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Istanbul, Turkey This paper describes a theoretical model for analyzing the dynamic characteristics of

wedge-shaped underplatform dampers for turbine blades, with the objective that this
model can be used to minimize the need for conducting expensive experiments for opti-

D. J. Ewins mizing such dampers. The theoretical model presented in the paper has several distinct
features to achieve this objective including: (i) it makes use of experimentally measured
A. B. Stanhridge contact characteristics (hysteresis loops) for description of the basic contact behavior of
a given material combination with representative surface finish, (ii) the damper motion
Mechanical Engineering Department between the blade platform locations is determined according to the motion of the plat-
Center of Vibration Engineering, forms, (iii) three-dimensional damper motion is included in the model, and (iv) normal
Imperial College of Science, load variation across the contact surfaces during vibration is included, thereby accom-
Technology and Medicine, modating contact opening and closing during vibration. A dedicated nonlinear vibration
London, SW7 2BX, UK analysis program has been developed for this study and predictions have been verified

against experimental data obtained from two test rigs. Two cantilever beams were used to
simulate turbine blades with real underplatform dampers in the first experiment. The
second experiment comprised real turbine blades with real underplatform damper. Cor-
relation of the predictions and the experimental results revealed that the analysis can
predict (i) the optimum damping condition, (ii) the amount of response reduction, and (iii)
the natural frequency shift caused by friction dampers, all with acceptable accuracy. It
has also been shown that the most commonly used underplatform dampers in practice are
prone to rolling motion, an effect which reduces the damping in certain modes of vibra-
tion usually described as the lower nodal diameter bladed-disk modes.
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1 Introduction shaped piece of metal loaded on the underside of adjacent blades.
The theoretical analysis and the optimization of these simple de-

chinerv applications. especially at hot locations. to reduce ree\?iges have been quite difficult, however, due to marked nonlinear-
In€ry applications, especially lons, u and to uncertainties about the contact characteristics and

nance stre_sses.AtypicaI appli‘f:a_tio_n ofdryfricti(?,n 9amping ing mper behavior. Substantial effort has been devoted to under-
turbines is the so-called *“friction da_mpgr, COttf’lge'roofstanding and modeling basic contact characteristics, usually in the
damper,” or “underplatform damper,” which is loaded by censorm of friction force-displacement hysteresis lodgs-7].
trifugal force against the underside of the platforms of two adja- |, addition to those studies related to the basic contact charac-
cent blades. The main design criterion for such devices is to dgristics between two contacting surfaces, several friction damper
termine the optimum damper configuration or the damper massgpdels and analysis methods have been proposed in the past. The
both in order to reduce the dynamic stresses by the maximuinplest, yet the most commonly used, friction damper model in
possible extent. For example, if the damper mass is too small f@g literature is the adaptation of a basic macroslip contact model
a given configuration, the friction force will not be large enouglo represent underplatform dampégs-11. This simple model is
to dissipate sufficient energy. On the other hand, if the dampgsually combined with a single-degree-of-freedom blade model,
mass is too large, it will “stick,” limiting the relative motion the friction damper being attached between the SDOF system and
across the interface and thus the amount of energy dissipationghound. These studies have revealed various important aspects of
both cases, the friction damper will be inefficient and betweahe friction damper characteristics and yielded some qualitative
these two extremes there is an optimum size. A good review of thaswers, especially on damping optimization.
friction damping concept in turbomachinery applications is given More recent research efforts on friction dampers for turbine
by Griffin [1]. blades have introduced more details of the damper geometry.
The so-called “cottage-roof damper” or “underplatformMenq et al.[12] have developed a theoretical model for bar-
damper” is physically a very simple device usually a simpleshaped underplatform dampers and that model was used for the
forced response analysis of turbine blad#8,14. Most of the
Contributed by the International Gas Turbine InstitU@TI) of THE AMERICAN commercially used dampers are more complex than the bar-
SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME dUrRNAL oF  shaped underplatform dampers. Pfeiffer and Hje} proposed
ENGINEERING FOR GAS TURBINES AND POWER Paper presented at the Interna-g method to ana|yze Stick-s”p vibrations in genera| and studied a

tional Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, IN, Ju : .
7-10, 1999; ASME Paper 99-GT-335. Manuscript received by IGTI October 199§;ﬁrved wedged damper for turbine blades. The behavior of curved
final revision received by the ASME Headquarters, March 1999. Associate Editor: W€dge-shaped dampers was also studied by others, usually by

