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Abstract

Two-dimensional gravity-capillary solitary waves propagating at the surface of a fluid of
infinite depth are considered. The effects of gravity and of variable surface tension are
included in the free-surface boundary condition. The numerical results extend the constant
surface tension results of Vanden-Broeck and Dias to situations where the surface tension
varies along the free surface.
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1. Introduction

Over the last 20 years, much progress has been achieved in the understanding of the
effect of surface tension on solitary waves. In particular two new classes of solitary
waves have been discovered. The first class consists of waves which possess a train
of ripples of constant amplitude in the far field. These waves are often referred to
as generalised solitary waves to distinguish them from true solitary waves which are
characterised by a flat profile in the far field. The second class consists of solitary
waves with oscillatory decaying tails in the far field. There is also an extensive
literature on periodic waves with surface tension (see for example [1], [4] and [7]).
One main result is the existence of many different branches of periodic solutions with
dimples on their free-surface profiles.

Both solitary and periodic waves are usually studied by assuming constant surface
tension. Vanden-Broeck [8] showed that the theory of periodic capillary waves can
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be generalised by allowing the surface tension to vary along the free surface. This
work was extended by Özuğurlu and Vanden-Broeck [6] to include the effect of
gravity. The analysis in [8] and [6] was restricted to periodic waves. In this paper we
consider solitary waves and provide numerical evidence that there are solitary waves
with decaying oscillatory tails in the presence of variable surface tension. When the
surface tension is constant, these new solutions reduce to the solitary waves of the
second type mentioned in the previous paragraph. We assume the fluid to be inviscid
and incompressible and the flow to be irrotational. A frame of reference moving with
the solitary wave is chosen and the flow is assumed to be steady in that frame.

An important question is how the surface tension varies along the free surface. For
periodic waves, it can easily be shown that the surface tension has to vary periodically
along the free surface (Vanden-Broeck [8]). This is not the case for solitary waves.
For solitary waves, the curvature of the free-surface profile approaches zero in the far
field. Therefore the effect of surface tension is negligible in the far field and we can
assume without loss of generality a distribution of surface tension which approaches
a constant value in the far field. We experimented with various such distributions
of surface tension and found that the results were qualitatively similar. We present
results for only one distribution of surface tension.

The formulation is presented in Section 2. The numerical procedure is described
in Section 3. The results are presented in Section 4.

2. Formulation of the problem

The formulation and numerical procedure follow closely that of Vanden-Broeck
and Dias [9]. At large depth the flow is characterised by a uniform stream to the right
with a constant velocity U . We assume that the flow is steady. Cartesian coordinates
are introduced with the x-axis parallel to the velocity U at large depth and the y-axis
directed vertically upwards. Gravity g is acting in the negative y direction. The
origin of the coordinates is chosen on the free surface and the flow is assumed to be
symmetric with respect to the y-axis. The velocity potential function � and the stream
function are used as independent variables. Without loss of generality we set = 0
on the free surface and � = 0 at the point x = 0 on the free surface.

We assume that the surface tension T varies along the free surface and approaches
a constant value T0 as |x| → ∞. We found that the numerical results are qualitatively
independent of the particular distribution of surface tension chosen. Therefore we
shall only present results for one distribution of surface tension, namely

T .�/ = T0 + ž̃�.�/; (2.1)

where T0 > 0 and ž̃ > 0 are given constants and � is the curvature of the free surface
counted positive when the centre of curvature lies inside the fluid. Relation (2.1)
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defines T as a function of �. This can be viewed as an inverse formation in the sense
that T is found as a function of x at the end of the computations after x.�/ has been
calculated. Since |x| → ∞ and �.�/ → 0 as |�| → ∞, T0 is the constant value of the
surface tension in the far field. We define dimensionless variables taking T0=²U 2 as
the unit length and U as the unit velocity. If u and v denote respectively the horizontal
and the vertical components of the velocity, we write

f = � + i ; (2.2)

z = x + iy; (2.3)

u − iv =
(

dz

d f

)−1

= 1

x� + iy�
: (2.4)

We seek x� + iy� as an analytic function of f , in the domain  ≤ 0.
On the free surface the Bernoulli equation yields in terms of the dimensionless

variables

1

2

1

x2
� + y2

�

+ Þy + [1 + ž̃�.�/]�.�/ = B; (2.5)

where

Þ = gT0

²U 4
and �.�/ = y�x�� − x� y��

.x2
� + y2

�/
3=2

: (2.6)

Here B is the Bernoulli constant and ² is the density of the fluid.
We now apply Cauchy’s integral formula to x� − 1 + iy� on a path consisting of

the free surface  = 0 and a semicircle of arbitrarily large radius in the lower half
.�;  /-plane. Since x� − 1 + iy� → 0 as  → −∞, we have for  < 0

x� − 1 + iy� = − 1

2³ i

∫ +∞

−∞

.x¾ − 1 + iy¾ /| =0

¾ − f
d¾;  < 0: (2.7)

