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ABSTRACT 
This paper deals with improving the quality of  measured 

Frequency Response Functions (FRFs) by removing the 
undesirable effects of noise and transducer mass.  Two distinct 
methods are employed for the elimination of noise and 
transducer mass effects from FRFs.  One of the methods is 
based on Singular Value Decomposition (SVD) which is used to 
remove the noise inherently present in all measured data.  The 
second method, based on so-called the Sherman-Morrison 
Formula, is utilized to remove a more systematic error from 
FRFs, also known as mass loading. 

The validity of the methods presented here are 
demonstrated using simulated as well as measured data.  
Results show that the quality of the data can be improved 
significantly provided that certain conditions are satisfied. 
 
KEYWORDS: Modal test, FRF, noise, transducer mass effect, 
SVD, Sherman-Morrison formula. 

NOMENCLATURE 

j 1−  
r rank 
σi i th singular value 
�  Numerical precision  
�  Frequency in (rad/s) 
Hkl(

� ) Frequency Response Function 
αkl(

� ) Receptance  
Akl(

� ) Accelerance or Inertance 
[ ]; { }  matrix; vector 
[ ]H Hermitian matrix (complex conjugate transpose 

of a matrix) 

1  INTRODUCTION 
Measured Frequency Response Functions (FRFs) are used 

for many purposes including system identification, model 
verification and updating, structural modification, determination 
of external forces, fault detection as well as solving general 
vibration and noise problems. In many applications, e.g. 
structural coupling and structural modification, it is extremely 
desirable to have high quality FRFs. However, there are some 
unavoidable experimental error sources originating from the 
measurement process and experimental set-up. One of the 
significant error sources in measured FRFs can be classified as 
‘noise’ coming from test environment including electronic 
devices. Others can be categorized as systematic errors such as 
mechanical errors including mass loading effects of transducers, 
shaker-structure interaction and support effects. For a successful 
experimental modal analysis and other applications, it is 
necessary to eliminate these undesirable and unwanted effects 
from the measured FRFs [1-4].  There are a lot of studies on the 
elimination of noise from electrical signals using Singular Value 
Decomposition (SVD) technique [8-12] and a few studies on 
removing the transducer mass loading from FRFs [20-25] in the 
literature.  

This paper deals with improving the quality of measured 
FRFs, concentrating on removing the undesirable effects of 
noise and transducers mass from measured data. The first part 
of the paper presents a method based on Singular Value 
Decomposition (SVD), aimed at eliminating certain types of 
experimental errors from FRFs, usually categorized as random 
errors, or simply noise.  After a brief summary of the SVD 
technique, a method for the elimination of noise in measured 
test data is presented.  The validity of the method is illustrated 
using a simulated test case where broadband random noise is 
added to otherwise clean data.  It is shown that the method 



 Copyright © 2002 by ASME 2

based on this approach can be successful in elimination of noise 
from FRFs.  

The second part of the paper deals with removing the effect 
of accelerometer mass from measured FRFs, again aimed at 
improving the quality of the measured data. The so-called the 
Sherman-Morrison formula, previously used in the literature for 
recalculating the inverse of a matrix and for structural 
modification purposes [23-29], is utilized here to remove the 
mass loading effect of accelerometer from FRFs.  The validity 
of this approach is demonstrated using simulated as well as 
experimental data, the experimental data comprising two sets of 
measured FRFs of a specimen with and without an additional 
mass in addition to the accelerometer mass itself. 

The results obtained so far show that the methods presented 
here can improve the quality of the measured FRFs 
significantly.  As a result, better data can be provided for modal 
analysis and other applications. 

2  ELIMINATION OF NOISE FROM FRFs 
SVD is proved to be a very useful tool in modern linear 

matrix theory, in particular as a means of estimating the rank of 
a rectangular matrix [5-7].  The SVD technique has also found a 
wide range of application areas in engineering.  This technique 
has been used effectively for conditioning the measured signals 
for a long time, the application areas ranging from medical to 
telecommunication: e.g., extraction of the foetal 
electrocardiogram from cutaneous electrode signals, reduction 
of noise in speech and elimination of noise from electrical 
signals [8-12]. 