Wisler. approximating the contact behavior using Hertzian contact theory

The friction damping concept is frequently applied in turbom

Journal of Engineering for Gas Turbines and Power OCTOBER 2001, Vol. 123 / 919
Copyright © 2001 by ASME



platform dampers. This was achieved by rubbing a real underplat-
form damper against a block which was made of the same mate-
rial as that of the blade with similar surface finishes. These
measurements were carried out at constant normal load in order to
provide the basic contact properties, although the analysis in-
cludes normal load variation during the blade response analysis as
will be addressed in Section 3.2. It is noted that the overall contact
behavior is quite similar to the “point” contact measurements
reported in[7]. Furthermore, it has been found that the hybrid
\ model proposed ifi7] is generally adequate to represent the mea-
T PN PN P sured hysteresis loops, a typical example of which is illustrated in
h A Fig. 2(a). Also, an array of macroslip elements, as shown in Fig.
2(b) can successfully be used to reproduce the observed microslip
behavior[24].

Fig. 1 Schematic illustration of underplatform dampers be- o
tween adjacent blades 3 Friction Damper Model

Underplatform dampers are physically very simple devices, yet
their nonlinear behavior is quite complicated and its analysis can
[16—18. The most commonly used type of friction damper irbe extremely difficult if all the details of the damper characteris-
industry is the wedged-shaped damper with flat contact surfaceiss are to be included in the analysis. These difficulties arise due
as illustrated in Fig. 1 which is also the least studied althougb many complicated factors: for example, the temperature, fre-
important contributions have been made in modeling and analygigency, and surface roughness effects, the real contact locations
of this type of dampef19]. Various analysis methods have alsand their variation during vibration are just some of them. In spite
been developed and reported in the literature, mainly for frictiosf the physical simplicity of these dampers, the effects of these
damper optimization in turbomachinery applicati¢a$,20—23.  and other factors have not yet been fully understood. Accordingly,
Although significant advances have been made in theoreti¢glsed on engineering judgement, some simplifying assumptions
modeling of friction dampers and the analysis methods for damp&s listed below have been made here in order to reduce the prob-
optimization, turbomachine manufacturers still rely on previougm to a manageable level:
experience and empirical data rather than computer-based predic- . ) . .
tions alone for friction damper optimization. This has been mainly * damper flexibility and inertia effects are negligible, _
due to the over-simplification introduced in the models regarding ® damper contact on each side can be represented as a point
the basic contact behavior and/or damper geometry and the inabil- contact with three translational degrees-of-freedom,

ity to analyze representative-size models due to excessive compu* left and right s_urfe_1ces are iQentical, and
tational cost. « the blade motion is harmonic.

This paper proposes a methodology which combines three @$aqgition to the assumptions above, the first stage of the formu-
sential aspects of friction damping optimization in turbomachination below will have an additional assumption that
ery application. These includ@) utilizing experimentally mea-
sured hysteresis loops do describe the basic contact behavior damper and platform surfaces remain in parallel and in con-
between contacting surfaces in the analy§i$,development of a tact at all times.
theoretical model for the motion of the wedge-shaped frictio xperimental results, however, indicated that this last assumption
dampers and the forces generated at the contact interfaces, A en not valid for the wedge-shaped dampers studied here, and
(iii) development of an efficient analysis method which enablesé some corrections are introduced later ’
the analyst to use realistic finite elements models to describe ﬁ]el'he friction damper model presented b.elow is based on a given
dynamic behavior of real turbine blades. The analysis methOd%lr'nplitude of vibratri)on and sopthe model parameters must bge re-

ogy in (iii) is based on a combination of the harmonic balancealculated until convergence is achieved due to marked nonlinear-

method _and a structu_ral modification e_lpproach. The ma_in_mo_tivl% of these devices. The analysis method based on iterative ap-
tion behind this work is to develop a friction damper Opt'm'zat'o?)roach is given in Séction 4

technique which is capable of dealing with real geometries.
As our paper addresses almost the same problem studied 3.1 Relative Motion Across Damper Surfaces. The theo-

[19], it is appropriate here to describe some of the similarities @stical formulation of the cottage roof damper motion as presented

well as the differences. The work reported here is simildil® here is based on a model as shown in Fig. 3 where a local coor-

in the sense that both aim to develop a prediction capability fdinate system is attached to one of the platforms and the instan-

the optimization of wedge-shapes dampers, the kinematics of ta@eous relative motion of the other platform is described by

wedge-shaped damper are based on the motion of the platform . .

