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Abstract

A mathematical formulation and computational techniques are presented to describe optimal control and design
strategies for the suppression of turbulent motions in the melt and the minimization of temperature gradients in the

crystal in Czochralski crystal growth processes. The methodologies developed can be used to test control mechanisms,
design parameters, and optimization objectives to determine their effectiveness in improving the processes. They can
also be used to effect such improvements by systematically determining optimal values of the design parameters. The

controls or design parameters considered include applied magnetic fields, temperature gradients along the side wall of
the crucible, and crucible and crystal rotation rates. The results show that applied magnetic fields can be very effective in
reducing velocity perturbations in the melt, while side wall temperature gradients are less effective and crucible and
crystal rotation rates are ineffective. The results also show that applied magnetic field and crucible and rotation rates are

ineffective in reducing temperature gradients in the crystal or in the melt. r 2002 Elsevier Science B.V. All rights
reserved.
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assisted Czochralski method; A2. Optimal control of growth process

1. Introduction

During the past several decades, three different
types of crystal growth techniques have been
developed, namely, vapor, melt, and solution [1].
Nevertheless, the melt growth technique, i.e.,
the Czochralski (Cz) process, has dominated the
production of single crystals for most of the
materials used in the microelectronics industry.
However, in spite of the popularity of the Cz
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method, there remain many limitations. For
example, without an externally applied magnetic
field, the melt motion in many commercial
processes that use the Cz method is turbulent
and involves large scale motions. Heat flux
fluctuations from the melt to the crystal produce
a cycle of crystallization and remelting at the
interface. This cycle produces dislocations and
other microscopic defects in the crystal. Experi-
ments on magnetic Czochralski (MCz) growth
have shown that the temperature fluctuations
and erratic doping striations are suppressed by
the application of a magnetic field [2]. In fact, the
most important benefit of the magnetic field is that
it controls impurities and inhomogeneities at
microscopic levels by producing better conditions
in the vicinity of the melt/crystal interface. Never-
theless, the use of MCz processes for the industrial
production of crystals is still very limited because
of its cost, as well as the limited understanding of
when and how the magnetic field stabilizes the
melt. Since MCz is expected to become the future
technology for materials that are difficult to grow,
particularly at high and ultra-high pressures, as
well as the industry norm for the growth of large-
size crystals, our current focus is on introducing
magnetic effects into an existing Cz model.
Here, we present a systematic approach to the

control or optimization of the MCz crystal growth
process. Even though the fundamentals of indivi-
dual transport processes within the Cz process
may appear to be simple, their interactions are
rather complex. Thus, the notion of controlling the
process is a nontrivial matter. In particular, it is
seldom obvious which design parameters are
effective for use in achieving a specific objective.
Thus, our goal is to develop a methodology that
can be used to test, through computational
experiments, the effectiveness of design objectives
and parameters. We also want this methodology to
be useful for the actual design of improved crystal
growth processes. To this end, we show that some
design parameters, e.g., the strength of an applied
magnetic field, can be very effective in improving
some aspects of the MCz crystal growth process.
We first investigate the effects on the melt flow

velocity that occur as a result of various actions
that can be applied, using design parameters such

as the strength of an applied magnetic field, the
temperature along the boundaries, and the crystal
and crucible rotation rates. We also investigate the
effect of these design parameters on the tempera-
ture gradient in the crystal during the growth
process.

2. Mathematical model for the MCz process

2.1. Governing equations

A sketch of the physical domain used for our
calculations is given in Fig. 1. The basic equations
governing the melt in a MCz crystal growth
process are a coupled magnetohydrodynamics
(MHD) system. This system is composed of the
conservation equations for fluid momentum, mass,
and energy, Maxwell’s equations, and Ohm’s law
for a medium in motion. The conservation
equations for the melt, in primitive variables, are
given by

r
qu
qt

þ u � ru

� �
� mDuþrp ¼ Fb þ Fm; ð1Þ

r � u ¼ 0; ð2Þ

rcp
qT

qt
þ u � rT

� �
¼ kDT ; ð3Þ

where r; u; p; and T are the fluid density, velocity
vector, pressure, and temperature, respectively.