The use of SVD in structural dynamics is also very 
common as contaminated (noisy) data are to be used in many 
applications such as structural coupling and structural 
modification where reliable inversion of a matrix is required 
[13], model updating where model parameters are adjusted 
using modal or frequency response data [14].  In many cases, 
SVD is used to determine the rank of the data so that optimum 
solution for over-determined problems can be found, e.g., 
estimation of modal parameters from measured data [15], 
optimum test planning for modal testing [16].  Another area of 
application of the SVD technique in modal testing is for the 
assessment of the quality and the order of measured data.  A 
good example to this is the work done by Pickrel [17] who used 
the SVD technique to estimate the effects of frequency band, 
number of frequencies, number of measurement locations and 
signal to noise ratio in measured data.  The study presented in 
our paper towards the elimination of noise from measured data 
is a natural extension of the research done by Pickrel [17]. 
Application of SVD to a FRF based sub-structuring technique is 
presented by Lim and Li [18]. SVD is also used for the 
elimination of noise from FRF data in our previous study [19]. 

2.1 Theory 
SVD of an MxN complex matrix [A] is given by; 

H
NxNMxNMxMMxN VUA ][][][][ �=   (1) 

where [U] and [V] are orthogonal matrices, [Σ] is the real 
diagonal matrix and its diagonal elements σi are called singular 
values of [A].  σij  =  σi    for i=j  ;  σij = 0 for i≠j.  σi will be 
assumed to be arranged in descending order without any loss of 
generality  021 ≥σ≥≥σ≥σ r�  ,  r = min{ M,N} .  More 

details about the theory of SVD can be found in[5-7]. 
Let [A] be experimentally measured FRFs matrix arranged 

in the following form: 
 
[ ] ])}({)}({)}({[ 1121111 MxklMxMxMxN HHHA ωωω= �       (2) 

 
where Hkl(

� ) is a measured FRF relating the response at a given 
coordinate k to excitation force applied at a given coordinate  l 
and it  is a function of frequency � . M and N are number of 
frequency points and number of measured FRFs respectively. In 
most experimental studies M>N, implying that the number of 
frequency points is greater than the number of  measurements, 
as assumed throughout this paper.  When measured FRFs are 
used to establish the [A] matrix, it inevitably contains noise 
originating from measurement, hence [A] can be interpreted as 

containing the uncontaminated FRFs  ]
~

[ A  plus noise, i.e. 

[A]= ]
~

[ A +[Noise].  

The matrix [A] is said to be singular if one or more of the 
last singular values are zero.  This matrix is considered as 
nearly singular when one or more of its singular values are 
below a limit of numerical precision, � .  Theoretically, the 
number of non-zero singular values, r, determine the rank of 
this matrix, i.e  

   σi  >  �   ,   for  i=1 to r ,       
σi ≤  �   ,   for  i=r+1 to N            (3) 

 
From modal testing point of view, if enough number of 
measurement locations are chosen for a given frequency range, 
i.e. if spatial aliasing is avoided, it can reasonably be assumed 
that the limit for determination of the rank of [A] will be due to 
noise and other errors in the measured data.  This leads to 
defining a signal to noise ratio given by [9, 17] as:  
 

��
+==

σσ=
N

ri
i

r

i
iSNR

11

/    (4) 

 
This approach leads to identification and elimination of noise 
from measured data. First, r is estimated by carefully examining 
the relative values of singular values.  Then, σi are set to zero 
for i>r and  [U],  [Σ] and [V] are partitioned as 

 
[U]MxM = [ [Ur] Mxr [U0]Mx(M-r)]  (5a) 

[V]NxN = [ [Vr] Nxr [V0]Nx(N-r)]    (5b) 

�
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r
NxN     (5c) 
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Finally, an estimate of noise-free matrix ]
~

[ A can be calculated 

by using only the first r columns of  [U], [Σ] and [V], i.e.,  
 

H
rrr VUA ]][][[]

~
[ �=    (6) 

 
It should be noted that a new matrix, so-called Principal 
Response Functions (PRFs) matrix can be created by the 
multiplication of [U] and [Σ] matrices.  These PRFs have 
similar properties to FRFs and posses some additional benefits 
[1,17]. 

