same scheme of matrix
decomposition as was illustrated in Fig.2 is adopted
here, then u will be a unit vector with one non-zero
component and Eq.(5) will be reduced to a simple
expression of the form:
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where jA  is the j-th column of matrix A0, and the

coefficient before Aj in Eq.(12) is a scalar value. As
a result, it is possible to take into account individual
rows of the mistuning matrix sequentially, using the
following recurrence formula:
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To start the recurrence update, the response
amplitudes and the FRF matrix of the tuned bladed
disc are used.

3. Mistuning modelling

3.1 Mistuning elements

The method for the analysis for mistuned systems
proposed does not make any assumptions regarding
the distribution or the magnitude of the mistuning
matrix, Z∆ . However, it is useful to define,
without any loss of generality, some simple
mistuning elements that can be applied at desired
locations in the bladed disc model and have
physical interpretation. Examples of such elements
are lumped mass, stiffness and damping mistuning

and the mistuning element matrix, ez∆ , can be

expressed as:
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where jm , jk ; jd  are mass, stiffness and damping

coefficients of the element in three orthogonal
directions. Their combination allows us to describe
a wide range of mistuning patterns that might be
encountered in practice.

3.2 Blade frequency mistuning

It is possible to describe quite a wide class of
possible mistuning arrangements using the simple
mistuning elements introduced in the previous
section. One of the widely-used measures of
mistuning in practice is to refer to the ‘blade-alone’
cantilever-natural-frequency scatter. This type of
mistuning can easily be represented by establishing
a relationship between individual blade frequencies
and the properties of a set of mistuning elements
applied to the blades. This can be achieved by
conducting a preliminary analysis to determine a
one-to-one relationship between the blade alone
frequency scatter and the amount of mistuning
introduced at specific locations. A possible
approach is to express the mistuning matrix for a
blade, Z∆ , as

0ZZ ∆=∆ fc (17)

where 0Z∆  is a predefined mistuning matrix for a
given set of mistuning element characteristics and
cf  is a variable representing mistuning coefficient.
Calculations are made for a sufficient number of
values of cf  so as to establish a relationship with an
acceptable accuracy between the mistuning
coefficient, cf, and the scatter in blade-alone
frequency. This relationship is usually non-linear
but a very good description can be made using a
spline approximation. An example demonstrating
such relationship is shown in Fig.3 for the first
blade-alone natural frequency when lumped mass
mistuning elements are applied to active nodes
shown in Fig.2b.

It should be stated that some preliminary
blade-alone analysis may be necessary to determine
the datum mistuning matrix, 0Z∆ , especially if the

blade-alone frequency mistuning for more than one
mode of vibration is of interest.
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Fig. 3 Relationship between mistuning coefficient
and frequency mistuning

4. Numerical results

4.1 The bladed disc analysed and excitation
conditions

The method developed above has been
implemented in FORTRAN program and has been
applied to the response analysis of a number of
realistic mistuned bladed discs.

In the present section, an example of the
method applied to the analysis of a high-pressure
turbine bladed disc shown in Fig.1 is represented.
The bladed disc analysed comprises 92 blades. Its
finite element single-sector model shown in Fig.2a
contains 162,708 degrees of freedom (DOFs) and
the full bladed disc comprises about 15 millions
DOFs. The model describes, in detail, the
geometric shape of the blade and the disc, the
blade-disc interface and the anisotropy of the blade
material. The sector model is used for
determination the first 16 natural frequencies and
mode shapes of the tuned bladed-disc assembly for
all their cyclic indices (nodal diameters) that are
possible for the considered assembly in the range
from 0 to 46. These modes of the tuned system are
used for generating the FRF matrix of the tuned
assembly.

A relatively small subset of nodes was selected
for analysis of the mistuned system. The nodes
used are shown in Fig.2b, where green circles
indicate the nodes subjected to loads and red circles
are the active nodes where response amplitudes are
calculated and condensed mass mistuning elements
are applied. The blade mistuning is assumed
random and is normally distributed in the blade set
manufactured. Realistic characteristics of the
normal distributions (i.e. the mean value and the
standard deviation) for first four blade-alone natural

frequencies (namely, first flap, 1F, and first
torsional, 1T) are determined as a result of
statistical analysis of several hundreds of the
experimental values. The mistuning patterns
analysed are then generated using a random number
generator for the obtained distribution
characteristics.