Fig. 1. Physical domain for Cz Si growth.
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The parameters m; cp; and k appearing in the above
equations are the fluid viscosity, specific heat
capacity at constant pressure, and thermal con-
ductivity, respectively. Fb is the buoyancy force,
which is modeled in the Boussinesq approximation
by [3,4]

Fb ¼ �ðr� r0Þgez ¼ r0bðT � Tf Þgez; ð4Þ

where ez denotes the unit vector in the z direction
so that the gravitational acceleration is represented
by the constant vector �gez: In Eqs. (1)–(4), we are
assuming that the variations in the density in the
melt are negligible, i.e., the fluid density r ¼ r0 is
constant, except in the body force term Fb; where
the density is taken to be r ¼ r0ð1� bðT � Tf ÞÞ:
Here, r0 is the melt density, Tf is a reference
temperature which we choose to be the melt
freezing temperature, and b is the thermal expan-
sion coefficient. Fm denotes the Lorentz force
induced by the magnetic field on the moving fluid;
it can dampen convection and can thus produces
better flow conditions in the melt.
For magnetohydrodynamic applications, Max-

well’s equations and Ohm’s law are given by [5]

j ¼ sðEþ u�BÞ; ð5Þ

r�B ¼ mej; ð6Þ

r � B ¼ 0; ð7Þ

r�E ¼ �
qB
qt

; ð8Þ

where s is electric conductivity of the melt, B is the
magnetic induction, j is the induced current
density, E is the electric field, and me is the
magnetic permeability of the melt. System (5)–(8)
may be combined to yield

qB
qt

¼
1

sme
DBþr�ðu�BÞ and r � B ¼ 0: ð9Þ

We nondimensionalize utilizing the following
scalings: length b; velocity v=b; pressure rv2=b2;
time b2=v; and magnetic induction meH0; where
v ¼ m=r0 is the kinematic viscosity and H0 is the
magnitude of the applied magnetic field. We set
Y ¼ ðT � Tf Þ=ðTc � Tf Þ; where Tc is the constant
temperature at the bottom crucible wall. Using
these scalings, the nondimensionalized governing

equations for flow and heat transfer in the melt are
given by

qu
qt

þ ðu � rÞuþrp � Du ¼ GrYez þ Fm; ð10Þ

r � u ¼ 0; ð11Þ

qY
qt

þ u � rY ¼
1

Pr
DY; ð12Þ

where the components of Fm in the x; r; and y-
directions are, respectively, given by

Fx ¼ 0; Fr ¼ �
Ha2s
sm

v; Fy ¼ �Ha2
qC
qx

: ð13Þ

We solve the electric current stream function
equation (ECSFE) instead of for the electric
potential. The primary advantage of using the
stream function equation is the simplicity in
implementating boundary conditions. The bound-
ary conditions for the potential equation are much
more complicated on curvilinear walls. Then,
(ECSFE) can be written as

q
qx

sm
s
1

r

qC
qx

� �
þ

q
qx

sm
s
1

r

qC
qr

� �
¼

qw

qx
: ð14Þ

The magnetic field is governed by

qB
qt

¼
1

Rem
DBþr�ðu�BÞ; r � B ¼ 0 ð15Þ

and the temperature in the crystal is governed by

qY
qt

¼ ksDY: ð16Þ

In these equations, Gr ¼ gbb3ðTc � Tf Þ=v2; Pr ¼
vcp=k;Rem ¼ mesv; Ha ¼ meH0b

ffiffiffiffiffiffiffiffi
s=m

p
; and ks de-

note the dimensionless Grashof number, Prandtl
number, magnetic Reynolds number, Hartmann
number, and nondimensional thermal diffusivity,
respectively.
Initial conditions can be specified on the melt

velocity and temperature and the crystal
temperature.

2.2. Interface and boundary conditions

We restrict attention to axially symmetric melt
flows described in terms of cylindrical coordinates.
Note that for computational reasons, an enclosing
top surface has also been employed.
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We implemented the boundary conditions easily
by using the stream function equation. The
boundary condition for Eq. (14) is

rC ¼ 0: ð17Þ

The evolving crystal/melt and free surface/melt
interfaces have a profound effect on the quality of
the grown crystal. Thus, in order to accurately
capture this evolution, we model the melt region
by

Om ¼ fðr; zÞj0prpr1;

z0ðrÞpzpZðr; tÞg; ð18Þ

where Zðr; tÞ is defined by

Zðr; tÞ ¼
Z1ðr; tÞ; 0prprnðtÞ;

Z2ðr; tÞ; rnðtÞorpb:

