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ABSTRACT 
        In this paper, a dynamic model of a rotor-ball bearing 
system is developed in Msc. ADAMS commercial software. 
Contacts between the balls and the rings are modelled 
according to Hertzian theory. The bearing model is capable of 
representing the effects of bearing defects and internal 
clearances. When they are coupled with the rotor structures, 
bearings without any defect can also cause excessive 
vibrations due to the resonance characteristics of the system. 
In order to demonstrate these characteristics the rotor itself is 
modelled as a flexible shaft and a disc positioned at the free 
end of the shaft. The rotor-ball bearing model developed here 
is capable of representing the gyroscopic effects and the 
behaviour of the system under different unbalance conditions.  
Various case studies are performed and Campbell diagrams 
are obtained by using short-time Fourier transform method. 
        A test rig consisting of two ball bearings, a shaft and a 
disc is also designed and developed so as to validate the 
theoretical model using experimental data. The test rig is 
developed in such a way that all of the elements are easy to 
assemble/disassamble, allowing quick observation of the 
system’s dynamic behaviour for different parameters including 
imbalance, internal clearance and bearing defects. Modal 
analysis and order tracking analysis were carried out using the 
test rig. Both the modal results and Campbell diagrams 
obtained using experimental data are compared with their 
theoretical counterparts. In the light of the experimental data, 
the theoretical model is validated for the purpose of further 
analyses and research. 
 
 
 
1. INTRODUCTION 
        In many mechanical engineering applications, including 
the production plants, automotive industries and household 

appliances, ball bearings are the most common components. For 
the purposes of condition monitoring, fault diagnostics and 
system maintenance of a rotating machinery, vibration 
generation and transmission through rolling bearings is a very 
important subject to study [1]. Also rolling bearings have very 
significant effects on the dynamics and vibrations of mechanical 
systems, hence understanding the dynamic behaviour of ball 
bearings is very important.  
        In most of the published literature, vibrations generated 
and caused by ball bearings are studied when the bearings are 
defected [1-3]. Distributed and localized defects on ball 
bearing’s rings and rolling elements cause excessive vibrations. 
It is very well-known that for fault diagnostics and system 
maintenance issues vibration behaviour of a ball bearing can 
give important clues. Tandon and Choudry [1] in 1997 studied 
the vibration response of rolling element bearings due to a 
localized defect in an analytical manner. They assumed that the 
bearing rings are isolated continuous systems and obtained the 
equations of motion by using Lagrange’s equations. The 
localized defects are assumed as pulse generators and these 
pulses are mentioned as generalized forces in the Lagrange’s 
equations. Sassi et al. [2] tried to cope with the damaged 
bearing vibration phenomena in a numerical manner. Just like 
Tandon et al. they used the impact assumption for defect 
dynamics. In addition stiffness and damping of the lubricant 
fluid film has been taken into consideration. Tandon et al. [3] 
also studied the vibrations of ball bearings with distributed 
defects. First, they obtained the vibration response of a bearing 
without any defect. They determined the amplitude of the 
vibration at cage frequency and its harmonics by using a Fourier 
series expansion. They also compared the defected and the ideal 
models. Their results showed that outer and inner races have a 
response having a spectrum with peaks at characteristic defect 
frequencies for respective races.  

Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis 
ESDA2010 

July 12-14, 2010, Istanbul, Turkey 

ESDA2010-24599 
 



 2 Copyright © 2010 by ASME 

        The effects of radial clearance, number of balls and 
preload are also studied by many others [4-7]. Tiwari et al. [4] 
had a study about the effect of radial clearance to vibration 
response of a balanced rotor. The differential equations were 
obtained with an assumption of linearized stiffness [5]. The 
equation was solved by using Cash-Kord Runge-Kutta method. 
Tiwari et al. [6] improved their model at reference [4] for the 
case of unbalance. Aktürk et al. [7] studied the effects of balls 
and preload on bearing vibrations. For a system with no defects 
a theoretical investigation was made in order to determine 
whether the amount of preload and the change in number of 
balls could reduce the effects of ball-passing vibrations. The 
stiffness was determined with the Hertzian contact approach. In 
conclusion they showed that the number of balls and preload 
were critical parameters that affected ball bearing vibrations 
and should be considered when modelling bearings. 
        Computer aided simulations are also used in bearing 
models built until now. Some of the studies [2] are about 
toolboxes created on the environments of MATLAB or 
Mathematica. On the other hand, Wensing [8] built a ball 
bearing model by using Component Mode Synthesis (CMS) 
method. That study also contains the experimental validation of 
the model. Sopanen et al. [9, 10] built a model with the help of 
Multi-Body System approach using MSC. ADAMS. They 
affirm that, with this approach it is possible to model the rotor 
as flexible to observe the effects of individual components on 
the total response. Also the misalignments and waviness of the 
rings can be implemented into the model. Several experimental 
methods are being used for measuring the vibrations caused by 
bearings. In the literature, the main objective of these 
experimental methods is to detect the defects of bearings [12, 
13]. However, there are also experimental studies made in order 
to validate numerical models [8], [11].   
        This paper introduces a new model of a rotor-ball bearing 
system. In this paper, it is aimed to create a new model for a 
rotor-bearing system, which can demonstrate not only the 
vibrations generated by a ball bearing itself, but also the effect 
of the flexible shaft and rigid disc structure on the resonance 
characteristics of the system. A numerical modal analysis is 
performed and Frequency Response Functions (FRF) are 
obtained. Also, the change of natural frequencies with respect to 
rotational speed due to gyroscopic effects is observed. The 
Campbell diagrams are obtained using the data generated from 
the model by using Short-Time Fast Fourier Transform (STFT) 
technique for the case in which the gyroscopic effects are 
included.  For experimental validation process, a test rig is 
designed with an overhung rotor supported by two ball 
bearings. Experimental modal analysis and order tracking 
analysis techniques are followed during this process. The case 
studies with differing unbalance masses are also carried out for 
further analyses. 
        The outline of this paper is as follows. First, a review of 
the determination of contact stiffness and damping between ball 
bearing elements is given. Then, the kinematics of a ball 
bearing and defect frequencies are briefly described. The 

assumptions and methodology used on the modelling process of 
the rotor-ball bearing system are introduced. After that, in the 
next step, the test rig and the experimental procedures are 
described. Finally, the results of the numerical model and 
experimental data are compared. For the static case 
experimental and numerical Frequency Response Functions 
(FRF) are presented. For the dynamic case, experimental and 
theoretical Campbell diagrams are obtained.  The measured and 
predicted results are compared and discussed. 

 

2. THEORETICAL BACKGROUND 
 
2.1 Contact Stiffness and Damping at Ball Bearings  

Loads acting between the rolling elements and raceways 
develop only small areas of contact [15]. For ball bearings this 
area is smaller and this kind of contact is named as point 
contact. Stiffness at these contacts is calculated by using 
Hertzian Theory. Lubrication must be taken into account when 
modeling ball bearings that run at high operational speeds. This 
type of contact is called elastohydrodynamic (EHL) contact. In 
this study the stiffness and damping effects of the lubrication 
film are neglected. The assumption made here is based on a dry 
contact mechanism.  

The rolling elements are in contact with the inner and outer 
raceway in a ball bearing. The surface of a rolling element is 
convex whereas the surface of the outer raceway is concave. 
The surface of the inner raceway is convex in the direction of 
motion and concave in the transverse direction [8]. Figure 1 
shows major geometric features of a ball bearing. 

 
 

 
              a) 

 
             b) 
 

Figure1.  a) CONTACTING BODIES  b) GEOMETRIC FEATURES OF THE 
CONTACT REGION OF A BALL BEARING [8]  

 

If reR denotes the radius of the ball itself, the radii of the 

curvature for the inner contact are: 
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iy RR −=2  (4) 

Similarly, the radii of curvature for the outer contacts are:  
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Contact angle α  is a parameter which affects the radii of 

curvature of the raceway. However, as pointed out in [8], the 
assumption of a zero degree contact angle causes only a small 
error [8]. Usually, the contact surface in Fig.1 is assumed to be 
paraboloid. The geometric features between two contacting 
solids can be expressed  in terms of the curvature sum R, and 

curvature difference dR , which are described in [8] as  
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When a normal load is applied to the two contacting 

bodies, the point contact expands to an ellipse [9], as ea and eb  

are semi-minor and semi-major axes of this ellipse geometry, 
the ellipticity parameter ek  is defined as [17]: 
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 Also this parameter can be defined as a function of 

curvature difference dR  and the elliptic integrals of the firstξ  

and secondζ kind as [16]  
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where ϕ  is an auxiliary angle. As can be seen, an iteration 

procedure is required in order to determine the ellipticity 
parameter and elliptic integrals.  One point numerical iteration 
and curve fitting techniques can be used and approximation 
formulae given below can be obtained [9]:  

