
UNDERPLATFORM DAMPERS FOR TURBINE BLADES:
THEORETICAL MODELLING, ANALYSIS AND COMPARISON

 WITH EXPERIMENTAL DATA

Kenan Y. Sanliturk, David J. Ewins and Anthony B. Stanbridge
Imperial College of Science, Technology and Medicine

Mechanical Engineering Department, Centre of Vibration Engineering
London, SW7 2BX, UK

ABSTRACT
This paper describes a theoretical model for analysing the

dynamic characteristics of wedge-shaped underplatform dampers
for turbine blades, with the objective that this model can be used
to minimise the need for conducting expensive experiments for
optimising such dampers.  The theoretical model presented in the
paper has several distinct features to achieve this objective
including: (i) it makes use of experimentally-measured contact
characteristics (hysteresis loops) for description of the basic
contact behaviour of a given material combination with
representative surface finish, (ii) the damper motion between the
blade platform locations is determined according to the motion of
the platforms, (iii) three-dimensional damper motion is included
in the model, and (iv) normal load variation across the contact
surfaces during vibration is included, thereby accommodating
contact opening and closing during vibration.

A dedicated non-linear vibration analysis program has been
developed for this study and predictions have been verified
against experimental data obtained from two test rigs.  Two
cantilever beams were used to simulate turbine blades with real
underplatform dampers in the first experiment.  The second
experiment comprised real turbine blades with real underplatform
damper.  Correlation of the predictions and the experimental
results revealed that the analysis can predict (i) the optimum
damping condition, (ii) the amount of response reduction and (iii)
the natural frequency shift caused by friction dampers, all with
acceptable accuracy.  It has also been shown that the most
commonly-used underplatform dampers in practice are prone to
rolling motion, an effect which reduces the damping in certain
modes of vibration usually described as the lower nodal diameter
bladed-disc modes.

1.0 INTRODUCTION
The friction damping concept is frequently applied in

turbomachinery applications, especially at hot locations, to reduce
resonance stresses.  A typical application of dry friction damping
in gas turbines is the so-called 'friction damper', 'cottage-roof
damper' or 'underplatform damper', which is loaded by centrifugal
force against the underside of the platforms of two adjacent
blades.  The main design criterion for such devices is to determine
the optimum damper configuration or the damper mass or both in
order to reduce the dynamic stresses by the maximum possible
extent.  For example, if the damper mass is too small for a given
configuration, the friction force will not be large enough to
dissipate sufficient energy.  On the other hand, if the damper mass
is too large, it will “stick”, limiting the relative motion across the
interface and thus the amount of energy dissipation.  In both cases,
the friction damper will be inefficient and between these two
extremes there is an optimum size.  A good review of the friction
damping concept in turbomachinery applications is given by
Griffin [1]

The so-called 'cottage-roof damper' or 'underplatform damper'
is physically a very simple device usually a simple-shaped piece of
metal loaded on the underside of adjacent blades.  The theoretical
analysis and the optimisation of these simple devices have been
quite difficult, however, due to marked non-linearity and to
uncertainties about the contact characteristics and damper
behaviour.  Substantial effort has been devoted to understanding
and modelling basic contact characteristics, usually in the form of
friction force-displacement hysteresis loops [2-7].

In addition to those studies related to the basic contact
characteristics between two contacting surfaces, several friction
damper models and analysis methods have been proposed in the
past.  The simplest, yet the most commonly used, friction damper
model in the literature is the adaptation of a basic macro-slip
contact model to represent underplatform dampers [8-11].



Fig.1 Schematic illustration of under-platform dampers between
adjacent blades.

This simple model is usually combined with a single-degree-of-
freedom (SDOF) blade model, the friction damper being attached
between the SDOF system and ground.  These studies have
revealed various important aspects of the friction damper
characteristics and yielded some qualitative answers, especially on
damping optimisation.

