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ABSTRACT 
Modal testing is a very effective tool in order to determine the dynamic behaviour of structures. 
However, the measured Frequency Response Functions (FRFs) and the models obtained from modal 
testing often have errors due to factors inherent in the measurement process. One group of the errors 
is the systematic errors such as transducer mass-loading effects, effects of suspensions and shaker-
structure interaction. This paper deals with improving the quality of measured FRFs by removing the 
suspension’s spring effects and presents a numerical application in order to verify the proposed 
method. It is shown that the adverse suspension effects can be removed from measured FRFs provided 
that some additional FRFs concerned with the suspension points are also measured. 
Keywords: Modal testing, suspension effect, frequency response function. 
 
1. INTRODUCTION 
Measured Frequency Response Functions (FRFs) are used for many purposes including system 
identification, model verification, model updating and structural modification. In many applications, it 
is very desirable to have measured FRFs with high quality. However, there are some unavoidable 
experimental error sources originating from the testing equipments and environment. Mass loading 
effects of transducers, shaker-structure interaction and support effects are mainly mechanical errors 
which adversely affect measured FRFs. For a successful experimental modal analysis and reliable 
applications, it is necessary to eliminate these undesirable and unwanted effects from the measured 
FRFs [1-3].   
In this study, the effects of the suspensions and their removal from measured FRFs are investigated. 
The support of the structure under test is an important part of the test setup. Free-free boundary 
condition is most frequently employed for laboratory testing of components or structures. For a 
structure to be perfectly free, it should be suspended in air or free in space without any support 
whatsoever. Although satisfying this condition perfectly in a laboratory environment is clearly 
impossible, free-free condition can be simulated by suspending or supporting the structure using very 
flexible springs. However, the springs used to simulate free-free conditions can adversely interfere 
with the results. It is known that if the frequency of the rigid body motion is greater than 10-20% of 
that of the first flexible modes, other flexible modes can be affected by suspension system [3]. For 
example, it is presented in [4] that the rigid and flexible modes of an airplane are coupled when it is 
tested on its tyres. There are a few numbers of studies to eliminate this undesirable effect from FRFs. 
Ashory [5] presented a method for removing the support effects by measuring the same FRFs with 
different springs. Authors of this paper presented a series of papers on the elimination of transducer 
mass effects and suspension effects from FRFs [6-8] where the presented methods are based upon the 
Sherman-Morrison formula. In [8], the theory and a numerical application which includes removing 
the suspension effects only at one coordinate were given. However, it is usual in modal testing that the 
structures may need to be suspended from more than one location. Therefore, this paper investigates 
removing the suspension effects from FRFs when the structure is suspended from more than one 



location and assesses the applicability and the success of the proposed method for this situation.  This 
is done by focussing on a numerical case study which includes a plate suspended at three distinct 
points by using three springs.  Also, the performance of the method is investigated by simulating 
noisy data by adding white noise to FRFs.  
 
2. THEORY 
A suspension system used for supporting a mechanical structure has spring and damping effects and 
modifies the structure mechanically. According to this, the effects of suspension system on dynamics 
of the structure can be removed simply by negative spring and negative damping modifications. This 
implies that structural modification techniques can be used in order to remove these adverse effects of 
the suspension system. The presented method in this study is based on a structural modification 
technique describe in the formula known as Sherman-Morrison [6-10]. The theory of the method was 
already described in early studies of the authors; hence a short summary is included here for brevity.  
Let [α] be the receptance FRF matrix of any mechanical system and assume any structural 
modification including mass, spring or damping on the system is expressed as a product of two 
vectors {u}{v}T . The receptance matrix of resultant system after modification, [α*], can be written as 
follows by using Sherman-Morrison formula [6-10]: 

([ ]{ })({ } [ ])[ *] [ ]
1 { } [ ]{ }

T

T

u v
v u

α αα α
α

= −
−

    (1) 