Moreover, the influence on response levels of
damaged blades, which can have large mistuning
levels, is analysed. In the cases analysed here, the
damaged blades can reach 34% discrepancy in the
first natural frequency compared with the
corresponding value for the tuned blade. In the
mistuning patterns analysed, damaged blade
mistuning values replace mistuning values for
blades of the randomly-generated mistuning
pattern. The study of the influence of a small
number of blades with very different frequencies
was undertaken to assess the following aspects:
• Assess the damage tolerance of the assembly,

assuming a damaged blade would have
different dynamic characteristics to standard
blades.

• What effect would introducing blades that may
be outside normal acceptance limits have and
could they be used without adverse effects? If
the effect was relatively benign then it may be
possible to extend acceptance limits and
therefore reduce costs.

Excitation by 6th, 7th and 8th engine orders (EO)
was studied in the frequency range corresponding
to the 1F mode, and excitation by 40th EO was
studied in the frequency ranges corresponding to
the 1T mode. Loading for each blade was
distributed uniformly over the blade nodes and the
damping loss factor was assumed equal 0.003.
Excitation frequency ranges for each of EOs
analysed, natural frequencies of the tuned assembly
and mean values for experimental natural
frequencies are shown in Fig.4. The frequency
values were normalised with respect to the first
blade-alone natural frequency, i.e. actual values
were divided by a value of the first blade-alone
natural frequency.

4.2 An estimate of mistuning effect on
response level and amplitude distribution

An example of the calculated amplitudes as
functions of excitation frequency for all blades of
the bladed disc is shown in Fig.5 for the case of
excitation by 6EO. Fig.5a shows the blade
amplitudes for the case of a tuned bladed disc;
Fig.5b illustrates the blade amplitudes for randomly
mistuned bladed disc within the normal mistuning
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Fig. 4 Natural frequency of the tuned assembly and
analysed excitation engine orders, excitation
frequency ranges (red lines) and mean values for
experimental natural frequencies (blue lines)

range; and Fig.5c contains the blade amplitudes of
the   bladed   disc   having  90  randomly mistuned
blades plus two damaged blades (namely, the first
and fifteenth blades). All amplitudes are normalised
by a value of the maximum amplitude of the tuned
assembly. As one can see, the tuned bladed disc has
the same amplitudes for all blades and there is only
one resonance peak in the range considered – that is
the 6th nodal diameter mode. The introduction of
even a small amount of mistuning leads to
significant amplitude scatter over the blades of the
bladed disc as well as to the appearance of a large
number of resonance peaks. The highest peaks of
the system with small mistuning lie near the
resonance peak of the tuned assembly with the
normalised frequency value close to 1. The
randomly-mistuned bladed disc with the damaged
blades has two additional resonance peaks in the
vicinity of normalised frequency magnitude 1.35.
Resonance frequencies corresponding to these
peaks are close to the natural frequencies of the
blade-alone damaged blades.

Envelopes of the maximum responses found
over all blades of the assembly are shown in Fig.6
for all the considered excitation types. Here,
maximum normalised amplitudes are compared for
the tuned bladed disc, for the randomly-mistuned
assembly with a normal, small, mistuning level, and
for the randomly-mistuned assembly having two
damaged blades. For the case of 6EO excitation in
the range of the 1F mode, one can see that small
random mistuning gives rise to many resonance
peaks. These peaks lie in the vicinity of the single
resonance peak of the tuned system and far from it
as well.

a)

b) 

c) 

Fig. 5 Forced response for each blade of the bladed
disc: a) tuned assembly; b) randomly mistuned
blades; c) random mistuning and a damaged blade.
The case of 6EO excitation in 1F mode frequency
range.

The highest resonance peaks of the mistuned
system are close to the resonance of the tuned
assembly. Some of these peaks are higher than the
resonance peak of the tuned system although many
of them are lower. Owing to the presence of many
resonances, the envelope of the maximum response
has a much wider frequency range with high
amplitudes  than  the  one  forthe tuned system. For
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Fig. 6 Comparison of envelopes of maximum
normalised response for tuned assembly, randomly
mistuned one and the bladed disc containing
damaged blades.

the case of the bladed disc with the damaged
blades, two new resonance peaks appear near the
natural frequencies of the damaged blades and also
near other assembly modes in the mistuned system.
For the case of excitation by 6EO maximum
normalised amplitude of such bladed disc has a
value which is much higher than worsening effect
caused by normal mistuning. The maximum
response for the cases of excitation by 7EO and
8EO also lead to similar conclusions about the
influence of small mistuning and damaged blades
to forced response. The only difference is the much
lower levels of normalised amplitude (less than 1)
for the resonance peaks in the vicinity of the natural
frequencies of the damaged blades. Analysing
excitation by 40EO in the 1T frequency range in
Fig.6d, one can see that the introduction of small
random mistuning in this case leads to a large
increase in the frequency band with large
amplitudes compared with that of the tuned system.
This frequency range increase is essentially greater
than for the case of excitation in the 1F mode
frequency range. As is typical for mistuned
assemblies, the maximum resonance peaks are
higher than those of the tuned bladed disc. The
damaged blades for these cases do not change very
much maximum response level and character of the
envelope of forced response.