More recent research efforts on friction dampers for turbine
blades have introduced more details of the damper geometry.
Menq et al [12] have developed a theoretical model for bar-shaped
underplatform dampers and that model was used for the forced
response analysis of turbine blades [13,14].  Most of the
commercially-used dampers are more complex than the bar-
shaped underplatform dampers.  Pfeiffer and Hajek [15] proposed
a method to analyse stick-slip vibrations in general and studied a
curved wedged damper for turbine blades.  The behaviour of
curved wedge-shaped dampers was also studied by others, usually
by approximating the contact behaviour using Hertzian contact
theory [16, 17, 30].  The most commonly-used type of friction
damper in industry is the wedged-shaped damper with flat contact
surfaces, as illustrated in Fig.1 which is also the least studied
although important contributions have been made in modelling
and analysis of this type of damper [18]. Various analysis methods
have also been developed and reported in the literature, mainly for
friction damper optimisation in turbomachinery applications [11,
19-22].

Although significant advances have been made in theoretical
modelling of friction dampers and the analysis methods for
damper optimisation, turbomachine manufacturers still rely on
previous experience and empirical data rather than computer-
based predictions alone for friction damper optimisation.  This has
been mainly due to the over-simplification introduced in the
models regarding the basic contact behaviour and/or damper
geometry and the inability to analyse representative-size models
due to excessive computational cost.

This paper proposes a methodology which combines three
essential aspects of friction damping optimisation in
turbomachinery application. These include (i) utilising
experimentally-measured hysteresis loops do describe the basic

contact behaviour between contacting surfaces in the analysis, (ii)
development of a theoretical model for the motion of the wedge-
shaped friction dampers and the forces generated at the contact
interfaces and (iii) development of an efficient analysis method
which enables the analyst to use realistic Finite Elements models
to describe the dynamic behaviour of real turbine blades.  The
analysis methodology in (iii) is based on a combination of the
harmonic balance method and a structural modification approach.
The main motivation behind this work is to develop a friction
damper optimisation technique which is capable of dealing with
real geometries.

As our paper addresses almost the same problem studied in
[18], it is appropriate here to describe some of the similarities as
well as the differences.  The work reported here is similar to [18]
in the sense that both aim to develop a prediction capability for
the optimisation of wedge-shapes dampers, the kinematics of the
wedge-shaped damper are based on the motion of the platform
nodes and the harmonic balance method is applied for the non-
linear analysis.  The main differences are that our approach here
includes 3-dimensional platform and 2-dimensional contact
motions, micro-slip type of interface definition, a very efficient
numerical analysis procedure and also includes experimental test
case using real turbine blades.

2.0 CONTACT MODEL
In contrast to most research work in the literature, the contact

model used in this work is based on an empirical model whose
properties are obtained from experimental data.  The experimental
test rig reported in [7] for the measurement of hysteresis data has
been slightly modified to measure the contact behaviour of
underplatform dampers.  This was achieved by rubbing a real
underplatform damper against a block which was made of the
same material as that of the blade with similar surface finishes.
These measurements were carried out at constant normal load in
order to provide the basic contact properties, although the analysis
includes normal load variation during the blade response analysis
as will be addressed in section 3.2. It is noted that the overall
contact behaviour is quite similar to the "point" contact
measurements reported in Ref. [7].  Furthermore, it has been
found that the hybrid model proposed in [7] is generally adequate
to represent the measured hysteresis loops, a typical example of
which is illustrated in Fig.2a.  Also, an array of macro-slip
elements, as shown in Fig.2b can successfully be used to
reproduce the observed micro-slip behaviour, [23].

3.0 FRICTION DAMPER MODEL
Underplatform dampers are physically very simple devices,

yet their non-linear behaviour is quite complicated and its analysis
can be extremely difficult if all the details of the damper
characteristics are to be included in the analysis.  These
difficulties arise due to many complicated factors: for example the
temperature, frequency and surface roughness effects, the real
contact locations and their variation during vibration are just some
of them.  In spite of the physical simplicity of these dampers, the
effects of these and other factors have not yet been fully
understood.  Accordingly, based on engineering judgement, some
simplifying assumptions as listed below have been made here in
order to reduce the problem to a manageable level:



Fig. 2a  Typical measured hysteresis loop under constant normal
load.
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Fig. 3 Platform motion in three-dimensional space.
(β is platform angle, NodeL and NodeR are the platform structural

nodes)

• damper flexibility and inertia effects are negligible,
• damper contact on each side can be represented as a point

contact with three translational degrees of freedom,
• left and right surfaces are identical,
• the blade motion is harmonic.

In addition to the assumptions above, the first stage of the
formulation below will have an additional assumption that

• damper and platform surfaces remain in parallel and in
contact at all times.