(
ð19Þ

z0ðrÞ is the dimensionless shape function for the
bottom of the crucible. Zðr; tÞ is the dimensionless
height of the moving interfaces, with Z1ðr; tÞ
representing the crystal/melt interface and Z2ðr; tÞ
the encapsulant/melt interface; r�ðtÞ is the triple
point where the melt, crystal, and encapsulant
meet. The parameter b is thus chosen to be the
distance from the axis of symmetry to the vertical
wall of the crucible. Note that, in this setting, we
are modeling the solidification of a pure substance
with a fixed fusion temperature Tf and thus we
assume that the solid and liquid phases are
separated by a sharp interface given by sðz; r; tÞ ¼
Z1ðr; tÞ � z ¼ 0: The energy balance at the crystal/
melt interface defines its movement; it is governed
by [6]

qZ1

qt
� upðtÞ

¼
Ste

Pr

ks
km

qYs

qn
�

qYm

qn

� �
1þ

qZ1

qr

� �2
 !

; ð20Þ

where upðtÞ is the pull rate, Ste ¼CpsðTc � Tf Þ=hf is
the Stefan number of the melt, hf is the latent heat,
and the subscripts s and m refer to crystal and melt
regions. This equation is based on the assumption
that the crystal and melt are not separated at the
triple point.
Denoting the free-surface position as z ¼

Z2ðr; tÞ; the height of the free surface can be

determined by solving

q2Z2=qr2

ð1þ ðqZ2=qrÞ2Þ3=2
þ

qZ2=qr

rð1þ ðqZ2=qrÞ2Þ1=2

¼ BoðZ2 � lÞ; ð21Þ

where Bo ¼ rgb2=ss is the Bond number, ss is the
surface tension, and the parameter l can be
calculated from the melt conservation constraintZ Rr

0

Z1r dr þ
Z 1

Rr

Z2r dr ¼
VmðtÞ
2p

; ð22Þ

where VmðtÞ is the volume of the melt and
Rr ¼ rs=b is the radius ratio where rs is the radial
co-ordinate of the crystal.
There are two boundary conditions needed to

solve for the shape of the encapsulant/melt inter-
face. At the triple point, the meniscus is considered
to be pinned to the edge of the crystal, and at the
junction between the encapsulant and crucible
wall, a 90-deg contact angle is assumed in view of
the weak influence of the shape of the crucible
meniscus on heat transfer.
Additional boundary conditions for the pro-

blem under consideration include the following: at
the crystal/melt interface,

u ¼ uint; v ¼ vint; w ¼ Resr; Y ¼ 0; ð23Þ

at the encapsulant/melt interface,

u ¼
qZ2

qt
þ v

qZ2

qr
;

qv
qn

�
qu

qt
¼
Ma

Pr

qY
qn

;

�
kfs
ks

qYfs

qn
¼ BifsðYfs �YaÞ; ð24Þ

at the bottom and side wall of the crucible,

u ¼ v ¼ 0; w ¼ Rec r; Y ¼ Yw; ð25Þ

at the top and side wall of the crystal,

�
qYs

qn
¼ BisðYs �YaÞ; ð26Þ

where Res ¼ Osb
2=v and Rec ¼ Ocb

2=v are the
crystal and crucible rotation Reynolds numbers,
respectively, Os and Oc are the rotation rates for
the crystal and crucible, respectively, the sub-
script fs refers to the free surface, Ma ¼
ðqss=qTÞðTc � Tf Þb=ma is the Marangoni number,
Yw;Ys; and Ya are the dimensionless crucible wall
temperature, crystal boundary temperature, and
ambient temperatures, respectively, and uint and
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vint are the interface velocity components in the z
and r directions, respectively. Since the objective of
our paper is to develop a control algorithm for
quasi-state cases, the interface velocities will not be
presented here. However, they are important in
transient calculations; we calculated them but did
not save them in simulations.
Since we focused on controlling the melt flow

with a magnetic field, we used the simplified
radiation model which was developed by Prasad
et al. [7]. It is based on the method of discrete
exchange factor (DEF) [8]. The radiative heat loss
has been considered from the side wall of the
crystal and the melt free surface with radiation
Biot number Bi ¼ esðT2 þ T2

a ÞðT þ TaÞb=ks;
where e is the emissivity and Ta is the ambient
temperature.

