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Abstract 
 
This paper is devoted to the development and validation of a multilayered isotropic 
composite finite element with damping capability.  The formulation is based on 
stacking four-noded shell elements where individual layers have different material 
properties.  The damping capability is also included in the formulation by means of 
complex elemental stiffness matrix representing the elastic and damping properties of 
the individual layers of the composite element. The formulation is implemented in a 
Finite Element code and the theoretical predictions are verified using experimental 
data.  Verification process comprised three steps.  In the first step, frequency-
dependent material properties of the individual layers are measured using a dedicated 
test rig and these properties are used as input data for the prediction of the dynamic 
properties of a sample structure with local damping coating.  In the second step, the 
Frequency Response Functions of a sample structure are measured so as to identify 
the natural frequencies and the modal damping ratios.   Finally, predicted and 
measured results are compared.  Results indicate that the composite finite element 
formulation presented in this paper yields acceptable accuracy provided that the 
elastic and damping properties of the individual materials forming the composite 
elements are known. 

INTRODUCTION 

Composite structures are widely used in industry due to their superior performance 
compared to conventional constructions.  One of the application areas is to provide 
additional damping to structures so as to reduce excessive vibration and noise levels.  



 

In such applications, load carrying structural members are usually coated with 
effective damping materials.  Sometimes, the construction is made in a multilayered 
fashion so as to tailor the properties to meet specific needs [1-4].  Although 
significant amount of work has been done on composite materials and structures [5-
7], accurate predictions of the dynamic behaviour of composite structures, especially 
the damping levels, are still difficult due to various reasons, including the temperature 
and frequency dependency as well as the non-linear behaviour of the properties of the 
damping materials [8]. 

In what follows, a basic shell element - with physical ‘drilling’ degrees of 
freedom for the rotation in the direction perpendicular to the element normal direction 
- is summarised first.  Then, the formulation of the multilayered isotropic composite 
element is presented and the accuracy of the formulation is demonstrated by 
comparing the predictions with experimental data.  Finally, some closing remarks are 
given. 

HOMOGENEOUS SHELL ELEMENT  

The composite shell element formulation presented in the next section is based on 
stacking individual flat shell elements on top of each other.  Therefore, any shell 
element can be used as a building block for the multilayered composite element.  
However, the particular shell element used as a building block in this paper has an 
important feature in the sense that it has a physical drilling degree of freedom θz in 
the element normal direction.  This particular homogeneous shell element, depicted in 
Fig.1, is a 4-noded shell element which is obtained by implementing the quadrilateral 
membrane element with rotational degrees of freedoms [9] and the plate element [10]. 
It is worth stating that the finite elements proposed in [9, 10] are formulated so as to 
obtain the element stiffness matrix [ks]. The author of this paper has extended this 
basic shell element for dynamic analysis by computing the element mass matrix [ms] 
and also added damping capability by considering the complex Young’s modulus of 
the material as 
 
 )1(* ηjEE +=  (1) 
 
where E and the η are respectively the Young’s modulus and the loss factor and j 
represents 1− . 
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Fig.1 Quadrilateral flat shell element with six nodal degrees of freedoms. 



 

The material damping can also be expressed in terms of loss factor η as: 
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where D is the amount of energy dissipated per cycle and the V is the maximum strain 
energy. The use of complex Young’s modulus leads to complex stiffness matrix [k*s] 
for the element and the main aim in this paper is to extend this basic shell element so 
as to formulate multilayered composite element with damping capability. 

FORMULATION OF MULTILAYERED COMPOSITE ELEMENT  

As stated before, the formulation presented here is based on stacking the individual 
layers such that the assembly of layers represents the composite element.  Fig.2 
shows the connectivity definition as well as the element co-ordinate system, noting 
that z-axis defines the element normal and the neutral plane is on the x-y plane. In 
addition to the element co-ordinate system, composite element also requires the 
definition of the properties of the individual layers including the stacking order, layer 
thicknesses and the corresponding materials.  One way of defining the stacking order 
and the corresponding thicknesses is to define the distance of the top fiber of each 
layer from the bottom surface of the composite element, Hi, as schematically 
illustrated in Fig. 3.   
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Fig.2 Connectivity and geometry definition of the 4-noded composite element. 
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Fig.3 Geometric definition of the layers. 