Experimental results, however, indicated that this last assumption
is often not valid for the wedge-shaped dampers studied here, and
so some corrections are introduced later.

The friction damper model presented below is based on a
given amplitude of vibration and so the model parameters must be
recalculated until convergence is achieved due to marked non-
linearity of these devices.  The analysis method based on iterative
approach is given in section 4.
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Fig. 2b Representation of measured behaviour by an array of
macro-slip elements.
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Fig. 4 Relative platform displacements

3.1 Relative Motion Across Damper Surfaces
The theoretical formulation of the cottage roof damper

motion as presented here is based on a model as shown in Fig.3
where a local co-ordinate system is attached to one of the
platforms and the instantaneous relative motion of the other
platform is described by

rxyz= i rx + j ry + k rz (1)

where

rx = |X| cos(ω t +φx)
ry = |Y| cos(ωt +φy) (2a)
rz = |Z| cos(ωt +φz)

and

X =  XL - XR

Y = YL - YR       (2b)
Z =  ZL - ZR



XL, YL, ZL, XR, YR, ZR above are complex quantities representing
both amplitude and phases at platform nodes.  Similarly, X, Y and
Z are the relative platform displacements with respect to the local

Node C x

y

Node R

rR
rL

Node L

rxy = i rx + j ry

Fig.5a

rLz

rRzrL rR

Fig.5b

Fig. 5 Relative contact displacements on damper surfaces.
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Fig. 6 Displacement triangle relating rxy to rL and rR.

co-ordinate system, φx , φy and φz being the corresponding phase
angles.  Furthermore, ω  is the angular velocity and t is time.  It
should be stated at the outset that rx, ry, rz and other parameters
which are functions of them are not constant values but functions
of the angular displacement, ωt. The damper formulation
presented in this paper requires calculation of these displacements
(and the associated forces in the next section) for at least one
vibration cycle.  However, ωt is dropped in the equations for
brevity.

The relative platform motion in Fig 4 is three-dimensional,
having components in all three local directions. The relative
displacements of the underplatform damper with respect to the
platform surfaces shown in Fig 5 are calculated based on the
assumption that the centrifugal force acting on the damper mass is

large enough to keep the damper in contact with the platform
surfaces at all times.

Fig  7 Damper displacements with respect to the platform
surfaces.

Accordingly, a displacement triangle in Fig 6 can be drawn
relating the relative displacements of the platform in x-y plane
(rxy) and the relative contact displacements rL and rR in Fig.5a.
Since the directions of all the vectors in Fig 5a and the magnitude
of the rxy are known, the magnitudes of the rL and rR are
calculated as
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Another component of the relative contact motion is in the
local z-direction as indicated by rLz and rRz in Fig 5b and there is
some uncertainty regarding how the rz is shared between the left
and the right hand side of the damper. It is assumed in this paper
that the relative platform motion in the z-direction is shared
equally between left and right side of the damper, i.e.,

r r rLz Rz z= = / 2 (3c)

The reasoning behind above assumption is that minimum energy
will be dissipated if the two sides share the relative displacements
equally. In general, there is a phase difference between the
relative contact displacements in the x-y plane and in the z-
direction and this results in elliptical relative contact motion as
illustrated in Fig. 7.  Reader may refer to [23] for details of how to
analyse those interfaces where the relative contact motion is
elliptical as well as how to relate one-dimensional micro-slip
model to elliptical motion at the interface.

3.2 Damper Forces
Determination of the friction forces across the damper

surfaces requires contact displacement and normal load as well as
the contact characteristics. The relative contact displacement can
be calculated using the procedure summarised above.

