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ABSTRACT
Friction dampers have been used to reduce turbine blade

vibration levels for a considerable period of time.  However, optimal
design of these dampers has been quite difficult due both to a lack of
adequate theoretical predictions and to difficulties in conducting
reliable experiments.  One of the difficulties of damper weight
optimisation via the experimental route has been the inevitable
effects of mistuning.  Also, conducting separate experiments for
different damper weights involves excessive cost.  Therefore,
current practice in the turbomachinery industry has been to conduct
so-called ’rainbow tests’ where friction dampers with different
weights are placed between blades with a predefined configuration.
However, it has been observed that some rainbow test results have
been difficult to interpret and have been inconclusive for
determining the optimum damper weight for a given bladed-disc
assembly.

A new method of analysis - a combination of Harmonic
Balance Method and structural modification approaches - is
presented in this paper for the analysis of structures with friction
interfaces and the method is applied to search for qualitative
answers about the so-called ’rainbow tests’ in turbomachinery
applications.  A simple lumped-parameter model of a bladed-disc
model was used and different damper weights were modelled using
friction elements with different characteristics.  Resonance response
levels were obtained for bladed discs with various numbers of
blades under various engine-order excitations.  It was found that
rainbow tests, where friction dampers with different weights are
used on the same bladed-disc assembly, can be used to find the
optimum damper weight if the mode of vibration concerned has
weak blade-to-blade coupling (the case where the disc is almost
rigid and blades vibrate almost independently from each other).
Otherwise, it is very difficult to draw any reliable conclusion from
such expensive experiments.

1.0 INTRODUCTION
Friction dampers have been widely used in turbomachinery

applications for a considerable period of time in order to provide
mechanical damping to reduce resonance stresses. A typical
application of the dry friction damping concept in gas turbines is the
so-called “ friction damper” , or underplatform damper, which is
loaded by centrifugal force against the underside of the platforms of
two adjacent blades.  The main design criterion for such dampers is
to determine the optimum damper mass for a given configuration in
order to reduce the dynamic stresses by the maximum possible
extent.  If the damper mass is too small, the friction force will not be
large enough to dissipate sufficient energy.  On the other hand, if the
damper mass is too large, it will “stick” , limiting the relative motion
across the interface and thus the amount of energy dissipation.  In
both cases, the friction damper will be inefficient and between these
two extremes there is an optimum mass.

Although a substantial effort has been devoted to
understanding, modelling and optimisation of friction dampers for
turbomachinery applications including; (i) modelling the basic
contact characteristics, usually in the form of friction force-
displacement hysteresis loops [1-6], (ii) modelling the friction
damper element incorporating the basic contact characteristics [7-9]
in (i), and (iii) developing analysis methods and application of these
for friction damper optimisation in practice, [10-15].  Although
significant advances have been made in all these three categories it
is still difficult to rely on computer-based predictions alone for
assessing the response amplitude of turbomachinery blading and for
optimising the friction interfaces.  This is due mainly to the marked
non-linearity of the contact mechanisms and the uncertainties of the
actual dynamic forces acting on the blades.   This situation has led
the aero-engine manufacturers to rely mainly on previous experience
and empirical data obtained from either simplified test rigs
comprising a single or group of blades, or from more realistic, albeit



Fig. 1 Schematic illustration of ’rainbow’ tests.