 

 
Such a definition allows the determination of the individual thickness ti as well as the 
distance of the mid-surface hi for individual layers as: 
 
  1−−= iii HHt  ;   )(5.0 1−+= iii HHh          i=1,2,…n (3) 
 
Referring to Fig.3, layer i is assumed be made of isotropic material i whose properties 
can be described by Ei, νi and ηi, representing the Young’s modulus, Poisson’s ratio 
and loss factor, respectively. The composite element also requires the determination 
of the location of the neutral axis depicted in Figs.2 and 3.  Unlike the formulation of 
the homogeneous shell element outlined in the previous section, it is assumed here - 
for the purpose of the determination of the neutral axis only - that the plane sections 
remain plane which allows the use of the basic bending formulation for the 
determination of the distance of the neutral axis from the bottom surface of the 
composite element. This leads to: 
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Then the offset of the individual layers from the neutral axis can be determined as: 
 
 hhz ii −=  (5) 
 
Having determined the geometric parameters, the multilayered isotropic composite 
element is formulated as follows.  First, the stiffness and mass matrices for each layer 
([k*si], [msi] ) are obtained as if each layer is oriented on the neutral plane.  Then, the 
stiffness and mass matrices are transformed so as to take into account that each layer 
is offset from the neutral position by a distance zi.  This is achieved by using the 
relationships between the nodal displacements and forces at the neutral plane and 
those at the offset location for individual layers.  This can be expressed in matrix 
form as: 
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where the subscripts i and o denote the locations of the ith layer and the neutral plane, 
respectively.  It should be noted that although the transformation matrix for elemental 
forces is slightly different than that shown in Eq.(6), it can be shown that the stiffness 
and mass matrices for individual layers can be expressed with respect to the neutral 
plane in a conventional manner as:  
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Finally, the element stiffness and mass matrices for the multilayered composite 
element is obtained by adding the contributions of individual layers via a simple 
summation process as: 
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where the subscripts c above denotes the composite shell. Once the elemental 
matrices are available with respect to the neutral plane, these matrices are 
transformed to a common global co-ordinate system and the natural frequencies and 
modal damping values for a system can be obtained by solving the standard 
eigenvalue problem: 
 

[ ] [ ]( ){ } { }02* =− XMK λ  (9) 
 

where [K*] and [M] are the system matrices, noting that [K*] is complex, 
representing non-proportional damping distribution which results in complex mode 
shapes.  

The formulation presented in this paper is implemented in a Finite Element 
program FINES [11] and it is validated using experimental data as described in the 
next section.  

EXPERIMENTAL VALIDATION 

The experimental validation of the multilayered composite element required two 
experiments.  In the first one, frequency dependent material properties were measured 



 

using the Oberst Beam Method outlined in the ASTM E756 – 93 standard [8].  
Measurements were made for bitumen material and results are listed in Table 1. 
 

Table 1. Measured frequency-dependent material properties of the bitumen. 

Mode Frequency 
[Hz]  Young’s Modulus  

E [N/m2] x 109 
Loss Factor  

 η [%] 
2 116.4  0.66 55.6 
3 323.5  0.62 63.6 
4 629.5  0.58 72.2 

 
The second experiment aims to assess the performance of the composite shell element 
for the prediction of the natural frequencies and damping values for structures having 
composite construction.  First, tests were performed on an uncoated L-shaped plate in 
Fig.4 which is 3 mm thick and made of mild steel. The modal properties of the plate 
were determined using a set of Frequency Response Functions. The same L-plate was 
also used in finite element analysis and the comparison of the measured and predicted 
results are listed in Table 2.  The modal damping values for the steel plate were less 
than 0.05%. 

 

 
Fig.4 L-plate 

 

Table 2. Measured and predicted natural frequencies 
of steel L-plate. 

 
Mode 

E steel 
 

[N/m2]x109

Measured 
Frequency 

[Hz] 

Predicted 
Frequency 

[Hz] 
1 207 26.9 26.2 
2 207 49.4 48.4 
3 207 66.6 65.8 
4 207 91.4 89.8 
5 207 144.3 141.7 
6 207 161.0 159.6  

 
The L-shaped plate shown in Fig. 4 was then partially coated with 2.2 mm thick 
bitumen material. The densities of the steel and bitumen were 7800 kg/m3 and 1943 
kg/m3, respectively. The coating was double sided, hence formed a three layers 
composite construction. The exact location of the double sided coating is shown in 
Fig.5a. It should be noted that the Oberst Beam Technique [8] can be used to 
determine the Young’s modulus and loss factor data for a material at specific 
frequencies. Therefore, the measured material properties in Table 1 for bitumen need 
to be extrapolated in order to obtain data applicable to the frequency range of interest. 
For this particular example, Young’s modulus and the loss factor for bitumen material 
were taken as 0.66 x109 N/m2 and %50 respectively within 0-100 Hz. and 0.66 x109 
N/m2 and %55 between 100-200 Hz.   