3. Modeling MCz control

There are many opportunities for introducing
optimal control strategies into crystal growth
processes. Ultimately, we want to apply control
strategies in order to improve, either directly or
indirectly, the quality of the crystal. Applying
control strategies that directly affect crystal
properties is very difficult. Therefore, as a first
step in applying systematic optimal control strate-
gies to crystal growth processes, we will apply
control strategies that only indirectly affect crystal
properties.
Specifically, we will examine three different

objectives for control along with, at first, two
different control mechanisms. The first objective is
to minimize the vorticity in the melt region; this is
an effort directed at lessening large-scale turbulent
motions inside the melt and to indirectly minimize
oscillations in the melt–crystal interface. The
second objective is to minimize the gradient of
the temperature in the melt; this is an effort
directed at lessening temperature variations in the
melt. The third objective is to minimize the
gradient of the temperature in the crystal; this is
an effort directed at indirectly lessening the
presence of residual stresses in the crystal. The
two controls we will employ are the strength of the
applied magnetic field and the temperature on the

side wall of the crucible. For our nondimensiona-
lized model, the strength of the applied field enters
only through the Hartmann number; thus, the
Hartmann number is one of our control para-
meters. The temperature on the side wall of the
crucible is assumed to be linear in the height z; of
course, the temperature at the bottom of the side
wall should be the same as the temperature at the
bottom of the crucible which is assumed to be
constant, i.e., T ¼ Tc along the bottom of the
crucible. Thus, on the side wall of the crucible we
have that

YðzÞ ¼ 1þ x
z � zb
zL � zb

� �
; ð27Þ

where zb ¼ z0ðbÞ and zL are the dimensionless
heights at the bottom and top of the side wall of
the crucible. Thus, the slope factor x is a second
control parameter at our disposal. Note that if
xo� 1; then the temperature on the side wall at
the top of the crucible will be lower than the
melting temperature of the melt. This is, of course,
unacceptable, since it would cause the melt to
solidify at the crucible wall. Therefore, we impose
the constraint xX� 1 in our optimization studies.
See Fig. 2 for the results of a simulation with
x ¼ �1:1; the figure gives level curves of the
temperature in the melt and crystal. Note, for this
value of x; the small region of solidified melt at the
top of the side wall of the crucible.

Fig. 2. Nondimensionalized temperature in the melt and crystal

for a linear crucible side wall temperature profile with x ¼ �1:1:
Note the small region of solidified melt adjacent to the top of

the crucible wall.
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We now give a mathematical description of the
optimal control problems we consider. Here, ð0;TÞ
denotes the (nondimensionalized) time interval
over which one wants to exercise control, Om

denotes the melt region, and Oc denotes the crystal
region. The first optimization problem is given by:
final optimal values of Ha and x such that

I1ðHa; xÞ ¼
Z T

0

Z
Om

jr�uj2 dO dt ð28Þ

is minimized, where uðt; r; z; Ha; xÞ satisfies govern-
ing system (10)–(16) along with initial conditions
and the boundary and interface conditions of
Section 2.2.
The second optimization problem is given by:

final optimal values Ha and x such that

I2ðHa; xÞ ¼
Z T

0

Z
Om

jrT j2 dO dt ð29Þ

is minimized, where Tðt; r; z; Ha; xÞ satisfies govern-
ing system (10)–(16) along with initial conditions
and the boundary and interface conditions of
Section 2.2.
The third optimization problem is given by: final

optimal values of Ha and x such that

I3ðHa; xÞ ¼
Z T

0

Z
Oc

jrT j2 dO dt ð30Þ

is minimized, where Tðt; r; z; Ha; xÞ satisfies govern-
ing system (10)–(16) along with initial conditions
and the boundary and interface conditions of
Section 2.2.
These represent nonconvex optimization

problems.
The solution algorithm for fluid flow calcula-

tions in a generalized curvilinear coordinate
system is basically similar to the SIMPLER
algorithm [9] which consists of solving a pressure
equation to obtain the pressure field and solving a
pressure-correction equation to correct predicted
velocities. We took initial velocity and temperature
to be zero.
We now lay the ground work for the computa-

tional study of this optimization problem We
apply the discrete Armijo gradient algorithm [10]. It
should be noted that the nonconvexity of the
functionals implies that the convergence of such an
algorithm is conditional, i.e., it depends on having

a good ‘‘initial guess’’. We describe the algorithm
in our current context; the search direction hi is a
finite difference approximation to �rI; with the
parameter e controlling the precision of this
approximation.
The discrete Armijo gradient algorithm is a

variable step size gradient method. It is particu-
larly easy to implement since the step size selection
does not require a one-dimensional line search.
Convergence proofs under mild conditions on the
functional are available [11]. In practice, we have
found it to perform well, needing, on the average,
approximately 15 iterations for satisfactory con-
vergence but each iteration required five functional
calculations in average. Of course, there are more
sophisticated optimization methods available, e.g.
trust-region quasi Newton methods. However, for
our purposes, the Armijo algorithm was entirely
adequate since our main goal in this study was to
demonstrate the effectiveness of a systematic
optimal control approach for improving processes
such as Cz.