Setting  = 0 in (2.7) and taking the real part of the resulting expression then
yields

x� = 1 − 1

³

∫ +∞

−∞

y¾
¾ − �

d¾;  = 0; (2.8)

the integral being of Cauchy principal-value form. We use the symmetry of the flow
to rewrite (2.8) as

x� = 1 − 1

³

∫ ∞

0

y¾

[
1

¾ − �
+ 1

¾ + �

]
d¾: (2.9)

The integral in (2.9) is a Cauchy principal value.
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Relations (2.5) and (2.9) define a nonlinear integro-differential equation for x�+iy�
on the free surface. Upon solving this system, the free-surface profile is readily
determined. The amplitude of the free-surface displacement is characterised by the
distance A between the origin of the coordinates and the level of the free surface at
infinity. Thus

A = −y at |�| = ∞;  = 0: (2.10)

The definition (2.10) implies that A > 0 for elevation free-surface profiles and A < 0
for depression free-surface profiles.

For given values of A and ž̃ the system ((2.5), (2.9)) is discretised and the resulting
algebraic equations are solved using Newton’s method. The value of Þ is found as
part of the solution. Details are given in Section 3.

We conclude by mentioning that the relation between the inviscid problem consid-
ered here and the viscous problem at high Reynolds number is described in Lucassen-
Reynders and Lucassen [5] and Özuğurlu and Vanden-Broeck [6].

3. Numerical procedure

In this section a numerical scheme is derived to solve the system ((2.5), (2.9)). The
approach is similar to that used by Vanden-Broeck and Dias [9].

We define the N mesh points �I = .I − 1/E , I = 1; : : : ; N , and the N − 1
midpoints �M

I = E=2 + .I − 1/E , I = 1; : : : ; N − 1. Here E is the interval of
discretisation. The unknowns are y′

I = y�.�I /, I = 1; : : : ; N . Equation (2.9) is
satisfied at the points �M

I . The integral is evaluated by the trapezoidal rule with a sum
over the points �I . The symmetry of the quadrature and of the discretisation enables
us to evaluate the Cauchy principal value as if it were an ordinary integral. This gives
x�.�M

I / in terms of the unknowns y′
I . We evaluate y��.�M

I /, x��.�M
I / and y�.�M

I / in
terms of y′

I by finite differences and interpolation. Next the values of y.�M
I / in terms

of y′
I are found by integrating y′

I by the trapezoidal rule. All these expressions are
substituted in (2.5) which is evaluated at �M

I , I = 1; : : : ; N − 2. This leads to N − 2
equations for the N unknowns y′

I , I = 1; : : : ; N . The last two equations are obtained
by imposing the symmetry condition y′

1 = 0 and the truncation condition y′
N = 0.

For fixed values of ž̃ and Þ, this system of N nonlinear algebraic equations with N
unknowns is solved by Newton’s method.

4. Discussion of results

We used the numerical procedure described in Section 3 to compute solutions for
various values of ž̃ and A. In most of the computations presented we used E = 0:19
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FIGURE 1. Values of A versus Þ. The curves from bottom to top correspond to ž̃ = 0, ž̃ = 0:2 and
ž̃ = 0:5.

  

X

O

Þ

ž̃

0:25

0:35

0:45

0:55

0:65

0:75

0 0:2 0:4 0:6 0:8 1 1:2

FIGURE 2. Values of Þ versus ž̃ for A = −0:381.

and N = 400. We repeated the calculations with different values of E and N and
checked that the results are independent of E and N within graphical accuracy.

Some insight into the problem can be gained by using the classical linear theory of
gravity capillary waves. Since T → T0 as |x| → ∞, linear theory predicts that the
free-surface elevation is of the form

y = Re Ceikx as |x| → ∞; (4.1)

where C is a complex constant and k is the wavenumber. The wavenumber k satisfies
the dispersion relation

U 2 = g=k + T0k=²: (4.2)
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Using dimensionless variables, (4.2) is rewritten as

k2 − k + Þ = 0: (4.3)

Relation (4.3) is a quadratic equation for k whose solutions are

k± = 1

2
[1 ± .1 − 4Þ/1=2]: (4.4)

For Þ < 1=4, the two solutions (4.4) are real and (4.3) predicts a train of periodic
waves of constant amplitude. For Þ > 1=4, the roots (4.4) are complex conjugate and
we can rewrite (4.1) as

y = e−Ž|x| Re Ceiþx ; (4.5)

where

þ = 1=2; Ž = .4Þ − 1/1=2=2: (4.6)