Correspondence between distinctive resonance
peaks of the randomly-mistuned bladed disc and
natural frequencies of its tuned counterpart is
demonstrated in Fig.7. Here, six distinctive
resonance peaks are numbered in Fig.7a showing
the envelope of the response, and the natural
frequencies of the tuned system corresponding
them are shown in Fig.7b. All these peaks are on
sloping parts of curves in the natural frequencies-
nodal diameters diagram, where blade vibration
coupling through the disc is high. Many resonance
peaks corresponding to the natural frequencies
lying on the flat parts of the first curve form a
relatively wide normalised frequency range (from
0.96 to 1.0) with high response levels. This range is
formed by combined resonance peaks, which are
almost indistinguishable.

In Fig.8 distributions of amplitudes over all the
blades of the bladed disc are displayed which
correspond to the first four of the distinctive
resonance peaks shown in Fig.7. One can see that
one or a small number of blades can have much
higher amplitudes than the others for some
resonances. For the 4th resonance peak analysed,
the distributions of amplitudes have a regular
pattern. This peak corresponds to the natural
frequency of the tuned system, which is distant
from any others.



9

a)
0.9 1 1.1 1.2 1.3 1.4

2SVQEPMWIH�JVIUYIRG]

10
-2

10
-1

10
0

10
1

10
2

2
SV
Q
EP
MW
IH
�E
Q
T
PM
XY
H
I

8YRIH
1MWXYRIH

1

2

3
4

5

6

b) 
Fig. 7 Correspondence of the distinctive resonance
peaks for the mistuned assembly a) and natural
frequencies (b) of the tuned one: 6EO excitation

4.3 Forced response analysis for randomly-
generated mistuning patterns

A statistical survey of the worsening effect of
mistuning has been carried out for many randomly
generated patterns. A small reduction of the
frequency ranges used for the case of statistical
calculations was made to compare maximum
amplitudes of the required modes (1F/6EO,
1F/7EO, 1F/8EO, and 1T/40EO) only. Such
reductions in the frequency range were made after
performing an FRF analysis, which showed high
amplitudes near boundaries of the considered
frequency ranges. These amplitudes were
determined by interactions of a damaged blade
vibrating in one mode and the bladed disc assembly
vibrating in another family of modes. The latter
case appeared for the bladed discs with damaged
blades owing to their large frequency deviations
from the mean value for the whole blade
population.
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Fig. 8 Amplitude distribution over the bladed disc
at the distinctive resonances

The maximum, mean and minimum amplitudes
for each of the analysed mistuning patterns are
shown in Figs.9-10. The maximum amplitude was
found over all blades of the mistuned bladed discs
and among all excitation frequencies from the
range considered. The mean amplitude was
determined as the sum of the maximum amplitudes
found for each blade in the considered excitation
frequency range divided by the number of blades.
The minimum amplitude was determined as the
value minimum found from the maximum
amplitudes found for each blade in the considered
range.
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Fig. 9 The case of 6EO excitation in normalised
frequency range 0.94…1.4. Maximum, mean and
minimum amplitudes found over all blades for each
mistuning patterns analysed: a) randomly generated
mistuning patterns; b) randomly reshuffled blades
from a given set

In the first plot (a) of each of Figs.9-10, the
amplitudes are given for the following types of
mistuning:
1) random blade mistuning within normal

mistuning range (M1);
2) one damaged blade and the rest blades are

randomly mistuned (M2);
3) two damaged blades and the rest blades are

randomly mistuned (M3).
In total, 25 different mistuning patterns were
generated for each of these types. For the 2nd and
3rd types the positions of the damaged blades were
fixed while for the blades with normal mistuning
range, the actual frequency mistune pattern was
generated using characteristics of the fitted normal
distribution.
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Fig. 10 The case of 40EO excitation in normalised
frequency range 3.2…4. Maximum, mean and
minimum amplitudes found over all blades for each
mistuning patterns analysed: a) randomly generated
mistuning patterns; b) randomly reshuffled blades
from a given set

For the second plot in each of these figures,
(b), the following types of mistuning are
considered:
1) two damaged blades and the rest are tuned,

positions of the damaged blades are randomly
changed (M4);

2) 90 experimentally-determined mistuned blades
with 2 damaged blades which are reshuffled
changing positions of the all 92 mistuned
blades in the bladed disc (M5).