nodes and the harmonic balance method is applied for the nonlin- Fryz=IrxHjrytkr, 1)

ear analysis. The main differences are that our approach here,iere

cludes three-dimensional platform and two-dimensional contact

motions, microslip type of interface definition, a very efficient r=|X|cog wt+ ¢,)

numerical analysis procedure and also includes experimental test _

case using real turbine blades. y= [Y|cog wt+ by) (23)

r,=|Z|coq wt+ ¢,)

2 Contact Model

and
In contrast to most research work in the literature, the contact _
model used in this work is based on an empirical model whose X=X = Xg
properties are obtained from experimental data. The experimental Y=Y,-Yg (2b)
test rig reported 7] for the measurement of hysteresis data has
been slightly modified to measure the contact behavior of under- =27, —Zg.
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Fig. 2 (a) Typical measured hysteresis loop under constant normal load,
representation of measured behavior by an array of macroslip elements

(b)

X, Y, Z, Xg, Yr, Zg above are complex quantities repreplacementgand the associated forces in the next segtfon at
senting both amplitude and phases at platform nodes. Simi¥rly,least one vibration cycle. Howevest is dropped in the equations
Y, andZ are the relative platform displacements with respect tor brevity.
the local coordinate systen#,, ¢,, and ¢, being the corre-  The relative platform motion in Fig. 4 is three-dimensional,
sponding phase angles. Furthermases the angular velocity and having components in all three local directions. The relative dis-
tis time. It should be stated at the outset thatr, ,r, and other placements of the underplatform damper with respect to the plat-
parameters which are functions of them are not constant valdfesm surfaces shown in Fig. 5 are calculated based on the assump-
but functions of the angular displacement.. The damper for- tion that the centrifugal force acting on the damper mass is large
mulation presented in this paper requires calculation of these déstough to keep the damper in contact with the platform surfaces
at all times.
Accordingly, a displacement triangle in Fig. 6 can be drawn

L, =i +jr +Kkr,

X

Fig. 3 Platform motion in three-dimensional space. (B is the
platform angle, Node ;, and Node  are the platform structural
modes. )

Fig. 4 Relative platform displacements
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(b)

Fig. 5 Relative contact displacements on damper surfaces

relating the relative displacements of the platformxiy plane

(ryy) and the relative contact displacementsandrg in Fig. 5a).

Since the directions of all the vectors in Figaband the magni-
tude of ther,, are known, the magnitudes of thg andrg are

calculated as

nB))

_[ryl(sin(@) +cog a)ta
|rL|_ 2 Sll’(ﬁ)
_ |rxy|005(6¥)
Irel = TB)_“L"

Another component of the relative contact motion is in the local

(39)

(30)

Fig. 7 Damper displacements with respect to the platform sur-
faces

equally. In general, there is a phase difference between the relative
contact displacements in they plane and in the-direction and

this results in elliptical relative contact motion as illustrated in
Fig. 7. The reader may refer {@4] for details of how to analyze
those interfaces where the relative contact motion is elliptical as
well as how to relate a one-dimensional microslip model to ellip-
tical motion at the interface.

3.2 Damper Forces. Determination of the friction forces
across the damper surfaces requires contact displacement and nor-
mal load as well as the contact characteristics. The relative contact
displacement can be calculated using the procedure summarized
above.

The forces on a typical underplatform damper are quite com-
plex in spite of the simplifying assumptions and in spite of the
simplicity of the “static” forces involved in Fig. 8 wher&€F
represents centrifugal force acting on the damperNyndandNgg
are the static reaction forces in the absence of any vibration. These
reaction forces can easily be calculated using the static equilib-
rium conditions as depicted in Fig(88 and given by

z-direction as indicated by, , andrg, in Fig. 5b) and there is
some uncertainty regarding how thgis shared between the left
and the right-hand side of the damper. It is assumed in this paper
that the relative platform motion in the-direction is shared
equally between left and right side of the damper, i.e.,

|rLz|:|rRz|:|rz|/2- ()

The reasoning behind above assumption is that minimum energy
will be dissipated if the two sides share the relative displacements

Fig. 8 Forces acting on a damper;

Fig. 6 Displacement triangle relating  r,, to r, and rg case

922 / Vol. 123, OCTOBER 2001

(@

(b)