Relation (4.5) predicts a train of waves whose amplitudes tend to zero as |x | → ∞.
Solitary waves with decaying oscillatory tails have to approach a uniform stream

in the far field. Therefore their far field behaviour is a small perturbation of a uniform
stream which can be described by the linear formula (4.5). The above results suggest
that solitary waves with decaying oscillatory tails bifurcate from a uniform stream at
the value Þ = 1=4 and exist for values Þ > 1=4. This was established numerically in
the case of constant surface tension by Vanden-Broeck and Dias [9] and Dias, Menasce
and Vanden-Broeck [3] and through rigorous analysis by several investigators (see Dias
and Khariff [2] for further references and a review of the topic). As Þ → 1=4, Ž → 0
and the solitary wave approaches a train of periodic waves of vanishing amplitude.
Vanden-Broeck and Dias [9] and Dias, Menasce and Vanden-Broeck [3] computed
both elevation and depression solitary waves. Stability analysis indicates that only
the depression solitary waves are stable. Therefore we concentrate our attention on
depression solitary waves.

The above discussion suggests that the branches of depression solitary waves with
variable surface tension bifurcate from Þ = 1=4. This is confirmed by the numerical
results of Figure 1 where we present values of A versus Þ for various values of ž̃. The
curve for ž̃ = 0 corresponds to the case of constant surface tension. The corresponding
solutions were found to agree with those obtained by Vanden-Broeck and Dias [9].
This constitutes a check on the validity of our computer code. For a given value
of Þ, |A| decreases as ž̃ increases. We note that (2.1) implies that an increase in ž̃
corresponds to an increase in the variable part of the surface tension T .

An interesting question is what ultimately happens when we increase ž̃. It is
found that for given values of A, there is a maximum value of ž̃ such that there
are no solutions for larger values of ž̃. We will refer to this maximum value as ž̃max.



[7] A note on solitary waves with variable surface tension in water of infinite depth 231

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2

A = −0:381

A = −0:481

A = −0:681

Þ

ž̃

FIGURE 3. Values of Þ versus ž̃ for A=-0.381, −0:481 and −0:681. The curves move to the left as A
decreases.
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FIGURE 4. Values of Þ versus ž̃ from A = −1:281 up to −0:781 by 0:1 increment. The curves move to
the left as A decreases.
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FIGURE 5. The two free-surface profiles for A = −0:381 and ž̃ = 0:5. The broken line corresponds to
the cross in Figure 2 and the solid line corresponds to the circle in Figure 2.
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FIGURE 6. A close up of Figure 5 for A = −0:381 and ž̃ = 0:5. The broken line corresponds to the cross
in Figure 2 and the solid line corresponds to the circle in Figure 2.
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FIGURE 7. The two free-surface profiles for A = −1:081 and ž̃ = 0:036.
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FIGURE 8. Values of ž̃max versus A: ž̃max decreases as A decreases.
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FIGURE 9. The free-surface profiles for ž̃ = 0 and ž̃max when A = −0:381, −0:781 and −1:281. For
each A, the top curve corresponds to ž̃ = 0 and the lower curve corresponds to ž̃max. The crest of each
curve goes down as ž̃ increases.

This is shown in Figures 2–4. This finding implies that there are two possible solutions
for some values of ž̃. The profiles corresponding to two such solutions are shown in
Figure 5 and expanded in Figure 6 for ž̃ = 0:5 when A = −0:381. In Figure 7, we
show the corresponding solution for A = −1:081 and ž̃ = 0:036.

Values of ž̃max are plotted as a function of A in Figure 8. We find that ž̃max decreases
as |A| increases. In other words, the upper bound ž̃max on the admissible values of ž̃
(that is, on the magnitude of the variable part of T in (2.1)) decreases as the amplitude
|A| increases.

We also plot the solution profiles for ž̃ = 0 and ž̃max for some values of A in Figure 9.
The profiles show that the ‘waviness’ of the profiles increases as |A| decreases. This
can be explained by recalling that Þ → 1=4 as |A| → 0. It then follows from (4.6)
that the rate of decay Ž decreases as |A| decreases. We also note that for a given value
of |A| the waviness is less pronounced for ž̃max than for ž̃ = 0. Thus variable surface
tension tends to make the profiles flatter.

5. Conclusions

Previous results have demonstrated numerically and analytically the existence of
solitary waves with decaying oscillatory tails. These studies assume that surface
tension is constant. In this paper we have shown that there are solitary waves with
decaying oscillatory tails in the case of variable surface tension. These results com-
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bined with those in [6] and [8] show that the assumption of constant surface tension is
not crucial for the existence of gravity capillary periodic and solitary waves. All the
branches of solutions bifurcate from a uniform stream at Þ = 1=4. It is found that for
a given value of |A| there is an upper bound on the magnitude ž̃ of the variable part of
the surface tension.
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