The forces on a typical underplatform damper are quite
complex in spite of the simplifying assumptions and in spite of the
simplicity of the 'static' forces involved in Fig.8 where CF
represents centrifugal force acting on the damper and NLs and NRs



are the static reaction forces in the absence of any vibration.
These reaction forces can easily be calculated using the static
equilibrium conditions as depicted in Fig 8a and given by
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Fig. 8a Static case
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Fig. 8b Dynamic case
Fig.8 Forces acting on a damper.
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The results, not presented here, indicate that the normal forces
during vibration can deviate significantly from those of the mean
"static" values.  The main difficulty in including normal load
variations is that the normal loads on the damper surfaces depend
on friction forces and vice-versa.   In Fig. 8b, NL and NR are
different from each other, as are the corresponding friction forces
on each side of the damper.  As the damper inertia is neglected,
the total force acting on a cottage roof damper must be zero for
equilibrium, hence one can write equilibrium equations in local x-
and y-directions respectively at any arbitrary time during a
vibration cycle as follows:

    N F N FL L R Rsin( ) cos( ) sin( ) cos( )β β β β+ = +            x-dir (5a)

   N N F F CFL R L Rcos( ) cos( ) sin( ) sin( )β β β β+ = + +    y-dir (5b)

It is worth mentioning here that similar to the relative
displacements, the dynamically varying forces are functions of the
angular displacement, ωt, although ωt is dropped from these
equations.  Using Eq.5, one can write the normal loads on each
side of the damper as a function of CF and the friction forces FL

and FR, as given below.

N
F F CF F F

L
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β
β β

 (6a)
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 (6b)

The dynamic equilibrium condition above provides only two
equations and there are four unknowns to be determined, namely:
NL, NR, FL and FR. (The friction forces in local z-direction, FLz and
FRz are perpendicular to the normal loads hence they are excluded
in determining the normal loads here).  Although the normal loads
on the contact surfaces and the corresponding friction forces are
not independent, it is very difficult to write an explicit
relationship between them since this relationship is non-linear and
depends on the previous history of the contact motion.  There are
two possible solutions to overcome this problem: (i) iterate until
convergence is achieved at every increment of a vibration cycle
and, (ii) update the normal load successively at every increment of
a vibration cycle without iteration.  Both of these strategies, (i)
and (ii) above, can be used to calculate the normal forces as well
as the friction forces. It has been found, however, that option (i) is
fairly expensive compared to option (ii) as option (ii) can yield
acceptable accuracy.  Therefore, only the second approach, also
called the Successive Approximation approach, is described here.

In the so-called Successive Approximation approach, the
normal loads are updated according to the friction forces
calculated in a previous step, without involving any iteration.
Various steps involved in this approach are summarised below.

   Step1) Start with static normal load (set the angular
displacement
              to zero: θ =ω t=0)

N N
CF

L R= =
2cos( )β

 (4)

Step 2) Calculate FL, FR, FLz, FRz based on NL, NR

Step3) Calculate new normal loads using equilibrium equation

N
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L
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β β

 (6a)
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(6b)

Step 4) If θ = 4π, exit the cycle, otherwise set θ = θ+ ∆θ  and
            go to Step 2)

It is obvious that there is some approximation involved in this
approach.  The normal loads used to calculate the current friction
forces are in fact ‘correct’ values for the previous step.  That is to
say that ‘correct’ normal loads lag the friction forces by one
angular increment and the error introduced due to this is found to
be less than 5% when ∆θ = π /36.  The 5% quoted here is the
maximum error value obtained after comparing the correct and the
approximate results for many combinations and levels of platform
motion and contact parameters.

Whether the iterative or the successive approximation
approach is employed, it is necessary to be able to calculate the
friction forces while normal loads vary during a vibration cycle,
i.e., Step 2 above.  This is carried out as follows.  The hybrid type
of point contact model proposed in [7] is represented by an array
of macro-slip element as shown in Fig.2b [23]. The initial
properties of the model - namely, the individual stiffness values



(Kdk) and the corresponding limiting friction forces (Rk) - are
calculated based on measured contact stiffness and the coefficient
of friction and the static normal load Ns for a given maximum
amplitude of vibration.  These sliders are then traced, as described
in Ref.[23], across the damper surfaces while the individual
limiting friction forces are adjusted as the normal loads on each
side of the damper vary during a vibration cycle.  For example, for
the left side:

R Rk ks= N
N

L

s
                k=1,2,...n   (7)

where Rks is the limiting friction force for the kth element based on
static normal load and n is the number of sliders used in the
model.  This tracing process is carried out for a few cycles
(usually two) until the trajectories of the sliders are stabilised and
this allows the calculation of the friction forces (FL, FLz, FR, FRz)
as well as the normal loads (NL, NR) acting on the damper.