more expensive, spin tests using a complete bladed-disc assembly
which includes most of the important factors.  Although most
current research is focussed on validating theoretical models and
methods so as to minimise these expensive experiments it is still
common practice to carry out spin tests on complete bladed-disc
assemblies in order to assess the effectiveness of the underplatform
dampers. Conducting separate spin tests for different damper
weights is, however, rarely employed in industry, due to excessive
costs.  Instead, so-called rainbow tests are adopted, where friction
dampers with different weights are placed between adjacent blades
with a predefined configuration as schematically illustrated in Fig.1
for a special case of three different types of damper being installed.
The experimental route, however, also has numerous difficulties in
conducting reliable friction damping tests. More often than not,
results obtained from such experiments have proven to be
inconclusive for determining the optimum damper weight for a
given bladed-disc assembly.  One of the difficulties of damper
weight optimisation via the experimental route has been the
inevitable effects of mistuning [16-21].  There are mainly two
problems associated with mistuning during damper optimisation: (i)
the difficulty of distinguishing the effect of mistuning from that of
the dampers and (ii) in general, not being able to instrument every
blade on an assembly, which makes it very likely that the maximum
response levels experienced by a single blade will not be detected.
Some recent measurement techniques using non-contact
measurement systems allow (in principle) monitoring all the blades
on a bladed-disc assembly although the interpretation of the results
is also hampered by mistuning effects [19].  Most of the research
published in the literature is focussed on investigating the effects of
stiffness and mass mistuning, resulting in variations of individual
blade frequencies, some including the effect of uniform dry friction
[22].  One of the conclusions of [22] is that friction damped systems
are more prone to localised vibrations.  A number of researchers
have also studied the effect of damping variations when all the
blades within a bladed-disc are damped [23-24].

A recent study [25] investigated, using a linear analysis
approach, whether accurate damping measurements for a single
blade could be obtained by testing a bladed-disc with only a few

Fig. 2 Bladed-disc model with friction elements.

blades damped.  This paper is an extension of [25] and it seeks to
identify those circumstances under which rainbow tests can be used
for determining the optimum damping condition.  Furthermore, it
tries to establish how many blades need to be instrumented in such
tests.  The additional important and unique features of this paper are:
(i) the friction dampers are modelled as non-linear friction elements,
the analysis procedure being based on the harmonic balance method
and (ii) a method based on the structural modification approach is
used in conjunction with the harmonic balance method to analyse
structures with friction interfaces efficiently.

2.0 MODEL DESCRIPTION
The lumped-parameter model used in this study is a variation

of the bladed-disc model originally proposed by Dye and Henry
[26], as shown in Fig. 2.  A single mass (m) is used to model the
blade while the other mass (Md) represents the effective mass at the
platform location and includes the sectorial mass of the disc as well
as a proportion of the blade’s mass. The dashpot attached between
ground and the blade mass represents aerodynamic damping.  The
flexibility of the blade and the disc are also included and friction
dampers are introduced between the lumped masses, Md, indicated
by a crossed box.  The current friction dampers in practice are
usually wedged-shaped and their vibration characteristics are much
more complicated than the simple one-dimensional damper model
used here presented here.  This simple model is, however,
considered appropriate for the objective of this paper.  A realistic
model for wedge-shaped dampers, which is based on both
measurements and theory, is addressed in [29].  The system shown
in Fig.2 can be described by the familiar equation as
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 (1)

Where M, C, K are the mass, viscous damping and stiffness
matrices; and f(t) and r(t) are the external and friction forces due to
damping respectively.  Assuming harmonic motion leads to the
well-known counterpart of Eq.(1), as

[ ] [ ] [ ] { } { } { }RFQMCiK +=


 −+ 2ωω  (2)

where ω is the frequency and {F} and {R} are the Fourier
Transforms of f(t) and r(t) respectively.  The external forcing
considered here, {F}, is of the engine-order type, its magnitude
being unity as in [25], applied to the blade co-ordinates only while



Fig. 3a One dimensional friction damper model

{ R}  represents the first harmonic components of the resulting
friction forces which are applied to the platform co-ordinates.

3.0 ANALYSIS METHOD
The new analysis method proposed in this paper is a

combination of the Harmonic Balance Method and a structural
modification approach. These two approaches, and how to combine
them for an efficient analysis tool to analyse structures, are
described below. The solution algorithm adopted in the frequency-
domain is based on finding the response amplitudes iteratively, the
starting point being the response levels of the underlying linear
system.  The behaviour of the friction dampers is analysed at a given
relative response amplitude between the damper connection points
and the individual dampers are represented as equivalent complex
stiffnesses, representing both restoring and energy dissipation
characters.  The equivalent complex stiffnesses are then added to the
otherwise linear system and the response levels of the modified
system are calculated again, the procedure being repeated until
convergence is achieved.