It should be noted that the [α] matrix in Eq.(1) contains all FRFs of the system, but in real 
applications the full matrix is rarely available. However, Eq.(1) can be written in the more suitable 
form as [10]:  
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where the subscript (a) indicates active coordinates, i.e. excitation, response and modification 
coordinates.  
Let us suppose that the structure is suspended only at one coordinate and consider that p, q and r 
represent response, excitation and modification coordinates, respectively. If the modification vectors 
are expressed as  { } {0 0 1 0 0}T

ru =  ;  { } {0 0 0 0}rv k= − , then any FRF of the modified 
system can be written as follows [8]: 
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It is seen in Eq.(3) that removing the effects of the suspension spring from ( )r
pqα  requires the 

availability of additional three FRFs, i.e, ( )r
rrα , ( )r

prα  and ( )r
rqα  which are related to modification 

coordinate r.   
In practice the structures are mostly tested by using more than one suspension. In that case the Eq.(3) 
can be applied sequentially in order to remove the effects of suspensions. It should be noted, however, 
that this process would require measurement of additional FRFs related to individual modification 
coordinates including the cross FRFs between the suspensions coordinates.  
 
3. NUMERICAL SIMULATION 
In order to simulate an experiment, a rectangular plate suspended by three springs as seen in Fig. 1 
was considered. Plate dimensions are 0.50x0.21x0.003 m3 and mechanical properties were arbitrarily 
chosen as: Young's modulus E=207E10 N/m2, mass density ρ=7800 kg/m3 and Poisson rate ν =0.3.  
 



 
Figure 1. A rectangular plate suspended by three springs 

 
First, the plate with three grounded springs whose spring constants are chosen as 500 N/m, is 
modelled by Finite Elements and eigenfrequencies and eigenvalues are obtained. Then a transfer FRF 

(3,4,5)
12α  is calculated numerically. This FRF simulates the measured FRF affected by three springs at 

locations 3, 4 and 5, and is named as ‘measured’ FRF. The aim of this application is to remove the 
effects of these three springs from the 'measured' FRF (3,4,5)

12α . For this purpose, the Eq.(3) can be 
used three times, sequentially. For comparison purposes, the plate is also modelled without any 
suspension springs so as to establish the 'exact' FRFs. In this context, 12α  is calculated and named as 
‘exact’ FRF. It should be noted that Eq.(3) needs additional FRFs calculations as mentioned before. 
For this system the FRFs required can be given in the matrix form as follows: 
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where the letter (X) indicates the FRFs which are not needed for the calculations. It can be seen that in 
addition to the FRF that will be corrected, twelve more FRFs are needed in order to eliminate the 
effects of the three suspension springs from any measured FRF. The number of needed FRFs for 
calculations changes according to the number of coordinates involved for the suspension.  It is 
obvious that as the number of suspension coordinates is increased, more FRFs need to be measured. 
In Fig. 2, FRFs corresponding to the free-free and suspended systems are presented. As expected, it is 
seen that the natural frequencies of the plate are shifted upwards due to the suspension springs.  
Furthermore, due to the flexibility of the springs, plate structure exhibits three rigid body modes with 
non-zero natural frequencies.  After numerically removing springs, the corrected FRF coincides with 
the exact FRF as can be seen in Fig. 3. 
Finally, performance of the proposed method is assessed when the measured data contain noise.  This 
is simulated by adding 1% white noise to the 'measured' FRFs, Fig. 4, and the procedure for removing 
the suspension effects is repeated.  As can be seen in Fig. 5 corrected FRF is again almost identical to 
exact FRF. 
 
4. CONCLUSION 
In modal testing, the suspension systems are often used to simulate free-free boundary conditions.  
However, it is known that the suspension system can adversely affect the dynamics of the system. 
This paper deals with the elimination of the suspension’s stiffness effects from measured FRFs. It is 
shown that the proposed method can be effective for removing this undesirable effect from measured 



FRFs provided that additional FRFs related to suspension coordinates are also measured. It should 
also be noted that the damping effects of the suspensions may also be removed by using the proposed 
method. 
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Figure 2. Comparison of the FRFs of free-free 
(exact) and suspended (‘measured’) plates. 

Figure 3. Comparison of the exact and corrected 
FRFs. 
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Figure 4. Comparison of the FRFs with and 
without noise. 

Figure 5. Comparison of the exact and corrected 
FRFs ( noisy case). 
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