2.2 Numerical Simulation 
A free-free beam, as illustrated in Fig.1, is chosen for a 

numerical simulation. The beam has dimensions of 
0.8x0.01x0.025 m and the mechanical properties are: Young’s 
modulus E=207⋅109 N/m4, the mass density per unit volume 
ρ=7800 kg/m3 and Poisson’s ratio υ=0,3.  The beam is modeled 
by using Finite Element (FE) method and six natural 
frequencies corresponding to the bending modes of vibration 
were found in the frequency range from 0 to 2000 Hz (plus 
rigid body modes).  All possible FRFs (a total of 17x17=289) 
were numerically computed at each of 601 frequencies for the 
combinations of input and output points, then FRF matrix [A] 
with dimensions of 601x289 was formed according to Eq.(2). 

 
 

 
Figure 1. Free-free beam 

 
 

The noisy FRFs are simulated by adding white noise to 
these exact (noise-free) FRFs. The additive white noise is scaled 
such that its mean deviation is the stated percentage of the mean 
magnitude of the FRF matrix.  

The normalized singular values are shown in Fig.2 for 
noisy FRFs with 5% additive noise.  As can be seen in Fig. 2, 
the rank of FRF matrix is seven and the noise floor is at the 10-

16 level. Also, it is seen in the plots of principal response 
functions (PRFs) in Fig.3 that seven PRFs have high amplitude 
levels and others have relatively much lower amplitude levels 
with a noise-like appearance. 

The remaining results illustrate the application of proposed 
method for noise elimination at different levels of added noise.  
The exact (error-free) point FRF α11 is compared with 5% noisy  
FRF in Figure 4a and with corrected FRF in Figure 4b. It is 
seen that the level of noise still remaining in the corrected FRF 
in Fig. 4b is much lower than that of the noisy FRF in Fig. 4a. 
For the transfer FRF α13, the comparisons of the exact, noisy 
…. 
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Figure 2. Normalized singular values of FRFs with 5% 

additive noise 
 

 

 
Figure 3. Principal Response Functions (PRFs) with 5%  

additive noise    
 
 

and corrected FRFs are given by Fig. 5a and Fig.5b for a 
frequency range from 600 to 1200 Hz. Another set of results 
corresponding to 10% noise level are presented in Figs. 6a and 
6b.  It is clearly seen that the noise elimination method using the 
SVD technique can significantly eliminate the noise from the 
FRFs.  

It must be noted that it is not practical to measure all 
possible FRFs in a typical vibration test.  The current research 
activities are focused on the applicability of this method for 
practical cases where real measurements are used and when 
only one column of the FRF matrix are measured.  
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Figure 4a. Comparison of exact and noisy (5%) point FRFs α11.   
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Figure 4b. Comparison of exact and corrected point FRFs α11.   
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Figure 5a. Comparison of exact and noisy (5%) transfer FRFs 

α13.   
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Figure 5b. Comparison of exact and corrected transfer FRFs 

α13.   
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Figure 6a. Comparison of exact and noisy (10%) transfer FRFs 

α23.   
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Figure 6b. Comparison of exact and corrected transfer FRFs 