 

Again, Frequency Response Function measurements were made on the coated 
L-Plate and the finite element predictions using the composite element presented in 
this paper were made in order to determine the damped natural frequencies and 
corresponding damping levels. The measured and the predicted results are 
summarized in Table 3 and plotted in Fig.5b. It is seen that the predictions for the 
natural frequencies are excellent and qualitative predictions for damping is good. 
However, predicted damping levels show some deviations from experimental data. It 
is believed than one of the reasons for the measured damping levels being somewhat 
less than the predicted values is that the coating on each side was not a single piece.  
Instead, there were 3 patches which could have caused discontinuities in the strain 
distribution in the coating material. Nevertheless, considering the difficulty in 
modelling damping in FE applications, it is believed that the level of accuracy 
obtained for damping predictions can be considered quite good for practical 
applications.   
 

Table 3. Natural frequency and the loss factor of L-shaped plate coated with bitumen 

Mode 
E (Steel)   
[N/m2 ] 

x109 

E (Bitumen) 
[N/m2]  
x 109 

Loss Factor 
(Bitumen)  

 η [%] 

Measured 
Frequency 

[Hz] 

Measured  
Loss Factor 

η [%] 

Predicted 
Frequency 

[Hz] 

Predicted 
 Loss Factor 

 η [%] 
1 207 0.66 50 26.5 0.46 26.0 0.59 
2 207 0.66 50 48.5 0.69 47.7 0.77 
3 207 0.66 50 66.3 0.73 62.5 0.91 
4 207 0.66 50 91.2 0.12 89.7 0.13 
5 207 0.66 55 135 0.47 133 0.54 
6 207 0.66 55 156.7 0.22 156.1 0.45 

 

       
                 a)                                                                      b) 

Fig.5  a) Double sided coating, b) comparisons of measured and predicted natural 
frequencies and loss factors. 



 

CONCLUSIONS 

The formulation of a multilayered isotropic composite finite element with damping 
capability is presented.  It is based on stacking four-noded shell elements and the 
damping capability is included in the formulation by means of complex stiffness 
matrix which represents the elastic and damping properties of individual layers of the 
composite element.  One of the advantages of the formulation is that any shell 
element can be used as building blocks for developing a similar composite element. 
 The implementation of the composite element is verified by experimental 
data. The experiments included measuring the material properties of the coating as 
well as Frequency Response Functions of a sample structure with and without 
coating. Comparisons of the measured and the predicted results indicate that the 
composite element yields acceptable accuracy in predicting the natural frequencies 
and modal damping levels of composite structures. 

ACKNOWLEDGEMENTS 

The author thanks to F. Bayraktar, G. Erdogan and M. Gul from Arcelik A.S, Tuzla - 
Istanbul for their contributions in performing the experiments summarised in this 
paper. 

REFERENCES 

1.  Joseph R. Maly, Kirsten A. Bender, Scott C. Pendleton, “Complex Stiffness Measurement 
of Vibration Damped Structural Elements”, International Modal Analysis Conference, 
IMAC-XVIII, (2000). 

2. B.C. Nakra, “Vibration Control in Machines and Structures Using Viscoelastic Damping” 
Journal of Sound and Vibration 211, pp. 449-465 (1998). 

3. Mohan D. Rao, “Recent Application of Viscoelastic Damping for Noise Control in 
Automobiles and Commercial Airplanes”, Symposium on Emerging Trends in Vibration 
and Noise Engineering, India – USA (2001). 

4. A. D. Nashif, D. I. G. Jones and J.P. Henderson, Vibration Damping. (John Wiley & Sons, 
New York, 1986). 

5. Zhuang Li, Malcolm J. Crocker, “A Study of the Damping in Sandwich Structures”, 10th 
International Congress on Sound and Vibration, pp. 2301-2308, 7-10 July (2003). 

6. Mats Dalenbring and Adam Zdunek, “Estimation Of Material Damping For Laminate 
Structures”, 10th International Congress on Sound and Vibration, pp. 2309-2316, (2003). 

7. Rajamohan Ganesan, “Dynamic Response Of Laminated Composite Beams Based on 
Hierarchical and Higherorder Finite Element Formulations”, pp. 2351-2358, (2003). 

8. “Standard Test Method for Measuring Vibration Damping Properties of Materials”, 
ASTM E 756 – 93. 

9. A. Ibrahimbegovic and F. Frey, “Membrane Quadrilateral Finite Elements with Rotational 
Degrees of Freedom”, Engineering Fracture Mechanics, Vol.43, No:1, pp. 13-24 (1992). 

10. A. Ibrahimbegovic, “Quadrilateral Finite Elements for Analysis of Thick and Thin Plates”, 
Comp. Methods in Applied Mechanics and Eng., No:110, pp. 195-209 (1993). 

11.  “FINES: Finite Element for Structures”, Version 2004, Istanbul Technical University, 
Mechanical Engineering Department, Istanbul, Turkey. 