(a) static case, (b) dynamic

Transactions of the ASME



CF Step 4 If6=4, exit the cycle, otherwise sét= 6+ A6 and

:m. (4) go t(_) Step_2 . . . ) ) )

It is obvious that there is some approximation involved in this
The results, not presented here, indicate that the normal for@gproach. The normal loads used to calculate the current friction
during vibration can deviate significantly from those of the mealfiorces are in fact “correct” values for the previous step. That is to
“static” values. The main difficulty in including normal load say that “correct” normal loads lag the friction forces by one
variations is that the normal loads on the damper surfaces depe@mgular increment and the error introduced due to this is found to
on friction forces and vice versa. In Fig(i$, N, and N; are be less than 5 percent wh&®=7/36. The 5 percent quoted here
different from each other, as are the corresponding friction forcisthe maximum error value obtained after comparing the correct
on each side of the damper. As the damper inertia is neglected, @nel the approximate results for many combinations and levels of
total force acting on a cottage roof damper must be zero for eggiatform motion and contact parameters.
librium, hence one can write equilibrium equations in locadnd Whether the iterative or the successive approximation approach
y-directions, respectively, at any arbitrary time during a vibratiois employed, it is necessary to be able to calculate the friction

Nis=Ngrs=Ns

cycle as follows: forces while normal loads vary during a vibration cycle, i.e., Step
) ) ) 2 above. This is carried out as follows. The hybrid type of point
N_ sin(8) +FcogB)=Ngsin(B) +Frcogp) x-dir contact model proposed [i7] is represented by an array of mac-

(5a) roslip element as shown in Fig(l8 [24]. The initial properties of
_ ; ; T the model—namely, the individual stiffness valuég;) and the
N cod8)+ N cod f) =F sin(p) +Frsin(B)+CF y d|r5.b) corresponding limiting friction forcesR|)—are calculated based
on measured contact stiffness and the coefficient of friction and
It is worth mentioning here that similar to the relative displacehe static normal load\, for a given maximum amplitude of vi-
ments, the dynamically varying forces are functions of the angulpfation. These sliders are then traced, as described in[24f.
displacementwt, althoughwt is dropped from these equations.across the damper surfaces while the individual limiting friction
Using Eq.(5), one can write the normal loads on each side of therces are adjusted as the normal loads on each side of the damper

damper as a function &F and the friction force$| andFg, as vary during a vibration cycle. For example, for the left side
given below. N
L

(FL+FR) CF  (F—Fp) Re=Risg- k=12,...n Q)
S

N =————tanB)+ (6a)
2 2codp)  2tanp) whereRy ; is the limiting friction force for thekth element based
(FL+FpR) CF (FL—Fg) on static normal load and n is the number of sliders used in the
NR:Ttar(ﬁH 2 Cos ) + Tt ) (6b)  model. This tracing process is carried out for a few cyélssially
two) until the trajectories of the sliders are stabilised and this
The dynamic equilibrium condition above provides only twallows the calculation of the friction forces( ,F,,Fgr,Fr,) as
equations and there are four unknowns to be determined, name¥gll as the normal loads\; ,Ng) acting on the damper.
N., Ng, F_, andFg. (The friction forces in locak-direction,
F., andFg, are perpendicular to the normal loads hence they afe Analysis Method

excluded in determining the normal loads hefdthough the nor- 1, ana1ysis method proposed in this paper is a combination of
mal loads on the contact surfaces and the corresponding fncﬁ harmonic balance method and a structural modification ap-

force_s are not independent, .it is very difﬁC.UIt to write an_explici rpach and the proposed approach here is designed particularly
relationship between_them since this relationship is _nonlmear analyzing large models with localized nonlinearities very effi-
depends on the previous history of the contact motion. There EE:riEntIy.

two possible solutions to overcome this probleim:iterate until The behavior of the friction damper is analyzed at a given rela-

convergence is achieved at every increment of a vibration cyGlge response amplitude between the damper connection points
and,(ii) update the normal load successively at every increment gty the'individual dampers are linearised as equivalent complex

a vibration cycle without iteration. Both of these strategigsand  gittnesses representing both restoring and energy dissipation