For this plot random reshuffling of the initial
mistuning pattern was performed (i.e. all 25 cases
used the same set of blades, but rearranged in
different order). To facilitate references the five
mistuning types considered are marked here by
symbols M1…M5.
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For example one can see that for the 1F mode
excited by 6EO (Fig.9) the introduction of the
damaged blades into a randomly-mistuned
assembly results in only small changes of
maximum, mean and minimum amplitudes. The
effect of damaged blades on maximum response
levels is more significant here for the case of blade
reshuffling.

In Table 1 some statistical characteristics for
all the analysed mistuning patterns are given.
Namely, the mean values and scatter ranges over all
the analysed mistuning patterns are determined for
the above-mentioned maximum, mean and
minimum amplitudes found for each mistuning
pattern. One can see that the scatter of maximum
amplitudes usually lies within the range ±30% of
the average and for mistuning patterns obtained by
blade reshuffling this scatter is smaller than for the
case of randomly-generated mistuned blade sets.
The scatter is especially small for the case when
only two blades are mistuned and their positions are
changed as a result of random reshuffling. The
scatter of mean amplitudes is small and is usually
measured in a few percent.

Table 1 Mean values and scatter of the normalised
response for all analysed mistuning patterns: 6EO

excitation

Maximum
normalised
response

Mean normalised
response

Type of
mistuning
(see page

10)
Mean for

all
patterns

Scatter,
%

Mean for
all

patterns

Scatter,
%

M1 2.72 -20…28 0.65 -8…15

M2 2.74 -25…28 0.63 -8…19

M3 2.71 -20…25 0.65 -8…15

M4 2.87 -13…12 0.90 -1.3…1.9

M5 2.37 -15…23 0.70 -4.0…5.9

The maximum normalised amplitudes found
over all the analysed mistuning patterns are given
for each kind of excitation Table 2. The worsening
effect of the mistuning is largest for the 1F/6EO
resonance condition for the considered bladed disc
and excitation conditions. It results in more than
three times higher amplitudes for some blades than
for the tuned system. The least mistuning

worsening effect is for 1F/8EO and 1T/40EO
excitations, when the maximum normalised
amplitudes are around 2.3 and 1.8 respectively.
Introduction of the damaged blades does not affect
the worsening much when frequency ranges
including resonances determined by the required
blade mode only (i.e. by 1F or 1T modes) are
considered. However, it should be noticed (see
Fig.6) that the damaged blades caused the
appearance of large resonance peaks in the widened
frequency ranges, where the damaged blade natural
frequencies are close to natural frequencies of the
bladed-disc assembly.

Table 2 Maximum normalised amplitude levels
found over the all analysed mistuning patterns

Kind of excitationType of
mistuning
(see page

10)
1F/6EO 1F/7EO 1F/8EO 1T/40EO

M1 3.495 2.786 2.290 1.709

M2 3.493 2.773 2.163 1.651

M3 3.379 2.756 2.009 1.679

M4 3.211 2.710 1.457 1.512

M5 2.921 2.676 2.103 1.795

Total over
all the types

3.495 2.786 2.290 1.795

5. Conclusions

An efficient method for the forced vibration
response analysis of mistuned bladed discs using
detailed finite element models has been presented.
The method proposed here allows the exact
calculation of the response of mistuned bladed
discs using FRF matrices of the corresponding
tuned system and together with a mistuning matrix.
The distinct features of the proposed method are: (i)
only a single sector model is needed to represent
the tuned and mistuned bladed disc, (ii) mistuning
is treated as a structural modification problem, (iii)
the computational cost for mistuning calculations
does not depend on the size of the original sector
model as the solution is obtained at active co-
ordinates, and (iv) the reduced model
corresponding to the active co-ordinates is as
accurate as the initial sector model represented by
its natural frequencies and mode shapes.
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Investigations of the forced response of
mistuned bladed discs containing randomly
mistuned blades (within the normal frequency
mistuning range), and with damaged blades, have
been carried out. The worsening effect of mistuning
on resonance amplitude levels and on forced
response functions has been analysed using
detailed, realistic finite element model. The highest
amplitude level was determined from many
mistuning patterns. These mistuning patterns were
created by: (i) generation frequency mistuning for
each individual blade randomly; (ii) random
reshuffling a predefined mistuning set.
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