The following subsections are describing these two stages; -
representing a friction damper as a complex stiffness at a given
relative response amplitude and - modifying the otherwise linear
system to include frictional effects.

3.1 Harmonic Balance Approach  
The friction damper element indicated by a crossed box in

Fig.2 is in fact a simplified representation of the situation depicted
in Fig. 3a where two surfaces rub against each other along a line,
parts I and II, representing the platforms of the neighbouring blades.
The macro-slip friction model of Fig. 3b has been used extensively
in the analysis of various non-linear systems and it will also be used
in this paper although real contact characteristics can be quite
different than that of macro-slip model, [6].  It should be noted,
however, that the analysis method in this paper is equally applicable
to any other type of hysteresis loop model.

In the traditional analysis of structures with friction joints, the
non-linear friction forces are calculated in an iterative fashion and
are usually considered as external forces.  As in [9,15] this paper
converts these forces into amplitude- (and phase-) dependent
equivalent stiffness parameters for CPU reduction as well as
numerical stability.

Fig. 3b Force-displacement model of macro-slip model.

Now, let us consider the non-linear force-displacement
relationship of a friction damper element, denoted by Tj in Fig. 2.
As mentioned earlier, the characterization of the damper is carried
out at a given relative displacement as

Z Y Yj j j= −+1    (3)

where Yj+1 and Yj are complex quantities representing the platforms
of neighboring blades. Zj is also a complex quantity whose motion
for a cycle can be described more explicitly as

z t Z t Zj j j j j( ) cos( ) cos( )= + =ω φ θ  (4)

where φj is the phase angle and θ ω φj jt= + . Now, let us consider

the non-linear force-displacement relationship of a friction damper,
acting between co-ordinates yj+1 and yj, given by: (the subscripts
will be omitted for clarity)

R R z= ( )  (5)

where R is the friction force acting between the neighbouring
platforms.  Then, the linearised stiffness coefficient, or the

describing function of friction element, keq
*

, can be written as [9]:
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 are the amplitude-dependent real and imaginary

parts of the equivalent stiffness, respectively, as given by
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If the system is tuned and the friction dampers are identical, all
blades will experience the same level of vibration and the equivalent
complex stiffness would be the same for all the friction dampers.
However, friction dampers with different characteristics will result
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in blades having different vibration levels and these will, in turn,
result in individual dampers having different equivalent stiffness
parameters.

3.2 An Efficient Analysis Method for Structures with  
Friction Joints  

The so-called Sherman-Morrison formula has already been
proposed in the literature [27] to calculate the frequency response of
a (linear) modified structure.  It is shown in [27] that the Sherman-
Morrison identity allows a direct inversion of the modified matrix
efficiently using the data related to the initial matrix and to the
modification.  A brief summary of the Sherman-Morrison formula is
appropriate here.

Let A −1 be the inverse of a non-singular square matrix, A .  If the

inverse of a modified matrix, ′ −A 1, is needed where ′A  is of the

form

[ ] [ ] { }{ }TvuAA +=′  (8)

it can be calculated using the Sherman-Morrison formula as
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where

{ } [ ] { }uAv T 1−=λ (10)

It should be noted that if [A]-1 is known, Eq.(9) does not
require any further matrix inversion to find the inverse of [A’]-1. The
generalisation of Eq.(9) is also available and is known as Sherman-
Morrison-Woodbury formula which considers a modification as a

product of two rectangular matrices such as U V T .  A more

detailed coverage of this approach and the numerical aspects are
discussed in [28].