Discrete Armijo Gradient Algorithm

1. Choose a;bAð0; 1Þ; gAð0;NÞ and kn; k0AZ:
Choose initial guesses for the control para-
meters Ha and x: Set i ¼ 0 and e ¼ bk0 :

2. Determine the search direction hi having
components

hi1 ¼ �
IðHaþ e; xÞ �IðHa; xÞ

e
ð31Þ

and

hi2 ¼ �
IðHa; xþ eÞ �IðHa; xÞ

e
: ð32Þ

3. Compute

Di ¼ �
IðHaþ ehi1; xþ ehi2Þ �IðHa; xÞ

e
: ð33Þ

4. If Di > 0; replace e by be; and go to Step 1.
Else, use the subprocedure given below, which
requires kn; to compute the step size li ¼ bki ;
where kiAZ; such that

IðHaþ bki hi1; xþ bki hi2Þ

�IðHa; xÞpbkiaDi ð34Þ
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and

IðHaþ bki�1hi1; xþ bki�1hi2Þ

�IðHa; xÞ > bki�1aDi: ð35Þ

5. If IðHaþ lhi1; xþ lhi2Þ �IðHa; xÞ > �ge; re-
place e by be; and go to Step 1.
Else, replace Ha by Haþlhi1; x and xþ lhi2;
and i by i þ 1; then, go to Step 1.

Step size subprocedure

1. If i ¼ 0; set k0 ¼ kn: Else, set k0 ¼ ki�1:
2. If ki ¼ k0 satisfied Eqs. (34) and (35), stop.
3. If ki ¼ k0 satisfies Eq. (34) but not Eq. (35),

replace k0 by k0 � 1 and go to Step 2.
4. If ki ¼ k0 satisfied Eq. (35) but not Eq. (34),

replace k0 by k0 þ 1 and go to Step 2.

3.1. Simulation code

Over the past 25 years, transport phenomena in
Cz crystal growth processes have been numerically
simulated by many investigators; see, e.g., Refs.
[12–16]. The simulation code used in our optimiza-
tion studies is based on a high-resolution computer
model developed in Refs. [6,17,18]. This model
employs a multizone adaptive grid generation
scheme and a curvilinear finite volume formula-
tion. Once a grid has been generated for the flow
domain, the control volume formulation begins by
decomposing the domain into nonoverlapping
control volumes such that there is one control
volume surrounding each grid point. This compu-
tational domain also allows for the coexistence of
various materials in different phases with signifi-
cantly different thermophysical and transport
properties. Next, the governing MHD equations
are integrated over each control volume. Piecewise
profiles expressing the variation of state variables
between the grid points are then used to evaluate
the required integrals. The end result is the discrete
equations containing the values of the state
variables for a group of grid points. The appealing
feature of the control volume formulation is that
the integral conservation of mass, momentum, and
energy are satisfied exactly over any group of

control volumes and, of course, over the whole
computational domain. For more details on the
finite volume formulation, see, e.g., Ref. [9].

4. Numerical results

In every case we studied, the optimal value of
the side-wall temperature parameter turned out to
be its limiting value x ¼ �1: (Recall that we
cannot allow xo� 1 since this would cause the
melt to solidify at the side wall.) This is not a
surprising result in optimization, i.e., the optimal
value of a parameter is at the boundary of its
admissibility set. As a result, we will not provide
results for optimization studies with respect to x:
Instead, we give results for x ¼ 0; i.e., a constant
temperature profile, which is what was chosen in
most past simulations, see, e.g., Refs. [6,7,19], and
for x ¼ �1; i.e., a linear temperature profile having
as much slope as allowable, which provides the
optimal results.
The CPU time for solving the partial differential

equations in 100 time steps with 102� 50 mesh is
about 23min on Linux computer which had a
600MHz processor, Intel Pentium III with
256MBytes memory.
For all the numerical experiments we describe