4.0 ANALYSIS METHOD
The analysis method proposed in this paper is a combination

of the harmonic balance method and a structural modification
approach and the proposed approach here is designed particularly
for analysing large models with localised non-linearities very
efficiently.

The behaviour of the friction damper is analysed at a given
relative response amplitude between the damper connection points
and the individual dampers are linearised as equivalent complex
stiffnesses, representing both restoring and energy dissipation
characters.  This is addressed in section 4.1 below for the
underplatform damper described in section 3.  Section 4.2
describes the second stage where these equivalent complex
stiffnesses are added to the otherwise linear system to include the
effect of the friction dampers.  The iterative nature of the problem
as well as the procedure to analyse non-linear systems at active
co-ordinates only, are also described.  It must be noted, however,
that the non-linear analysis procedure presented here is not
limited to the friction dampers only.   The methodology can easily
be applied for the analysis of structures with other types of non-
linearities.

4.1 HBM Linearisation of Damper Forces

After the normal and the corresponding friction forces are
determined, the resulting forces applied to NodeL in Fig. 9 can be
decomposed into x-, y- and z-directions as:

F F NLx L L( ) ( )cos( ) ( )sin( )θ θ β θ β= + (8a)

F F NLy L L( ) ( )sin( ) ( )cos( )θ θ β θ β= − (8b)

F FLz Lz( ) ( )θ θ= (8c)

A similar set of equations can also be written for at NodeR.  Note
that FL, NL (and others) in the above equations are expressed as
FL(θ) and NL(θ) in order to emphasise that they are not constant
but are functions of θ and they are defined for a vibration cycle.

The first-order components of the resulting forces in the x-,
y- and z-directions are calculated and scaled to obtain a complex
stiffness representation of these forces in a manner similar to that
for the one-dimensional case, as in Ref. [22].  For example, the
effect of the friction damper in the x-direction is represented by a
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Fig. 9 Dynamic forces acting on the left platform
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Similarly, the equivalent stiffness in y-and z-directions are
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As FLx(θ), FLy(θ) and FLz(θ) are known at discrete values of θ,
numerical integration can be carried out easily for the integrals in
above equations.

4.2 Analysis Method
The solution procedure adopted in the frequency-domain is

based on finding the response amplitudes iteratively, the starting
point being the response levels of the underlying linear system.  The
behaviour of the friction dampers is analysed at a given relative
response amplitude between the damper connection points and the
individual dampers are represented as equivalent complex
stiffnesses, representing both restoring and energy dissipation
characteristics as described above.  The equivalent complex
stiffnesses are then added to the otherwise linear system and the
response levels of the modified system are calculated again, the
procedure being repeated until convergence is achieved.  The
response levels obtained at current frequency are used as initial
guesses for the next frequency increment.



A very efficient analysis method is proposed here for the
analysis of systems with localised non-linearities via a structural
modification approach.  An important feature of the method here is
that it treats the linear and the non-linear parts of a structure
separately, the linear part being the original structure and the non-
linear part representing the modifications.  The non-linear elements
(modifications) are linearised as equivalent stiffnesses at given
amplitude of vibration using the first order HBM as in the previous
section.  Expressing the non-linearities as an impedance matrix
multiplied by the displacement amplitude vector, was proposed
earlier in [24a, 24b, 25] where the method developed by Ozguven
[26] for the harmonic response analysis of nonproportionally damped
linear structures was adopted for harmonic response analysis of non-
linear structures.  The mathematical background of the approach in
this current paper is different; it is based on the Sherman-Morrison
formula [27] and it is more general and more efficient for studying
non-linear systems than the method in [26]. The Sherman-Morrison
formula has been used in the past [28] to calculate the frequency
response of a (linear) modified structure.  However, to the best of the
authors' knowledge, this paper is the first to propose this method for
the analysis of non-linear systems and it has very good potential for
the analysis of wide range of structures.  It is shown in [27] that the
Sherman-Morrison formula allows a direct inversion of the modified
matrix efficiently using the data related to the initial matrix and to
the modification.  A brief summary of the Sherman-Morrison
formula is given below.