 
 6360.0

0339.1 







=

x

y
e R

R
k  

 

 
(15) 

 

y

x

R

R
5968.00003.1 +=ξ  

 

 
(16) 

 








+=

x

y

R

R
ln6023.05277.1ζ   

(17) 

 
The contact stiffness coefficient for the elliptical contact 

assumption can be calculated as [9]: 
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where the effective modulus of elasticity,E′ , is defined as: 
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E  is the modulus of elasticity and υ  is the Poisson’s ratio 

and the subscripts refer to solids 1 and 2. In the case of ball 
bearing, both of the solids have the same elasticity properties 
[9]. 

In ball bearings the main cause for the damping is the 
lubricant film in contacts. Also material damping at contact 
region is another factor. In the proposed model a constant 
damping value, based on the experimental data, is used due to 
the relatively small damping in the bearing.  
 
 
2.2 Kinematics of a Ball Bearing 

Unlike hydrodynamic or hydrostatic bearings, motions 
occurring in ball bearings are not restricted to simple 
movements [15]. Different components have different rotational 
speeds and velocities. This situation causes excitations at 
different frequencies called “defect frequencies” and they can 
be very significant when the component is defected.  It is also 
known that bearing without any defect generates vibrations at 
Ball Passing Frequency (BPF) which has the same value with 
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outer ring defect frequency. If in  and on denote the rotational 

speeds of inner and outer rings (in rpm) ,d indicates ball 

diameter andα  indicates contact angle, bN  is the number of 

balls, then the so-called defect frequencies are given as follows. 
 

Fundamental Train Frequency (Cage speed): 
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Ball pass frequency inner ring: 
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Ball spin frequency: 
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3. DYNAMIC MODELLING 
 

3.1 Model for the ball bearing 
During the modelling process a particular type of deep-

groove ball bearing is used. The rings and rolling elements are 
assumed to be rigid. As mentioned before, dry contact 
mechanism is assumed here. It is also assumed that the rolling 
elements are rolling on the raceways without slipping. The 
stiffness of the contacts is determined via the Hertzian contact 
theory as explained in section 2. The cage structure is included 
in the ball bearing model as rigid connectors. The complete 
model of the ball bearing is shown in Fig. 2. 

 

 

 
Figure 2.  MODEL OF THE BALL BEARING, CREATED ON MSC. ADAMS 

COMMERCIAL SOFTWARE 

 
 
3.2 Model for the rotor-bearing assembly  

After the ball bearing model is built, a Finite Element (FE) 
model for a shaft, shown in Fig. 3, is created. The shaft is 
assumed to be flexible and it is represented using elastic beam 
elements with circular cross sections. The rotor also contains a 
disc with 300 mm diameter and 20 mm thickness. The inertial 
properties of the disc are calculated and implemented in the 
model and the disc is assumed to be rigid with specified mass 
and moments of inertia properties. At first, a primitive FE 
model for the rotor-bearing shown in Fig. 4 is developed and in 
this model spherical and cylindrical joints are used instead of 
ball bearings. Spherical joint has three degrees of freedom 
which are all rotational whereas cylindrical joint has only one 
freedom which is the rotation about the axial direction.  

After developing the primitive model, flexible shaft with 
beam elements and the ball bearing model described in section 
3.1 are assembled. In practice, deep groove ball bearings have 
three rotational degrees of freedom. The inner ring can have 
very limited rotational capacity around both radial axes. In the 
model this freedom can be satisfied with the joint between the 
shaft and the inner ring. A bushing element with rotational 
stiffness is used for joining the shaft with the bearing. 
Numerical FRFs are then calculated using the model developed. 

 
 

 
 

Figure 3. FE MODEL OF THE SHAFT 

 
 

 
Figure 4. PRIMITIVE MODEL WITH   SPHERICAL JOINTS INSTEAD OF 

BEARINGS 
 

Once the numerical modal analysis is performed for the 
static case, the model is run-up to 1200 rpm in 10 seconds and 
time-domain acceleration data are collected. This dynamic 
analysis is also carried out for a given level of unbalance on the 
disc. A Short Time Fast Fourier Transform (STFT) is applied  to 
this time data and the results are obtained as Campbell 
diagrams. 