here, we used 102� 50 spacial grid and 100 time
steps with a nondimensionalized time step dt ¼
0:0005; this corresponds to approximately 17 s. In
fact, we did not see a significant change even we
use 1000 time steps since we assume a quasi-state
case. Otherwise, the melt drop will affect the heat
transfer. For a silicon melt, we have the physical
parameters s ¼ 1:2�106 S=m (electrical conductiv-
ity), v ¼ 3:0�10�7 m2=s (kinematic viscosity), r ¼
2420 kg=m3 (density), and b ¼ 0:1 m; see Table 1
for more information. We assume that the
magnetic field is in the axial direction, which is
the most practical choice. The ambient tempera-
ture is such that Y ¼ �6:00372; of course, Y ¼ 0
and 1 corresponds to the freezing temperature of
the melt and the constant temperature at the
bottom of the crucible, respectively.
The crystal radius has been specified in the

simulations. The pulling rates can be determined
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based on the given radius. The pulling rates are
small compared to the melt velocity.

4.1. Minimization of the vorticity functional I1

4.1.1. Constant temperature wall profile
For the choice x ¼ 0; a constant side-wall

temperature, we initially chose the parameters for
the discrete Armijo gradient algorithm as follows:
e ¼ 0:01; k ¼ 6; bk ¼ e; i.e., bE0:46; a ¼ 0:5; g ¼ 5;
and Ha=100. Table 2 gives, for each optimization
iteration, the value of the Hartmann number and
the corresponding value of the functional I1: The
optimization algorithm converged after nine itera-
tions; the optimal value of the Hartmann number
for this case is Ha=135.1117816 which, for our
choice of physical parameters, corresponds to an
applied magnetic field of 0.0331T; u ¼ 113:3;
velocity in axial direction, corresponds to
0.0003m/s; Recru=�500, crucible rotation rate,
corresponds to �0.0151/s. We also computed the
value of the functional for values of the Hartmann
number above the optimal value produced by the
optimizer in order to show that the optimizer did

indeed find a minimum of the functional. These
results are also given in Table 2. In Fig. 3, we
provide plots of the values of the logarithm of the
functional and of the Hartmann number vs. the
iteration number; these clearly show the
convergence of the iterative method. In that
figure, we also provide a plot of the value of
the logarithm of the functional vs. the Hartmann
number, where the latter is chosen to be the
values visited during the optimization iteration
and some additional values chosen after the
iteration is completed. We clearly see that the
optimizer did indeed find a minimum of the
functional. In Figs. 4 and 5, we provide plots of
the velocity vector and of its magnitude for no
control applied, i.e., no applied magnetic filed
(Ha=0), and for the optimal magnetic field
(Ha=135.11178). Notice that convection in the
melt is significantly reduced for the optimal value
of Ha. In fact, the maximum magnitude of the
velocity decreases from 694.547 for Ha=0 to
27.6721 for the optimal value of Ha. In Figs. 4 and
5, we also provide contour plots of the tempera-
ture in the melt and the crystal.

Table 1

Thermophysical properties and parameters for Si melt and solid

Properties of Si melt

Density kg/m3 2420

Thermal conductivity W/mK 64

Kinematic viscosity m2/s 3.0� 10�7

Freezing temperature 1C 1410

Surface tension N/m 0.72

Latent heat of solidification J/kg 1.8

Coefficient of thermal expansion /K 1.41� 10�5

Specific heat capacity J/kgK 1000

Emissivity 0.15

Stefan number 8.33� 10�2

Properties of Si solid

Density kg/m3 2300

Thermal conductivity W/mK 22

Specific heat capacity J/kgK 1000

Electrical conductivity S/m 5.8� 104

Emissivity 0.75

Grashof number 1.0� 106

Prandtl number 15� 10�3

Stefan number 4.17� 10�11

Table 2

Objective functional values vs. Hartmann number for different

iterations of the discrete Armijo gradient algorithm (above the

line) and for some additional values of the Hartmann number

above the optimal value (bold face) determined by that

algorithm (below the line). The imposed temperature along

the side wall of the crucible is a constant (x ¼ 0)