α23.   
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3  CANCELLATION OF THE TRANSDUCER MASS 
LOADING EFFECT FROM FRFs 
Another known problem about the measured FRFs is the 

mass loading effects of transducer which is mounted on the test 
structure. Transducer mass causes the natural frequencies of the 
structure to shift from their correct values, hence introducing a 
systematic error in the measured FRFs.  Generally, this effect is 
ignored in the analytical and experimental modeling process, 
based on a usual assumption that the transducer mass is 
negligible compared to that of the structure under test. 
However, when light-weighted structures are investigated, this 
effect can be significant and it can be necessary to eliminate this 
undesirable side effect before the data are used further analyses.  
The mass cancellation of transducers from point FRF and 
removing the stinger mass effects [1,2,20,21] have been studied 
in the past.  However, there are only a few publications [22-24] 
related to removing these undesirable effects from all measured 
FRFs and there isn’t a practical and effective solution available 
for use in practice yet. 

At the driving point, say l, the transducer mass effect can 
be removed from the measured accelerance All using the 
approach given by [1,2] as follow:  

 

ll

ll
ll Am

A
A

*1
*

−
=     (10) 

 

where *
llA  is the corrected accelerance and  m* is the transducer 

mass. There are a few methods available in the literature for the 
elimination of transducer mass effects from transfer FRFs. A 
brief summary of these methods are appropriate here. Decker 
and Witfeld [22] presented a method based on the process of 
structural modifications directly from experimental frequency 
response functions called as SMURF. If a point accelarence All 
is known, the effect of the transducer mass ∆ml can be removed 
from the transfer accelerance Alk by 

 

)(
1

)()(
)()(*

ω+
∆

ωω−ω=ω
ll

l

lllk
lklk

A
m

AA
AA   (11) 

 
where *

lkA is the corrected accelerance. Ashory [23] also aimed 

at removing the transducer mass loading effect and he 
considered a measurement with two different accelerometers 
with different masses. His formulation can be summarized as:  
 

 
�
	



�
�



�
�
�
�

�

�

�
�
�
�

�

�

−

−
=

�
	



�
�



−

1

1
1

1
1

2

1

*

*

m
A

m
A

A

A

lk

lk

ll

lk   (12)  

 

where m1, m2 are the masses of two different accelerometers and 
Alk , lkA  are the measured accelerances at point l with these 

accelerometers, respectively. Using this procedure, two correct 
FRFs can be obtained by undertaking two different 

measurements. Moreover, the driving point FRF *
llA  has to be 

determined at the co-ordinate l without having to measure it. It 
must be noted that when m1 is very close m2 ,  Alk  will be close 

lkA  and therefore the inverse of matrix will be ill-conditioned, 

although the correction is good when m1 is quite different m2.  

3.1 Correction of Transducer Mass Effect via 
Sherman-Morrison Formula 

As discussed above, the transducer mass-loading effect can 
adversely affect the measured FRFs, especially for delicate 
structures and the existing methods to remove this effect is still 
not quite practical.  For correction of a transfer FRF, the 
methods mentioned before need another FRF and there are 
some limitations when noisy FRFs are to be used and when 
there are close modes. 

An alternative method based on the Sherman-Morrison 
formula is presented in this paper to remove the adverse effects 
of transducer mass-loading from FRFs.  In what follows, the 
theory behind this approach is given first.  Then, the 
applicability is demonstrated using both numerical and 
experimental test cases. 

The Sherman-Morrison identity [26] allows a direct 
inversion of a modified matrix efficiently using the data related 
to the initial matrix and to the modification.   Let [A]-1 be the 
inverse of a non-singular square matrix [A] and consider the 
modification as a product of two vectors such as { u} { v} T, so 
that the modified matrix is [A′] = [A] + { u} { v} T. The inverse of 
the modified matrix [A′]-1 can be calculated by using the 
Sherman-Morrison formula as follows, 

 

}{][}{1

)][}} )({{]([
][][

1

11
11

uAv

AvuA
AA

T

T

−

−−
−−

+
−=′   (13) 