The aim of this paper is quite different in the sense that the
purpose of the analysis is to calculate the non-linear response levels
of structures with localised non-linearities rather than the linear
modification analysis as reported in the above literature.  The
analysis method presented here treats the linear and the non-linear
parts of a structure separately, the linear part being the structure
excluding the non-linear parts.  The non-linear part is considered as
a linearised modification to the original system, the linearised
parameters being obtained using the harmonic balance method as
described in the previous section.  Suppose that the linear structure
is given by its dynamic stiffness matrix [Z] and its Frequency
Response Function matrix [α], [α]=[Z] -1, and the modification
matrix to be made to [Z] is [∆].  The dynamic stiffness matrix of the
modified system ′Z  can then be written as

′ = +Z Z ∆ (11)

If the modification matrix is written of the form:

[ ] { }{ }Tvu=∆ (12)

the FRF matrix of the modified system [β] can be computed from
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which allows the FRF matrix of the modified system to be
calculated without any matrix inversion.  It should be noted that if
the total modification matrix [∆] cannot be written as a
multiplication of two vectors as in Eq.(12), it can be decomposed
into several, say p, modification matrices, such as

∆ ∆ ∆ ∆ ∆= + + + +1 2 3 ..... p (14)

where [ ] { }{ }T
iii vu=∆ .  This allows the FRF of the system to be

calculated by considering each ∆ i  individually.

It is also possible that the solutions can be obtained very
efficiently at active co-ordinates only, active co-ordinates being the
non-linear co-ordinates, excitation co-ordinates and the other co-
ordinates where the response levels are needed.  This approach
allows local solutions to be obtained no matter how large the whole
model is, as addressed in [29] including the application of this
method to realistic turbine blades with friction dampers and
validation of the predictions by experiments.

4.0 ANALYSIS AND RESULTS
As the primary objective of this work is to investigate

qualitative aspects of rainbow tests and to demonstrate the new
analysis procedure, it was convenient to keep the number of blades
reasonably small.  Therefore, the bladed-disc system studied here
had 12 blades, although a case with 24 blades is also studied in order
to investigate the effect of varying the number of blades.  However,
the blade-to-blade coupling ratio was selected such that the bladed-
disc studied here had a similar first family characteristic (see Fig. 4)
to that of a realistic turbine stage.  The corresponding linear
structural parameters are listed in Table 1.

Having determined the linear structural model, the next step
was to determine the parameters for the friction dampers.  Macro-
slip elements were selected to simulate friction dampers since it was
easier to relate friction limits to damper weights.  The contact
stiffness of the macro-slip element was assumed to be the same for
all dampers, and was chosen to give a clear natural frequency shift
between slipping and sticking cases.  A typical response plot is
illustrated in Fig. 5 (free-slipping curve) for a tuned 12-bladed disc
subjected to a 1st engine order (1EO) excitation (referring to Fig. 4,
this particular mode of vibration can be classified as a mode with
relatively strong blade-to-blade coupling).  It is worth here to
emphasize the definition of weak and strong blade-to-blade coupling
used in this paper as some researchers use the same terminology for
different meanings.  The authors of this paper prefer to use the
definition of “weak blade-to-blade coupling”  for those cases where
the disc is almost rigid and the assembly natural frequencies
approach the cantilevered blade alone frequency (i.e., the stiffer the
disk, the weaker the coupling hence zero coupling means rigid disc).



Fig. 4 Natural frequencies of the 1st and 2nd family modes

Table. 1  Linear structural parameters.

          
1
2p k/m=1033.7 Hz        

Kd/Md

k/m
 = 2.3

          k = 2.109 MN/m             Kd = 40.17 MN/m

         kg = 63.9 N/m                  c = 3.247 Ns/m

Strong blade-to-blade coupling, on the other hand, refers to the other
extreme where the disc is quite flexible.  One way of quantifying the
degree of coupling  strength is to define a coupling ratio CR,
CR=(1-(ωas/ωn)

2), where ωas is the tuned bladed-disc assembly

frequency for a given nodal diameter mode of vibration and ωn is
the blade alone cantilever frequency.