Let A − 1  be the inverse of a non-singular square matrix, A .  If the

inverse of a modified matrix, ′−A 1, is needed where ′A  is of the
form

′= +A A u v Tkpkp (10)

This can be calculated using the Sherman-Morrison formula
without any matrix inversion as

′ = −
+

− −
− −

A A
A u v AT

1 1
1 1

1

kpe jkpe j
λ

(11)

where
λ= −v A uTkp kp1 (12)

The generalisation of Eq.(11) is also available and is known as
Sherman-Morrison-Woodbury formula which considers the
modification as a product of two rectangular matrices such as
U V T .  A more detailed coverage including the history of these

formulas and the numerical aspects are discussed in [27].

It is proposed in this paper to adopt the Sherman-Morrison
formula to calculate the non-linear response levels of structures
with localised non-linearities rather than the linear modification
analysis as reported in [28].  This is achieved as follows.  Suppose
that the linear structure is given by its dynamic stiffness matrix
[Z] and its Frequency Response Function matrix [α], [α]=[Z]-1,
and the modification matrix to be made to [Z] is [∆].  The
dynamic stiffness matrix of the modified system ′Z , can then be
written as

′= +Z Z ∆ (13)

If the modification matrix is written in the form:

∆ = u v Tkpkp (14)

the FRF matrix of the modified system [β] can be computed from

β α
α α

α
= ′ = −

+
−Z

u v

v u

T

T
1

1

kpe jkpe j
kp kp (15)

which allows the FRF matrix of the modified system to be
calculated without any matrix inversion.  It should be noted that if
the total modification matrix [∆] cannot be written as a
multiplication of two vectors as in Eq.(13), it can be decomposed
into several, say p, modification matrices, such as

∆ ∆ ∆ ∆ ∆= + + + +1 2 3 ..... p (16)

where ∆ i i i
Tu v= l ql q.  This allows the FRF of the system to be

calculated by considering each ∆ i  individually.  For example,
the spring modification in local x-, y- and z-directions in Eq. (9)
can be included one at a time.  It should be stated, however, that it
is necessary to transform the individual stiffnesses from the local
to a global co-ordinate system (GCS) as these co-ordinate systems,
in general, do not coincide.  This transformation also results in
individual modification matrices being in the form of u vi i

Tl ql q as
illustrated below in the case of x-direction:
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where kx
*  is the equivalent complex stiffness in the local x-

direction,  k x6 6  is the modification matrix corresponding to the
translations at platform nodes with respect to the GCS and e, f, g
are the direction cosines of the local x-direction.

Another distinct feature of the technique proposed here is
that the analysis can be restricted to active co-ordinates only; the
active co-ordinates being the non-linear co-ordinates, forcing co-
ordinates and those co-ordinates where response levels are
needed.  This is achieved by using the natural frequencies and



mode shapes of the linear system in order to describe the
frequency response functions at active co-ordinates via modal
summation.  This feature has made it possible to analyse
industrial cases, as the analysis does not depend on the size of the
original linear model.



Fig.10a Experimental set-up for Simplified blade-damper
assembly

Fig11a: Comparison of measured and predicted response levels
(directly excited blade)

5.0 PREDICTIONS AND COMPARISON WITH
 EXPERIMENTAL DATA

5.1 Case 1: Simplified Blade-Damper-Blade Assembly
The test rig, schematically illustrated in Fig. 10a, essentially

comprised two beams representing blades with representative
platforms so as to accommodate an industrial wedge-shaped
underplatform damper.  The cantilever beams were clamped
together via two clamping bocks and the whole assembly was in
turn clamped to a large seismic block, the clamping arrangement
being identical to that described in Ref.[29].  An industrial
underplatform damper was installed between the blades about
33% up from the built-in ends and mass loading was applied so as
to represent centrifugal load.  Stepped-sine frequency response
testing was carried out using constant input force levels.  Non-

linear response levels were measured for various damper loads
within a

Fig.10b FE model for simplified blade-damper-blade assembly.

Fig.11b: Comparison of measured and predicted response levels
(indirectly excited blade)

frequency range which covered the first two bending modes of the
assembly, i.e. the in-phase (IP) and out-of-phase (OOP) bending
modes of the 2-beam assembly.