(ii) apoye, can be used to calculate the normal forces as .Welltff%racters. This is addressed in Section 4.1 below for the under-
the friction forces. It has been found, however, that optionis - a46rm damper described in Section 3. Section 4.2 describes the
fairly expensive compared to optidii) as option(ii) can yield econd stage where these equivalent complex stiffnesses are
aCﬁegt?hble accuracy. Therefpre,t_only the ser(]:o_nd dappr%a%h,h dfed to the otherwise linear system to include the effect of the
Cal eth e suclcl:eSSNe approximation _appf[_roac 1S eﬁc?h €d Nefetion dampers. The iterative nature of the problem as well as the
n the So-called successive approximation approach, theé oMy ceqyre to analyze nonlinear systems at active coordinates only,
loads are updated according to the friction forces calculated i e also described. It must be noted. however. that the nonlinear
pr(IeV|%u§ ?Itqe.p, W|thouth|nvolvmg any |tedre?)t|(?n. various steps 'na'malysis procedure presented here is not limited to the friction
voived In this approach are summarized below. dampers only. The methodology can easily be applied for the
Step 1 Start with static normal logdet the angular displace- analysis of structures with other types of nonlinearities.

ment to zero:d=wt=0 . s
z @ ) 4.1 HBM Linearization of Damper Forces. After the nor-

CF mal and the corresponding friction forces are determined, the re-
NL:NR:m' (4r)  sulting forces applied to Nogen Fig. 9 can be decomposed into
x-, y- andz-directions as:

Step 2 Calculaté, , Fg, F,, Fr,based orlN_ ,Ng. .

b b TRy Pren FRe DSSEE O TR FLx(0)=FL(6)cos B)+ N (H)sin(B) (82)
Step 3 Calculate new normal loads using equilibrium equa- )
tion FLy(6)=FL(0)sin(B)—N_(6)cog B) (8b)
FL+F CF FL—F FL0)=F_,(6) (8c)
NL:( L R) tar(,8)+ ( L R) (63.) . - Lz Lz .

2 2cogpB) 2tanp) A similar set of equations can also be written for at Nedalote

thatF_,N, (and othersin the above equations are expressed as
N :(FL+ Fr) tan( 8) + CF + (FL—Fg) (6b) F_(6) andN_(6) in order to emphasise that they are not constant
R 2 2cogB) 2tanpB) ’ but are functions of) and they are defined for a vibration cycle.
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harmonic response analysis of nonproportionally damped linear
structures was adopted for harmonic response analysis of nonlin-
ear structures. The mathematical background of the approach in
this current paper is different; it is based on the Sherman-
Morrison formula[29] and it is more general and more efficient
for studying nonlinear systems than the method[28]. The
Sherman-Morrison formula has been used in the [&Gjtto cal-
culate the frequency response of(lanear modified structure.
However, to the best of the authors’ knowledge, this paper is the
first to propose this method for the analysis of nonlinear systems
and it has very good potential for the analysis of wide range of
Fig. 9 Dynamic forces acting on the left platform structures. It is shown if29] that the Sherman-Morrison formula
allows a direct inversion of the modified matrix efficiently using
the data related to the initial matrix and to the modification. A
brief summary of the Sherman-Morrison formula is given below.
The first-order components of the resulting forces inxhey- Let[A] ! be the inverse of a nonsingular square mafi]}. If
and z-directions are calculated and scaled to obtain a complgxe inverse of a modified matrikA’]~%, is needed wherA'] is
stiffness representation of these forces in a manner similar to thathe form
for the one-dimensional case, ag #8]. For example, the effect of
the friction damper in the-direction is represented by a complex [A']=[A]+{u}{v}". (10)

H * 10 il
stiffness { =ky+ik,) between the platform nodes as This can be calculated using the Sherman-Morrison formula with-
out any matrix inversion as

1 2
K=— | F d
X fo L(B)cos 6+ §)do ([A]Yu)) ({0} AT )

-1 -1_
L [A']'=[A] T (11)
klxzm fo F(6)sin(6+ ¢,)d6. (9a) where
— T -1
Similarly, the equivalent stiffness iy and z-directions are A={v} [A] Hu}. (12)
1 2m The generalization of Eq11) is also available and is known as
ky=—sr f FLy(6)cog 6+ ¢,)d0, Sherman-Morrison-Woodbury formula which considers the modi-
7Y Jo fication as a product of two rectangular matrices sucH @$