 
The Sherman-Morrison formula has been used in a wide 

variety of applications in the past, for example, in the fields of 
statistics, networks, structural analysis, asymptotic analysis, 
optimization, and partial differential equations. A more detailed 
coverage of this approach and various numerical aspects are 
discussed in [27,28].  For structural dynamic purposes, the main 
use of the identity given by Eq.(13) is for efficient analysis of 
structural modification problems.  Level et. al. [29] proposed 
method, using the receptance strategy in conjunction with the 
Sherman-Morrison formula, to calculate the frequency response 
of a modified structure. Sanliturk et.al,[30,31], however, 
extended the application of the basic formulation depicted in 
Eq.(13) for the analysis of non-linear structures.  

Our goal here is somewhat different in the sense that the 
aim is to remove the transducer mass loading effects from the 
measured FRFs using the Sherman-Morrison formula.  This is 
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achieved by considering the transducer mass as a modification 
to the original structure and the idea here is to modify the 
structure again, but this time the modification is to remove the 
appropriate mass from the structure.  In other words, a negative 
transducer mass is added to the structure as a modification in 
order to estimate the correct FRFs without the mass loading 
effect. 

Suppose that the dynamic stiffness matrix [Z] of a structure 
with the transducer mass is given by 

 
[Z]= [K]−ω2[M]+jω[C]   (14) 

 
where [K], [M], [C] represent stiffness, mass and damping 

matrices, ω represent the angular frequency and j= 1− . Let 
[∆Z] be the modification to be made to [Z].  Using the well 
known relationship [α]=[Z]-1 and expressing the modification 
matrix [∆Z] = { u} { v} T, the FRFs of the modified structure can 
be computed using the Sherman-Morrison formula in Eq.(13) as 

 

}]{[}{1

])[}} )({]{([
][][][ 1

uv

vu
Z

T

T

α+
αα−α=′=α′ −  (15) 

 
where [α′] contains the desired FRFs without the effects of 
transducer mass loading.  It should be noted that the desired 
FRFs are calculated without the need for any matrix inversion.  
It is also worth emphasizing that the modifications made here 
represent removing mass from the structure.  Furthermore, only 
one mass modification is considered here though it is possible 
to make successive modifications using this approach. 

3.2 Numerical Simulation 
The same free-free beam that is used in the previous 

section is also used here to demonstrate the effectiveness of the 
proposed method in removing the mass loading effects of 
transducers from FRFs.  The beam was modeled by using Finite 
Element Method and in addition to the rigid body modes six 
natural frequencies within the frequency range from 0 to 2.0 
kHz are calculated.  All possible FRFs, a total of 81 
corresponding to 9 input and output points, are computed.  
These FRFs are considered as the correct or the ‘exact FRFs’ in 
this numerical simulation. 

 
 
 
 
 
 

 
 

Figure 7. Beam structure that the accelerometer attached on the 
point 6. 

 
 

The mass loading effect of a transducer is also simulated 
using an FE model.  First, a point mass of 20 gr is added to the 
FE model at an assumed accelerometer location as shown in 
Fig.7.  Then, all the FRFs are calculated again, and these FRFs 
are considered as the synthesized or “measured”  FRFs in this 
numerical simulation. 

A computer program is developed to perform the 
computations required to remove the mass loading effect via  
Eq.(15) and the 20 gr transducer mass effect is eliminated from 
the synthesized  (‘measured’) FRFs, yielding the corrected 
FRFs.  Some of the corrected FRFs are compared to their exact 
and the ‘measured’ counterparts in Figs. 8 to 11.  As expected, it 
is clearly seen that the corrected FRFs match perfectly with the 
exact values. 
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Figure 8. Comparison of ‘measured’ , corrected and exact point 

FRFs α11.   
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Figure 9. Comparison of ‘measured’ , corrected and exact point 

FRFs α66.   
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Figure 10. Comparison of ‘measured’ , corrected and exact 

transfer FRFs α23.   
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Figure 11. Comparison of ‘measured’ , corrected and exact 

transfer FRFs α67.   