The linear structure was modelled using 2-dimensional
isoparametric plane elements, including the curvature at the root,
as shown in Fig. 10b.  The clamping blocks were not included in
the FE model.  Instead, fixed-displacement boundary conditions,
shown in Fig 10, were imposed so as to represent the linear
behaviour of the system.  Correlation of the predictions and the
measurements for the linear system was found to be quite good as
illustrated in Fig.11.  It is important to note in Fig.11 that there
are two close bending modes around 530 Hz, i.e. in-phase (IP) and
out-of-phase (OOP) bending modes, respectively.



Fig.12: Initial predictions (Damper load=0, 20, 50, 100 N)

The first set of results was calculated for a range of damper
loads as in the experiments, the excitation force being maintained
at 1.0N amplitude. For comparison purposes, the predicted non-
linear response amplitudes, at the tips of the blades, were overlaid
with measured values, as shown in Fig 12 which contains a series
of initially-predicted and measured responses at different damper
loads, but for the same level of excitation.  Inspection of the
results in Fig 12 reveals that the theoretical predictions are rather
different to the measured response levels.  The most important
point to note is that the measured natural frequency shift for the
first mode (IP mode) is very small, about 4%, compared with that
for the out-of-phase (OOP) mode.  However, the theoretical
predictions suggest more than 50% natural frequency shift for the
same mode when the damper is almost locked at a 100 N normal
load.  This finding initiated a series of investigations including
experimental visualisation of the underplatform dampers under
vibration.  The results, not presented here, revealed that one of the
assumptions made during the theoretical formulation was not
valid, i.e. that the damper and the platform surfaces remain
parallel and in contact at all times.  It has been found that the
wedge-shaped dampers cannot always remain parallel to the
platform surfaces, as illustrated schematically in Fig. 13a where
the rolling behaviour becomes dominant when the relative
platform displacement is predominantly radial, as in the case of
in-phase (IP) bending modes.   The implication of this rolling
behaviour is that the calculated value for the effective complex
stiffness in the local y-direction (ky

* ) is not realistic. This rolling
situation has not been observed, however, when the platforms are
subjected to out-of-phase bending vibration hence the theoretical
model for complex stiffness in the local x-direction (kx

* ) is valid.

Modelling the rolling behaviour depicted in Fig 13a is very
difficult and requires much more complicated theoretical models,
not only because of the high sensitivity of the rolling effect to the
gap between the adjacent platforms but also because of the
difficulty in finding the effective contact parameters as a function

Fig.13a.  Relative platform motion in radial direction can cause
rolling.

β
CF

Fig. 13b Damper tends to slide if β>tan-1(µ)

of the rolling angle, i.e. as a function of contact opening.  To date,
such a complete theoretical model is not available.  In the absence
of such a complete theoretical model, the approach adopted here
aims to give an allowance for the rolling effect, in the form of a
correction factor as in Eq.(18), based on empirical data combined
with a method of estimating a critical platform angle below which
the damper motion is predominantly rolling,

k f ky c y,
* *( , )= β µ (18)

where ky c,
*  is the corrected stiffness in the radial direction and

f ( , )β µ  is the correction factor which is a function of the platform
angle and the coefficient of friction and varies between 0 and 1.0
and.  The physical reasoning behind such a correction factor in
Eq.(18) is that the damper will slide and follow the imposed
platform motion more easily when the roof angle is very small
(large platform angle).  In another words, the damper will
predominantly slide rather than roll to follow the platform motion,
as in Fig.13b, if the platform angle is greater than a critical value,
βcr= tan-1(µ).  On the other hand, if the platform angle is less than
the critical platform angle, for a given coefficient of friction, the
damper will tend to roll instead of slide, approaching pure rolling
as the platform angle approaches zero degrees (this corresponds to
the correction factor being zero).  Therefore, there is good
justification for the conclusion that the platform angle and the
coefficient of friction are critical parameters which should be
included in such an approach.  The correction factor, f ( , )β µ
above, can also be written as a function of normalised platform
angle alone, normalisation being with respect to critical platform
angle.  This makes it possible to write the function in terms of βN

only, where βN is the normalised platform angle.  The
experimental results of the simplified blade-damper assembly
corresponding to the in-phase bending mode are used to obtain
empirical data and the results indicated that the correction factor
could be even less than 0.1 for platform angles representative of
those dampers currently in use.  In the absence of any reliable



method, the results obtained using the correction factor are quite
useful to identify the

Fig.14 Comparison of measured and predictions after
incorporating rolling effect. (Damper load=0, 20, 50, 100 N)

extent of rolling for such dampers.  Nevertheless, the authors of
this paper are aware that a more complicated and complete model
needs to be developed in order to avoid the need for the correction
factor adopted in this paper.  This is one of the areas where the
current wedge damper model can be improved significantly.