The corresponding response levels of the tuned system were
calculated for various friction limits (normal load times friction
coefficient) in order to determine the optimum damper friction limit
which is directly related to optimum damper weight.  The analysis
was done using a dedicated program based on the analysis procedure
summarised in the previous section.  It should be stressed that
knowing the optimum friction damper beforehand is an essential
part of this simulation since the rest of the study aims to determine
whether the forced response levels of the blades with different
friction dampers can be used to identify this known optimum
damper.  The tuned system response amplitudes for the cases of the
optimum damper weight, half of the optimum and twice the
optimum are illustrated in Fig. 5.

A particular rainbow test configuration studied here is
illustrated in Fig.6.  It is seen that there are three different sizes of
damper around the disc; optimum, half optimum and twice the
optimum in terms of damper weight.  It should also be noted that
some blades do not have any dampers at all.  This type of simulation
is quite representative of the actual tests in practice as it is common
during this sort of test to install relatively heavy, normal and light

Fig. 5 Tuned response levels for various friction limits.

Fig.6 Distribution of friction dampers

dampers so as to determine which one will produce the maximum
damping.  It should be stressed that the optimum damper in this
simulation is known beforehand, the whole idea is to examine
whether the measured results can identify this fact.

As can be seen in Fig.6, the dampers are identified as “No
Damper” , “0.5 x Optimum”, “Optimum” and “2 x Optimum” and
this convention will be used throughout the rest of the plots so that
results are presented in a consistent manner.

Most of the results were obtained for a 12-bladed disc, a typical
set of results being illustrated in Fig.7a for 1 Engine-Order (1EO)
excitation.  It is seen that the response levels of those blades with
optimum dampers do not give any indication that those blades are
the ones with optimum friction dampers (the maximum response
levels of those blades with optimum dampers are identified by
marks along the vertical axis in Fig.7a and in other similar plots).
The maximum response levels of individual blades in Fig. 7a were
found and the results are presented in Fig. 7(b) (the maximum
response levels were normalised to the tuned maximum response
level with optimum friction damper).  It is clear that there is no
correlation between response amplitude and the damper weight but



there is a strong suggestion that the maximum response amplitudes
are determined by the mode shape rather than the distribution of
dampers around the disc for this particular case.

A similar analysis was performed for the same bladed-disc
assembly under different EO excitations.  Each time, the optimum
damper weight was determined by analysing the tuned system under
various friction limit conditions (different damper weights), and the
response levels of the blades corresponding to the friction damper
distribution, as shown in Fig. 5, were determined.  The results,
similar to those in Fig. 7, are presented in Figs. 8 to 10, the
difference being the order of the EO excitation.  Inspection of these
figures (Figs. 7 to 10) reveals that there is no relationship between
blade response levels and the damper weights for low EO
excitations.  However, as the order of the excitation increases (see
Figs. 9 and 10), a pattern starts to emerge, showing that those blades
with optimum friction dampers tend to experience minimum
response levels.  It should be noted that a specified EO excitation
predominantly excites the corresponding nodal diameter modes and
blade-to-blade coupling decreases with increasing nodal diameter
mode of vibration.  Therefore, the argument above in terms of EO
can be equally valid in terms of nodal diameter mode of vibration,
or corresponding strength of blade-to-blade coupling.

So far, all the results presented here were for 12 bladed disc
under various EO excitations.  Similar calculations were also
performed for a 24 bladed disc under 2EO and 12EO excitations so
as to verify that the previous findings are not specific to the
particular bladed disk studied here.  Results presented in Fig. 11
fully support the findings from the 12-blade-disc study.  This is not
surprising since there are very strong indications that the underlying
parameter for forced vibration characteristics of a bladed disc is the
coupling between the disk and the blade rather than number of
blades or the order of the excitation alone [21].