3.3 Experimental Case 
Having verified the proposed method using a numerical 

simulation, it was decided to investigate the applicability and 
the accuracy of the proposed method in the case of 
experimental data.  A beam with the same physical dimensions 
as in the numerical case was manufactured and tested.   An 
important feature in these tests was that two sets of FRFs were 
acquired, corresponding to the configurations depicted in 
Fig.12.  In the fist configuration, Fig.12a, the accelerometer was 
attached to node 2 and the first set of  FRFs were measured.  In 
the second configuration, however, an additional dummy mass 
(30 gr) was also attached to the point where accelerometer was 
attached, Fig.12b and the second set of FRFs were measured.  
In each case, 9 FRFs were measured. It should be noted 
however that  as it stands, the proposed method requires all the 
FRFs in the [α] matrix.  This requirement is satisfied here by 
generating the unmeasured FRFs using the measured ones by 
performing a modal analysis first. 

Having measured two sets of FRFs, it became possible to 
eliminate the effect of the dummy mass from the second set of 
FRFs.  The FRFs obtained from such analysis is expected to 
yield the first set of FRFs measured using the configuration in 
Fig.12a.   The results obtained from this analysis can be used to 
assess the validity of the method in the case of experimental 
data. 

 

 
   (a)     (b) 

Figure 12. Experimental test specimen a) without the additional 
mass, b) with additional mass.  

 
 

The proposed method is applied first to the second set of 
FRFs so as to remove the effect of the additional -dummy- mass 
from FRFs.  As mentioned, the outcome of this analysis is 
expected to yield the measured FRFs in the first set.  Results for 
the point FRF α11 are presented in Fig.13 around a natural 
frequency.   
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Figure 13. Comparison of measured (with and without dummy 
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It can be seen that, as expected, the resonance frequency of 
the system with the dummy mass is lower than that of the 
system without the dummy mass.  However, after eliminating 
the effect of the dummy mass, both the natural frequency and 
the FRFs as a whole are in excellent agreement with the correct 
values.  Similar observations can also be made for other FRFs 
as illustrated in Figs. 14 and 15, clearly validating the proposed 
approach. 

Having verified the method, it can be used to eliminate the 
transducer effects in the first set of  FRFs, a set that has the 
……  

 
 

980 1000 1020 1040 1060 1080

10
-6

10
-5

Frequncy    [Hz]

R
ec

ep
ta

nc
e 

(L
og

. 
M

od
ul

us
) 

[m
/N

]

Transfer FRF α12

Without mass
With mass
Corrected

 
Figure 14. Comparison of measured (with and without dummy 

mass) and corrected transfer FRFs α12.   
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Figure 15. Comparison of measured (with and without dummy 
mass) and corrected transfer FRFs α23.   

adverse effect of the accelerometer, but not that of the dummy 
mass.  This is a typical situation in practice where only one set 
of measurements is available.  The FRFs obtained from such a 
filtering process are expected to be the correct FRFs of the 
system without the mass loading effect.  Typical results 
presented in Figs. 16 and 17 show expected trend in the sense 
that the natural frequencies of the system without the effect of 
the transducer mass shift to higher frequencies compared to the 
values measured in practice using accelerometers. 
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Figure 16. Comparison of measured (without mass) and 

corrected point FRFs α11.   
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Figure 17. Comparison of measured (without mass) and 
corrected transfer FRFs α23.   
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4  CONCLUDING REMARKS 
Two methods are presented in this paper, both of which aim 

to improve the quality of the measured data that are to be used 
for further analyses. 

The first method is based on SVD and deals with reducing 
inevitable noise in measured FRFs.  Application of this 
technique in the case of a numerical simulation indicates that it 
can successfully reduce the level of noise in FRFs.   