1 (o= X[V]". A more detailed coverage including the history of these
Ki :_f FL (0)sin( 0+ ¢,)d6 (op) formulas and the numerical aspects are discussé¢adh
oalYl Jo Y Y It is proposed in this paper to adopt the Sherman-Morrison
formula to calculate the nonlinear response levels of structures
with localized nonlinearities rather than the linear modification
analysis as reported {i80]. This is achieved as follows. Suppose
that the linear structure is given by its dynamic stiffness matrix
A ) [Z] and its frequency response function matrix], [«]
kz_ﬁ . FL0)sin(0+ ¢,)d6. (%) =[z]71, and the modification matrix to be made [t&] is [A].
The dynamic stiffness matrix of the modified systg#i ], can
AsF,(0), FL,(0), andF ,(0) are known at discrete values @f then be written as
numerical integration can be carried out easily for the integrals in

1 2m
r_
k= 2] fo F .(6)cod 6+ ¢,)d6,

above equations. [Z']=[Z]+[A]. (13)
4.2 Analysis Method. The solution procedure adopted inlf the modification matrix is written in the form
the frequency domain is based on finding the response amplitudes [A]={u}o)T (14)

iteratively, the starting point being the response levels of the un-
derlying linear system. The behavior of the friction dampers the FRF matrix of the modified systef] can be computed from
analyzed at a given relative response amplitude between the T
damper connection points and the individual dampers are repre- [B1=[2'] *=[a]- ([eRuh (v} [a]) (15)
sented as equivalent complex stiffnesses, representing both restor- 1+{v}Tal{u}
ing and energy dissipation characteristics as described above. The . .
equivalent complex stiffnesses are then added to the otherw l%'Ch a_llows the FRF matrix of_the modified system to be c_alcu-
linear system and the response levels of the modified system sied Without any matrix inversion. It should be noted that if the
calculated again, the procedure being repeated until converge I modification r_natn){A] cannot be written as a m_ultlpllcatlon
is achieved. The response levels obtained at current frequency ar O Vectors as in Eq(..13), it can be decomposed into several,
used as initial guesses for the next frequency increment. sayp, modification matrices, such as

_Avery efficient analysis method is proposed here for the analy- [A]=[A;]+[A]+[As]+ ... +[A,] (16)
sis of systems with localized nonlinearities via a structural modi-
fication approach. An important feature of the method here is thathere[ A;]={u;}{v;}". This allows the FRF of the system to be
it treats the linear and the nonlinear parts of a structure separategiculated by considering eafh;] individually. For example, the
the linear part being the original structure and the nonlinear pspring modification in locak, y andz-directions in Eq(9) can be
representing the modifications. The nonlinear eleméntsdifica- included one at a time. It should be stated, however, that it is
tions) are linearised as equivalent stiffnesses at given amplitudergfcessary to transform the individual stiffnesses from the local to
vibration using the first-order HBM as in the previous sectiorf global coordinate systef@®CS as these coordinate systems, in
Expressing the nonlinearities as an impedance matrix multipliggneral, do not coincide. This transformation also results in indi-
by the displacement amplitude vector, was proposed earlierviual modification matrices being in the form ¢f;}{v,}" as
[25—-27 where the method developed by OzguJ@8] for the illustrated below in the case ofdirection:
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where k¥ is the equivalent complex stiffness in the local JUR—
x-direction,[ k]gx¢ is the modification matrix corresponding to the )
translations at platform nodes with respect to the GCS,eafhdy /
are the direction cosines of the locabirection. D - L0
Another distinct feature of the technique proposed here is that
the analysis can be restricted to active coordinates only; the active (@

coordinates being the nonlinear coordinates, forcing coordinates
and those coordinates where response levels are needed. This is
achieved by using the natural frequencies and mode shapes of the
linear system in order to describe the frequency response func-
tions at active coordinates via modal summation. This feature has
made it possible to analyses industrial cases, as the analysis does
not depend on the size of the original linear model.

il i

5 Predictions and Comparison With Experimental ra
Data

L11]

5.1 Case 1: Simplified Blade-Damper-Blade Assembly.
The test rig, schematically illustrated in Fig. (2D essentially [ 1
comprised two beams representing blades with representative L %@
platforms so as to accommodate an industrial wedge-shaped un-
derplatform damper. The cantilever beams were clamped together
via two clamping bocks and the whole assembly was in turn
clamped to a large seismic block, the clamping arrangement being H—
identical to that described in Ref31]. An industrial underplat- -
form damper was installed between the blades about 33 percent up
from the built-in ends and mass loading was applied so as to
represent centrifugal load. Stepped-sine frequency response test- — —
ing was carried out using constant input force levels. Nonlinear (b)
response levels were measured for various damper loads within a
frequency range which covered the first two bending modes of thig- 10 (&) Experimental set-up for simplified blade-damper
assembly, i.e., the in-phagé®) and out-of-phaséOOP) bending assembly, (b) finite element model for simplified blade-damper-
modes of the two-beam assembly. blade assembly