The theoretical predictions presented in Fig.12 were
recalculated using the correction factor allowing for the rolling
behaviour and the results are presented in Fig.14 together with
corresponding experimental data.  It is immediately seen that the
refined analysis can now predict the natural frequency shift for
both IP and OOP modes as well as the amount of response
reduction and the optimum damping condition.  It is also
important to note that the damper is not as effective in damping
the IP mode as it is for the OOP mode.  Another point worth
stating here is that the curved wedge-shaped dampers do not
provide any damping nor natural frequency shift for IP bending
mode [30].

5.2 Case 2: Real Blade-Damper-Blade Assembly
As illustrated in Fig. 15, this second case study comprised

two real turbine blades and a wedge-shaped underplatform
damper.  The blades were clamped in a slotted block which had
root serrations.  This holding block was in turn clamped between
two large steel blocks, not shown in Fig. 15.    Experimental
procedure was very similar to the previous case: damper normal
force representing the centrifugal force was achieved via
gravitational loading, excitation was applied at about one-third of
the blade length from the root and measurements were taken close
the blade tips under constant excitation force of 1N for various
values of damper normal force.

In spite of the geometry being very much complicated than in
the previous case, where two simple beams were used, the
dynamic behaviour of this assembly with real blades and damper

was very similar to that of the simple assembly in section 5.1.  As
before, the assembly had pairs of in-phase (IP) and out-of-phase
(OOP)

Fig 15.  FE model for the linear part of two-blade assembly.

modes, though the measurements were restricted to a frequency
range covering the first IP and OOP bending modes.

Unlike the two-beam assembly, the linear 3-dimensional FE
model shown in Fig. 15 for this case was very large, more than
200,000 degrees of freedom. However, this was not a drawback as
the non-linear analysis is carried out at active co-ordinates only as
described earlier.  Some initial adjustment of the linear model, in
terms of material properties and modal damping, was necessary to
align the linear model so that linear predictions matched the
measurements without the friction damper.

Various input data including measured contact properties,
damper normal load, damper nodes/orientation and platform angle
were used to define the damper for non-linear analysis.  The same
relationship between the correction factor for rolling and the
normalised platform angle obtained from simplified blade-damper
assembly study was used here.  Response levels were calculated at
measurement locations for various values of damper normal loads,
keeping the excitation constant at in the experiment.  Correlation
of the measured and the predicted response levels is presented in
Fig.16 in the form of a series of plots where the damper load is
gradually increased.  It is seen again that the theoretical
predictions correlate very well with the measurements, validating

 Measured

 Analysis

 Increasing damper load

 N=0

 N=100



the underplatform damper model and the analysis techniques
developed here.  An important point to note is that the IP bending
mode is affected less by comparison with the OOP bending mode,

Fig 16a.Correlation of predictions and experimental data
Directly-excited blade, Fex=1.0N, Damper load=0,10,100,200 N

as found in the previous case.  However, the underplatform
damper seems to provide a significant amount of damping for the
IP mode as well for this assembly, possibly due the IP mode of
vibration involving sliding in the local z-direction.

6.0 CONCLUDING REMARKS
1) A theoretical model for wedge-shaped underplatform dampers

for turbine blades has been developed.  Measured contact
parameters can be used to provide the data required to
describe contact characteristics.

2) A very efficient frequency-domain response analysis method
has been proposed.  This is based on a combination of
harmonic balance method and structural modification
approaches.  The method allows the calculation of non-linear
response levels at active co-ordinates only, making it possible
to apply the analysis for industrial cases.

3) Wedge-shaped dampers are prone to rolling motion when
subjected to radial platform motion and this can reduce the
damping in certain modes of vibration usually described as the
lower nodal diameter bladed disc modes.  Further work is
needed to develop a theoretical model for this rolling
behaviour.

4) The theoretical analysis proposed here can predict the non-
linear response behaviour of assemblies with friction dampers
with acceptable accuracy.  However, an empirical correction
factor is needed during this analysis for certain modes of
vibration.
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