Iteration no. Hartmann no. I1

1 100.00000 2121.056806

2 125.00000 1286.909470

3 133.00000 1143.171567

4 134.66505 1117.664065

5 134.98452 1113.226481

6 135.09339 1112.402257

7 135.11556 1112.379587

8 135.11132 1112.378560

9 135.11178 1112.378542

F 135.11200 1112.378545

F 136.12222 1169.954222

F 138.00000 1326.942849

F 140.00000 1532.767010

F 150.00000 4043.390458
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4.1.2. Optimal temperature wall profile
For the choice x ¼ �1; the optimal linear side-

wall temperature, we initially chose the parameters
for the discrete Armijo gradient algorithm as
follows: e ¼ 0:001; k ¼ 6; bk ¼ e; i.e., bE0:32; a ¼
0:5; g ¼ 7; and Ha=10. After five iterations there
was a need to change a to 0.86 and b to 0.35.
Table 3 and Figs. 6–8 provide, for x ¼ �1; the
corresponding information that was provided for
x ¼ 0 in Table 2 and Figs. 3–5, respectively. The
optimization algorithm converged after 21 itera-
tions; the optimal value of the Hartmann number
was now found to be Ha=134.66505. Again, the

convection in the melt is significantly reduced for
the optimal value of Ha. In the Ha=0 case, a large
convective flow was observed in the melt and more
specifically near the interface; for Ha=134.66505,
which was obtained by optimization, we see a
greatly reduced convective flow. For x ¼ �1; the
maximum magnitude of the velocity decreases
from 507.8 for Ha=0 to 10.55 for the
optimal value of Ha in Table 4. Of particularly
interest are the results along the crystal interface;
there the norm of velocity was reduced from 66 for
Ha=0 to 10.6 for the optimal value
Ha=134.66505.

Fig. 3. Functional and Hartmann number values for a constant crucible side wall temperature profile (x ¼ 0). (a) Value of the

functional I1 vs. optimization iter. Number as determined by the optimization process (first nine points) and for some additional

values of the Ha number (last five points). (b) Ha number vs. optimization iter. Number as determined by the optimization process

(first nine points) and some additional values chosen to determine if the optimizer truly found a minimum (last five points). (c) Value of

the logarithm of the functional I1 vs. Hartmann number showing the existence of a minimum. The values of the Ha number for the

points plotted to the left of the minimum were determined by the optimization process; those to the right were chosen so as to show the

minimum.
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4.1.3. Comparison of constant and linear wall
temperature profiles
From Table 4 and Figs. 9 and 10, it is clear that

the linear temperature profile (27) with x ¼ �1
along the crucible wall yields better results, e.g., a
greater suppression of convective perturbations in
the melt. For example, from Table 4, we see that
for Ha=0 there is a reduction of the maximum
speed of flow perturbations from 694.5 for the
constant profile to 507.8 for the linear profile. For

the corresponding optimal Hartmann numbers,
the reduction is from 27.67 to 10.55. Plots of the
velocity, stream function, and temperature for the
constant and linear temperature crucible wall
temperature profiles are given in Figs. 9 and 10.
It is clear from the stream function contour plots
that the stream function gradient has been
reduced, which shows that convection in the melt
has also been reduced; see Figs. 9a and 10a. From
Table 4, we see that, for the corresponding optimal

Fig. 4. Temperatures in the melt and crystal and velocities in the melt for a constant crucible side wall temperature profile (x ¼ 0) and

Ha=0 (no magnetic control applied); (a) the left half gives the contours of the speed and the right half gives the velocity vector, (b) the

left half gives the temperature and the right half gives the velocity vector.

Fig. 5. Temperatures in the melt and crystal and velocities in the melt for a constant crucible side wall temperature profile (x ¼ 0) and

Ha=135.11178 (the optimal value determined by the optimizer for the functional I1). (a) The left half gives the contours of the speed

and the right half gives the velocity vector, (b) the left half gives the temperature and the right half gives the velocity vector.
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values of the Hartmann number, the spread in the
stream function is reduced from 1.86 for the
constant temperature profile to 0.66 for the linear
temperature profile.

4.1.4. Effects of variations in the Hartmann number
So far we have examined the effect of two design

parameters, the Hartmann number corresponding
to an applied axial magnetic field and the slope in
the linear temperature along the crucible wall. We
have seen that optimization with respect to either
of these can result in a reduction in the perturba-
tion velocity and the vorticity in the melt. We have
also seen that variations in the Hartmann number
can be much more effect than variations in the
slope of the wall temperature profile. For example,

at Ha=0, going from constant wall temperature
profile to the linear profile with maximum allow-
able slope effected a reduction in the velocity norm
from 694.5 to 507.8. However, for each of these
extremes in the slope of the wall temperature
profile, much greater reductions can be effected by
optimizing with respect to the Hartmann number.
For the constant temperature profile ðx ¼ 0Þ; the
perturbation velocity norm was reduced from
694.5 at Ha=0 to 27.67 at the optimal value
Ha=135.11178 and for the best linear temperature
profile ðx ¼ �1Þ; the perturbation velocity norm
was reduced from 507.8 at Ha=0 to 10.55 at the
optimal value Ha=134.66505.
The effects of variations in the Hartmann

number for the optimal linear wall temperature
profile is illustrated in the bottom plots of Figs. 7
and 8 where the temperature is plotted for Ha=0
and the optimal value Ha=134.66505. From these
plots, it is clear that the magnetic field has a
smoothing and stabilizing effect on the tempera-
ture distribution in the melt.