Flexible shaft  
(beam assumption) 

Spherical Joint 
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4. TEST RIG AND MESAUREMENTS  
In order to validate the rotor-ball bearing model developed 

in this paper, a test rig shown in Fig. 5 is designed. The test rig 
comprises a rotor part (a shaft and a disc at the end) and two 
deep groove ball bearings supporting the rotor. As can be seen 
in Fig. 5, the ball bearings are mounted on a heavy block with 
soft supports. The system is driven by an AC motor and the 
power transmission is provided by a belt-pulley mechanism. AC 
motor is separated from the whole system and fixed to the 
ground. The test rig is designed in such a way that it is easy to 
change some components in the assembly.  Shafts with different 
lengths can be used and the ball bearings can be replaced with 
others with different clearance values. Unbalance masses can 
easily be added to the structure via the holes on the disc. Motor 
can be positioned precisely so as to calibrate the belt tension. 
The assembly of the shaft and the disc is done by using a 
special key design and an additional nut at the free end of the 
shaft.  

Using the test rig developed FRF measurements for the 
static case is carried out first. The structure is excited using a 
modal impact hammer and charge type accelerometers are used 
to measure the response. An analyser with proper signal 
conditioning hardware is used. After the static measurements 
the system is run-up to 1200 rpm. Order tracking analyses are 
performed, both order and Campbell diagrams are obtained. 
Information about the rotational speed is obtained by using the 
signal from an existing taco probe on the AC motor and the belt 
ratio. The accuracy of this taco signal is verified using another 
laser tachometer tracing the rotation of the disc directly. 
Accelerometers are positioned on the block housings and 
vibrations on various directions are collected. Forced response 
of the system is measured when the system is excited by known 
levels of unbalance. Repeatability checks are performed and 
calibration of the system is checked before each experiment 
during both static and dynamic measurements. 

 
 

 
 

Figure 5. THE TEST RIG 

 

5. RESULTS AND DISCUSSION 
FRFs are measured using the test rig and corresponding 

FRFs are calculated using the model developed for comparison 
purposes.  Sample results are presented in Figures 6 and 7. 
Figure 6 shows the numerical and measured FRFs obtained in 
vertical -y- direction whereas Fig. 7 demonstrates those in 
horizontal -x- direction. It should be noted that there are 3 
predicted FRFs in each figure, individual predictions 
corresponding to 3 different bearing models.  As mentioned 
before, two of these predictions are based on so-called primitive 
models using cylindrical and spherical joints in order to model 
the bearings.  The third prediction is based on the ball bearing 
model given in Fig. 2. Theoretically, when the system is 
assumed to be homogeneous, the natural frequencies for the 
bending modes in horizontal and vertical directions should be 
the same, as in the first primitive model with spherical joints. 
However, this is not observed for the real system because of the 
different stiffness characteristics of the block housings and the 
belt connection along horizontal and vertical directions. The 
experimentally observed behaviour of the system is represented 
in the model by using springs and bushing elements in various 
directions..  

Another important result is the difference between the 
predictions obtained from the primitive rotor model and the new 
ball bearing model. In many published work, there is a general 
assumption that spherical or cylindrical joints can be used to 
model roller bearings especially when they are fixed to the 
ground. However, as can be seen in Figures 6 and 7 there is a 
very significant difference between the natural frequencies 
obtained from those primitive models and experiments. For the 
model with cylindrical joint it can be said that this model is over 
constrained, hence the natural frequencies, especially those for 
the second bending modes are quite higher than the real values. 
On the other hand, spherical joints have additional (rotational) 
freedoms and this results in decrease in over predictions of 
natural frequencies. The translational and rotational stiffnesses 
of ball bearing, housing and belt are taken into account in the 
improved model.  

The damping of the system at different frequencies are 
modelled in the light of the experimental data.  In other words, 
the measured damping levels are used in the numerical model.  
As seen in Figures 6 and 7, this leads to satisfactory predictions 
of the peak amplitudes when compared to the experimental 
results. However, the results obtained using the primitive 
models are poor since the stiffness and damping of the housings 
are not included in those models. 