The linear structure was modelled using two-dimensional iso-
parametric plane elements, including the curvature at the root, as
shown in Fig. 10b). The clamping blocks were not included in the
finite element model. Instead, fixed-displacement boundary cdi? mode is very small, about 4 percent, compared with that for
ditions, shown in Fig. 10, were imposed so as to represent tHe out-of-phasdOOP mode. However, the theoretical predic-
linear behavior of the system. Correlation of the predictions ari@ns suggest more than 50 percent natural frequency shift for the
the measurements for the linear system was found to be qus&me mode when the damper is almost locked at a 100 N normal
good as illustrated in Fig. 11. It is important to note in Fig. 11 thdead. This finding initiated a series of investigations including
there are two close bending modes around 530 Hz, i.e., in-ph&s@erimental visualisation of the underplatform dampers under
(IP) and out-of-phas¢OOP) bending modes, respectively. vibration. The results, not presented here, revealed that one of the

The first set of results was calculated for a range of dampagsumptions made during the theoretical formulation was not
loads as in the experiments, the excitation force being maintainealid, i.e, that the damper and the platform surfaces remain paral-
at 1.0 N amplitude. For comparison purposes, the predicted nd@land in contact at all times. It has been found that the wedge-
linear response amplitudes, at the tips of the blades, were overlai@ped dampers cannot always remain parallel to the platform
with measured values, as shown in Fig. 12 which contains a seri#faces, as illustrated schematically in Fig(a)3vhere theroll-
of initially predicted and measured responses at different damgeg behavior becomes dominant when the relative platform dis-
loads, but for the same level of excitation. Inspection of the resufpiacement is predominantly radial, as in the case of in-pki@e
in Fig. 12 reveals that the theoretical predictions are rather diffdvending modes. The implication of this rolling behavior is that the
ent to the measured response levels. The most important poincaiculated value for the effective complex stiffness in the local
note is that the measured natural frequency shift for the first mogelirection 0(’;) is not realistic. This rolling situation has not been

[ [ ]
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Fig. 11 (a) Comparison of measured and predicted response levels (directly
excited blade ), (b) comparison of measured and predicted response levels (indi-

rectly excited blade )

observed, however, when the platforms are subjected to out-obrrection factor as in Eq18), based on empirical data combined
phase bending vibration hence the theoretical model for complesth a method of estimating a critical platform angle below which

stiffness in the locak-direction () is valid. the damper motion is predominantly rolling,
Modeling the rolling behavior depicted in Fig. (B} is very
difficult and requires much more complicated theoretical models, kJ.c=f(B.m)k] (18)

not only because of the high sensitivity of the rolling effect to the

gap between the adjacent platforms but also because of the differe kj ; is the corrected stiffness in the radial direction and
culty in finding the effective contact parameters as a function é{3, ) is the correction factor which is a function of the platform
the rolling angle, i.e., as a function of contact opening. To datangle and the coefficient of friction and varies between 0 and 1.0.
such a complete theoretical model is not available. In the abseridee physical reasoning behind such a correction factor i Egj.

of such a complete theoretical model, the approach adopted hisréhat the damper will slide and follow the imposed platform
aims to give an allowance for the rolling effect, in the form of anotion more easily when the roof angle is very sntkdtge plat-

926 / Vol. 123, OCTOBER 2001 Transactions of the ASME



e
A Analysis
i 4 A R0

6.31BE-BS -
B
L
A
D
E
4 3.981E-B6 -
R
E
s
P
R
& z.a12e.87 4
E
L
m
1

1 .SA5E-B8 -

1 .68BBE -BY } U } +

588. EBA. TE8. BEB. 988. 1889,

FREQUENCY [Hz]