All the findings in this study suggest that rainbow tests, where
friction dampers with different weights are used on the same bladed-
disc assembly, can be used to find the optimum damper weight if
and only if the mode of vibration concerned has very weak blade-to-
blade coupling (the case where the disc is almost rigid and blades
vibrate almost independently from each other).  Otherwise, it seems
that it may be very difficult to draw any reliable conclusion form
such expensive experiments.  It is interesting to note that the non-
linear analysis method here yielded the same conclusion as that of
[25] even though their simulation was based on a linear analysis.

Another important qualitative finding of this study is related to
the number of blades that will require instrumenting in such
experiments.  The response levels of all the blades were assumed to
be ’measured’ in this simulation in order to identify the conditions
where rainbow tests can and cannot produce satisfactory results.  In
practice, however, it is hardly possible to monitor all the blades
around the disc, especially for discs with large number of blades.
The results presented in this paper also give some guide as to which
and how many blades need instrumentation.   Inspection of all the
results suggest that at least one blade from each group needs to be
instrumented although instrumenting two blades from each group is
expected to yield a more reliable assessment of the results.
Furthermore, it is better to instrument those blades which are close
to the middle of a group of dampers around the circumference.  It is
expected, however, that this finding may not be applicable to other

situations where the distribution of dampers are quite different than
what is examined here, nor for those cases where the effect of other
sources of mistuning is stronger than that provided by the friction
dampers.

It is worth restating here that the mistuning due to the
differences between blades’ mechanical properties are deliberately
excluded from the study reported in this paper. The main reason for
this exclusion was to establish an upper limit of what to expect from
rainbow test results under idealistic conditions.  It is, however,
necessary to include these effects in order to make more realistic
assessment of such expensive tests as the additional mistuning
effects are inevitable in practical tests.  It is quite likely that the
results of a rainbow test may not indicate the optimum damper
weight, even for lightly-coupled bladed discs, when the additional
mistuning level exceeds a certain threshold.  The simulation of this
situation requires a better damper model as well as more realistic
(empirical) contact parameters for the friction dampers, so that the
relative importance of the non-linear damping and blade-alone
mistuning can be identified and their effects can be distinguished
from each other.

5.0 CONCLUSIONS
A new method has been presented for the analysis of structures

with friction interfaces.  This method is a combination of the
Harmonic Balance Method and a structural modification approach
and is based on modifying the otherwise-linear structure with the
amplitude-dependent equivalent complex stiffness representing both
restoring and energy dissipation characteristics of joints.

This method of analysis has been applied to investigate
whether, and under which conditions, the so-called ’rainbow’ tests
can be used for damper optimisation purposes in turbomachinery
applications.  Results of the rainbow-test simulation presented in
this paper suggest that these tests can be used to determine the
optimum damper weight only if there is a weak blade-to-blade
coupling for the mode of vibration concerned. It has also been found
that instrumenting two blades from each group of dampers is
expected to yield reliable assessment of the results when other
sources of mistuning are negligible.

Although the results of this investigation have established the
condition when rainbow tests can be used to identify optimum
damper weight, a more detailed and representative analysis need to
be carried out in order to establish the effect of additional mistuning
present in these tests.
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Fig.7a Blades’  response levels versus excitation frequency
(N=12, EO=1)

Fig.8a Blades’  response levels versus excitation frequency
(N=12, EO=2)

Fig.9a Blades’  response levels versus excitation frequency
(N=12, EO=4)

Fig.7b Blades’  maximum response levels with friction dampers
 (N=12, EO=1)

Fig.8b Blades’  maximum response levels with friction dampers
 (N=12, EO=2)

Fig.9b Blades’  maximum response levels with friction dampers
 (N=12, EO=4)



Fig.10a Blades’  response levels versus excitation frequency
(N=12, EO=6)

Fig.11a Blades’  maximum response levels with friction dampers
(N=24, EO=2)

Fig.10b Blades’  maximum response levels with friction dampers
 (N=12, EO=6)

Fig.11a Blades’  maximum response levels with friction dampers
(N=24, EO=12)