The second method is based on the Sherman-Morrison 
formula and it is used for eliminating the transducer mass 
effects from measured FRFs.  The results obtained from 
numerical simulations as well as from the experimental study 
indicate that this method can be very effective in filtering out 
such undesirable effects from FRFs, especially for lightweight 
structures. 

Although both methods have been found to be quite 
promising, some aspects of these methods need further research 
and improvement before they can readily be used in practice. 
Noise elimination method needs further improvement and need 
to be verified using experimental data.  Moreover, both methods 
need to be optimized so that the additional measurement 
requirement is minimized.  These will be addressed in a 
forthcoming paper.  
 

5  REFERENCES 
[1] Ewins, D.J.,2000, Modal Testing: Theory, Practice and 

Applications, Second Ed., RSP. 
[2] McConnell, K.G.,1995. Vibration Testing, Theory and 

Practice. John Willey & Sons, Inc. 
[3]  Marudachalam, K. and Wicks, A.L.,1991. “An Attempt to 

Quantify The Errors in The Experimental Modal 
Analysis” . Proc. Of the IX. International Modal Analysis 
Conference. pp.1522-1527. 

[4] Mitchell, L.D., 1994. “Modal Test Methods-Quality, 
Quantity and Unobtainable” . Sound and Vibration, 
November. 

[5] Golub, G.H. and Van Loan, C.F. , 1989. Matrix 
Computations. Second Ed. John Hopkins University 
Press. 

[6] Press, W.H., Flannery, B.P., Teukolosky, S.A., and 
Vetterling, W.T., 1988. Numerical Recipes in C: The Art 
of Scientific Computing, Cambridge Univ. Press. 

[7] Maia, Nuno, M.M., 1991. Fundamentals of Singular Value 
Decomposition, Proc. Of IMAC 9, Florance, Italy, pp. 
1515-1521. 

[8] Callaerts, D., De Moor, B., and et. all., 1990, 
“Comparison of SVD Methods to Extract The Feotal 
Electrocardiogram from Cutaneous Electrode Signals” . 
Medical & Biological Engineering & Computing, 217-
224. 

[9] De Moor, B., 1993, “The Singular Value Decomposition 
and Long and Short Spaces of Noisy Matrices” . IEEE 
Transactions on Signal Processing, 41(9), pp. 2826-2838. 

[10] Jensen, S.H., Hansen, P.C., and at all.,  1995, “Reduction 
of Broad-band Noise in Speech by Truncated QSVD”. 
IEEE Transactions on Speech and Audio Processing, 3(6), 
pp. 439-448. 

[11] Moustakides, G.V., and Berberides, K., 1995, “New 
Efficient LS and SVD Based Techniques for High-
Resolution Frequency Estimation” . IEEE Transactions on 
Signal Processing, 43(1) , pp. 85-94. 

[12] Dologlou, I., Huffel, S.V., and Ormondt, D.V., 1997, 
“ Improved Signal Enhancement Procedures Applied to 
Exponential Data Modeling” . IEEE Transactions on 
Signal Processing, 45(3),  pp. 799-803.  

[13] To, W.M., and Ewins, D.J., 1995, “The Role of he 
Generalized Inverse in Structural Dynamics” . Journal of 
Sound and Vibration, 186(2), 185-195. 

[14] Friswell, M.I. and Penny, J.E.T., 1990. “Updating Model 
Parameters from Frequency Domain Data via Reduced 
Order Models” . Mechanical Systems and Signal 
Processing, 4(5), pp. 377-391. 

[15] Fillod, R. Lallement, G. , Piranda, J and Raynaud J. L., 
1985. “Global Method of modal Identification” , Proc. of 
IMAC 4, 2, pp 1145-1151, Orlando, Florida. 

[16] Liu, K. , 1997, “Application of SVD in Optimization of 
Structural Modal Test” . Computers & Structures, 63(1), 
pp. 51-99. 