The experimental FRFs in Figures 6 and 7 show several 
peaks indicating natural frequencies.. The one at 16 Hz is the 
natural frequency corresponding to the mode shape that can be 
described as the rocking of the whole system as a rigid body on 
elastic supports of the heavy bench and it is not included in the 
theoretical models. Another peak at 46 Hz in the measured 
FRFs corresponds to the torsional mode of the structure. The 
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torsional mode appears here due to the impact hammer 
excitation having tangential component during the 
measurement. This causes torsional response of the system and 
appears as a peak in the measured FRF. In order also to observe 
this torsional mode in the theoretical models, the system is 
excited in a way that enables significant angular vibration. The 
other peaks in the measured FRFs represent the first and the 
second bending modes of the system. It is noted that the 
measured and the predicted natural frequencies for the torsional 
and bending modes agree quite well for the case when the ball 
bearing model depicted in Fig. 3 used.  The torsional mode is 
not affected by the bearing hence the the primitive models are 
are capable of predicting the natural frequency of the torsional 
mode accurately. However, predicted natural frequencies for the 
bending modes are far from reality when the primitive bearing 
models are used.    

After the static FRF analyses, the system is investigated 
under rotating condition..  The rotational speed of the system is 
gradually increased and the response of the system is recorded 
during this process.  The same situation is simulated using the 
numerical model.  In both cases, the data captured are 
processed to obtain the Campbell diagrams.  The experimental 
numerical results are presented in Figures 8 and 9, respectively. 

It is seen in Figures 8 and 9 that because of the imbalance, 
the 1st harmonic is very dominant. It should also be noted that 
for the ball bearing studied here, the ratio between the Ball 
Passing Frequency and shaft rotation speed can be calculated 
from Eqn. (21)  as 3.55 In both experimental and numerical 
cases, the BPFO can be seen. However, they are not very 
significant as the bearings used can be considered defect free. 

 
 

Figure 6. COMPARISON OF THE RESPONSES OF THE 
MODELS AND TEST RIG FOR AN IMPACT IN VERTICAL 

DIRECTION 

 
 

Figure 7. COMPARISON OF THE RESPONSES OF THE 
MODELS AND TEST RIG FOR AN IMPACT IN HORIZONTAL 

DIRECTION 
   

Also, the natural frequencies can be identified in both 
figures. It appears in the numerical result that the first bending 
modes is dominant at lower rotational speeds. A possible reason 
for this might be the use of undamped model during the forced 
response calculations. In experimental Campbell diagram the 1st 
bending modes are less dominant, but they can be observed 
when some harmonics of the running speed or ball pass 
frequency coincide with them. Also, as expected, when the 
higher harmonics (7th, 8th, 9th …) coincide with the second 
bending natural frequencies, higher levels of vibrations are 
obtained. In the numerical case, vibrations levels at these higher 
frequencies are overestimated possibly due to smearing effect. A 
“numerical order tracking” can be a solution for this situation.  
       During the run-up procedure, the natural frequencies of the 
system corresponding to bending modes split from each other. 
This situation is a result of the gyroscopic effects which are 
more significant for overhung rotors [19]. 

 
Figure 8. CAMPBELL DIAGRAM OBTAINED FROM THE EXPERIMENTS 
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Figure 9. CAMPBELL DIAGRAM OBTAINED FROM THE NUMERICAL 

MODEL 
        
In order to demonstrate these gyroscopic effects and to 
determine the natural frequencies, a linearization [20] process is 
carried out and an eigensolution are obtained at certain running 
speeds. The bending natural frequencies at each rpm values for 
both experimental and numerical run-up procedures can be seen 
in Figures 8 and 9. The natural frequency split due to 
gyroscopic effects is visible especially for the 2nd bending 
modes.  However, the natural frequency split for the 1st bending 
modes is not very significant.  
   

6. CONCLUDING REMARKS 
A new dynamic model is developed in order to demonstrate 

the vibration behaviour of a rotor-ball bearing system. A test rig 
is designed and developed to carry out the validation process. It 
is shown that for the rotor-ball bearing systems the stiffness of 
the bearings and housings are important parameters in 
predicting the modal properties and dynamic behaviour. 

The model is also run-up to 1200 rpm. The Campbell 
diagrams obtained by using STFT techniques showed 
satisfactory results. There are peaks at outer ring ball passing 
frequencies and harmonics of the running speeds. The critical 
speeds are shown in both numerical and experimental results.   

It can be said that the new bearing model has some features 
necessary for modelling the response characteristics of a rotor-
bearing system. It is obvious, however, that the current 
numerical model has some limitations. Current work is directed 
towards improving the rotor-bearing model and the associated 
analyses. 
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