Fig. 12 Initial predictions (damper load =0, 20, 50, 100 N)

form angle. In another words, the damper will predominantlyphase bending mode are used to obtain empirical data and the
slide rather than roll to follow the platform motion, as in Figresults indicated that the correction factor could be even less than
13(b), if the platform angle is greater than a critical valy®, 0.1 for platform angles representative of those dampers currently
=tan }(x). On the other hand, if the platform angle is less thaim use. In the absence of any reliable method, the results obtained
the critical platform angle, for a given coefficient of friction, theusing the correction factor are quite useful to identify the extent of
damper will tend to roll instead of slide, approaching pure rollingolling for such dampers. Nevertheless, the authors of this paper
as the platform angle approaches zero degftiés corresponds to are aware that a more complicated and complete model needs to
the correction factor being zerdTherefore, there is good justifi- be developed in order to avoid the need for the correction factor
cation for the conclusion that the platform angle and the coeffrdopted in this paper. This is one of the areas where the current
cient of friction are critical parameters which should be includededge damper model can be improved significantly.
in such an approach. The correction factt(3,u) above, can  The theoretical predictions presented in Fig. 12 were recalcu-
also be written as a function of normalized platform angle alonited using the correction factor allowing for the rolling behavior
normalization being with respect to critical platform angle. Thiand the results are presented in Fig. 14 together with correspond-
makes it possible to write the function in terms@f only, where ing experimental data. It is immediately seen that the refined
By is the normalized platform angle. The experimental results @halysis can now predict the natural frequency shift for both IP
the simplified blade-damper assembly corresponding to the @mAad OOP modes as well as the amount of response reduction and
the optimum damping condition. It is also important to note that
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Fig. 13 (a) Relative platform motion in radial direction can Fig. 14 Comparison of measured and predictions after incor-
cause rolling, (b) damper tends to slide if g>tan~*(u) porating rolling effect. (Damper load =0, 20, 50, 100 N.)
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the OOP mode. Another point worth stating here is that the curv
wedge-shaped dampers do not provide any damping nor natu(8),

frequency shift for IP bending modas]. Fig. 16 (a) Correlation of predictions and experimental data.

5.2 Case 2: Real Blade-Damper-Blade Assembly.As il-  Directly excited blade, Fex =1.0 N, damper load =0, 10, 100, 200
lustrated in Fig. 15, this second case study comprised two réh| (b) Correlation of predictions and experimental data. Indi-
turbine blades and a wedge-shaped underplatform damper. TH@lY excited blade, Fex =1.0N, damper load =0, 10, 100, 200 N.
blades were clamped in a slotted block which had root serrations.
This holding block was in turn clamped between two large stedamper normal load, damper nodes/orientation and platform angle
blocks, not shown in Fig. 15. Experimental procedure was vewere used to define the damper for nonlinear analysis. The same
similar to the previous case: Damper normal force representirgjationship between the correction factor for rolling and the nor-
the centrifugal force was achieved via gravitational loading, exdiralized platform angle obtained from simplified blade-damper as-
tation was applied at about one-third of the blade length from tisembly study was used here. Response levels were calculated at
root, and measurements were taken close the blade tips una@asurement locations for various values of damper normal loads,
constant excitation force of 1N for various values of damper nokeeping the excitation constant as in the experiment. Correlation
mal force. of the measured and the predicted response levels is presented in
In spite of the geometry being very much complicated than iRig. 16 in the form of a series of plots where the damper load is
the previous case, where two simple beams were used, the gyadually increased. It is seen again that the theoretical predictions
namic behavior of this assembly with real blades and damper wegrelate very well with the measurements, validating the under-
very similar to that of the simple assembly in Section 5.1. Aglatform damper model and the analysis techniques developed
before, the assembly had pairs of in-phé&i$®d and out-of-phase here. An important point to note is that the IP bending mode is
(OOP modes, though the measurements were restricted to a fedfected less by comparison with the OOP bending mode, as
guency range covering the first IP and OOP bending modes. found in the previous case. However, the underplatform damper
Unlike the two-beam assembly, the linear three-dimensional fieems to provide a significant amount of damping for the IP mode
nite element model shown in Fig. 15 for this case was very largas well for this assembly, possibly due the IP mode of vibration
more than 200,000 degrees-of-freedom. However, this was noinsolving sliding in the localz-direction.
drawback as the nonlinear analysis is carried out at active coordi- .
nates only as described earlier. Some initial adjustment of tfe Concluding Remarks
linear model, in terms of material properties and modal damping,1 A theoretical model for wedge-shaped underplatform damp-
was necessary to align the linear model so that linear predictioms for turbine blades has been developed. Measured contact pa-
matched the measurements without the friction damper. rameters can be used to provide the data required to describe
Various input data including measured contact propertiespntact characteristics.

928 / Vol. 123, OCTOBER 2001 Transactions of the ASME



2 A very efficient frequency domain response ana|ysi§12] Meng, C.-H., Bielak, J., and Griffin, J. H., 1986, “The Irlﬂuence of Microslip
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