[17] Pickrel, C.R., 1996, “Estimating The Rank of Measured 
Response Data Using SVD and Principal Response 
Functions” . Proc. 2nd. Int. Conference on Structural 
Dynamics Modeling, Test Analysis and Correlation. 
DTA/NAFEMS, pp.89-100, July. 

[18] Lim, T.C., and Li, J., 2000, “A Theoretical and 
Computational Study of the FRF-Based Substructuring 
Technique Applying Enhanced Least Square and TSVD 
Approaches” , Journal of Sound and Vibration, 231(4), 
1135-1157. 

[19] Çakar, O., and Sanlitürk, K.Y., 2001. “  Elimination of 
Noise on The Vibration Test Data” . 10th National 
Symposium on The Machine Theory. 2, pp.529-538 , 
Konya (in Turkish). 

[20] Hu, X., and McConnell, K.G., 1993. “Stinger Mass 
Compensation, Part One: Theoretical Study” . The Int. 
Journal of Analytical and Experimental Modal Analysis, 
8(1), 35-44, jan. 

[21] Hu, X., and McConnell, K.G., 1993. “Stinger Mass 
Compensation, Part Two: Experimental Investigation” . 
The Int. Journal of Analytical and Experimental Modal 
Analysis, 8(1), 45-54, jan. 

[22] Decker, J., and Witfeld, H., 1995. “Correction of 
Transducer-Loading effects in Experimental Modal 
Analysis” . Proc. Of the13th International Modal Analysis 
Conference, pp.1604-1608, Nashville, Tennessee. 

[23] Ashory, M.R., 1998. “Correction of Mass Loading Effects 
of Transducers and Suspension Effects in Modal Testing” . 



 Copyright © 2002 by ASME 10

Proc. Of the 16th International Modal Analysis 
Conference. pp. 815-823. 

[24] Silva, J.M.M, Maia, N.M.M, and Riberio, A.M.R., 2000. 
“Cancellation of Mass-Loading Effects of Transducers 
and Evaluation of Unmeasured Frequency Response 
Functions” . Journal of Sound and Vibration. 236(5), pp. 
761-779. 

[25] McConnell, K.G., and Cappa, P., 2000. “Transducer 
Inertia and Stinger Stiffness Effects on FRF 
Measurements” . Mechanical Systems and Signal 
Processing. 14(4), pp. 625-636. 

[26] Sherman, J., and Morrison, W.J.,1950. “Adjustment of an 
Inverse Matrix Corresponding to a Change in one Element 
of a Given Matrix” . Annals of Mathematical Statistics, 
21(1), pp. 124-127. 

[27] Hager, W.W., 1989. “Updating The Inverse of A Matrix” . 
SIAM Review, 31(2)  pp. 221-239.  

[28] Akgün, M.A., Garcelon, J.H., and Haftka, R.T., 2001. 
“Fast Exact Linear and Non-Linear Structural Reanalysis 
and the Sherman-Morrison-Woodbury Formulas” . 
International Journal for Numerical Methods in 
Engineering, 50, pp. 1587-1606. 

[29] Level, P., Moraux, D., at all., 1996. “On A Direct 
Inversion of The Impedance Matrix in Response 
Reanalysis” . Communications in Numerical Methods in 
Engineering,12, pp. 151-159.  

[30] Sanliturk, K.Y., Ewins, D.J., Elliot,R., and Green, S.J., 
2001. “Friction Damper Optimization: Simulation of 
Rainbow Tests” . ASME Journal of the Engineering for 
Gas Turbines and Power, 123(4), pp.930-939. 

[31] Sanliturk, K.Y., Ewins, D.J., and Stanbridge, A.B., 2001. 
“Underplatform Dampers for Turbine Blades: Theoretical 
Modeling, Analysis and Comparison with Experimental 
Data” . ASME Journal of the Engineering for Gas Turbines 
and Power, 123(4), pp.919-929.  

 