4.1.5. Effects of other design parameters
There are a number of other design parameters

that may be used in attempting to reduce velocity
and vorticity perturbations in the melt. For
example, two that have been suggested are the
crucible and crystal rotation rates. Before using
these parameters in our sophisticated optimization
methodology, we examined how variations in their
values affected the velocity perturbations in the
melt. Variations in the Hartmann number have a
large effect on the maximum and minimum values
of the velocity components. However, variations in
the crucible and crystal rotation rates seem to have
no effect on the velocity perturbations. Thus, these
are not effective design parameters to use if one
wants to suppress velocity perturbations in the
melt.

4.2. Minimization of temperature gradient
functionals I2 in melt and I3 in crystal near
interface

We have observed how some design parameters
(e.g., the Hartmann number) are very effective in
reducing velocity perturbations in the melt, others

Table 3

Objective functional values vs. Hartmann number for different

iterations of the discrete Armijo gradient algorithm (above the

line) and for some additional values of the Hartmann number

above the optimal value (bold face) determined by that

algorithm (below the line). The imposed linear temperature

profile along the side wall of the crucible has maximum

allowable slope (x ¼ �1)

Iteration no. Hartmann no. I1

1 10.00000 49455.851095

2 34.30591 7510.535628

3 40.47653 4663.203345

4 51.09596 2378.748929

5 64.24992 1279.573829

6 80.41390 747.534616

7 100.96154 476.158066

8 109.16027 418.440560

9 115.15040 386.126853

10 119.97603 364.650641

11 124.05711 349.064600

12 127.61256 337.116627

13 130.77333 327.605411

14 133.62488 319.821284

15 134.53541 317.518290

16 134.62291 317.367216

17 134.63926 317.349610

18 134.65084 317.340238

19 134.65845 317.335694

20 134.66313 317.333594

21 134.66505 317.332895

F 136.22639 418.186535

F 138.92060 691.996673
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are mildly effective (e.g., the slope of a linear
temperature profile along the wall of the crucible),
while others are very ineffective (e.g., the crucible
and crystal rotation rates.) We now want to see
how effective these parameters are in reducing
temperature gradients in the melt, i.e., for the
minimization of the functional I2; and in the
crystal, i.e., for the minimization of the functional
I3: Again, before using these parameters in our
sophisticated optimization methodology, we ex-
amined how variations in the values of the design
parameters affect the functionals I2 and I3: A
sampling of results is given in Table 5. We see that

variations in the Hartmann number and the
crucible and crystal rotation rates have almost
no appreciable effect on the values of I2 and I3

which are root-mean-square measures of the
temperature gradient. However, variations in the
control parameters can effect some reductions in
the maximum value of the temperature gradient
and in the values at specific points and subregions
such as in the triple point where the crystal, melt
and encapsulant meet and the areas near the
crystal/melt interface. Therefore, optimization of
functionals such as I2 and I3 is ineffective for
reducing temperature gradients in the crystal. This

Fig. 6. Functional and Hartmann number values for the optimal linear crucible side wall temperature profile (x ¼ �1). (a) Value of the
functional I1 vs. optimization iteration number as determined by the optimization process (first 21 points) and for some additional

values of the Ha number (last two points). (b) Ha number vs. optimization iteration number as determined by the optimization process

(first 20 points) and some additional values chosen to determine if the optimizer truly found a minimum (last two points). (c) Value of

the functional I1 vs. Ha number showing the existence of a minimum. The values of the Ha number for the points plotted to the left of

the minimum were determined by the optimization process; those to the right were chosen so as to show the minimum.
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Fig. 7. Temperatures in the melt and crystal and velocities in the melt for optimal linear crucible side wall temperature profile ðx ¼ �1Þ
and Ha=0 (no magnetic control applied) (a) the left half gives the contours of the speed and the right half gives the velocity vector,

(b) the left half gives the temperature and the right half gives the velocity vector.

Fig. 8. Temperature in the melt and crystal and velocities in the melt for optimal linear crucible side wall temperature profile ðx ¼ �1Þ
and Ha=134.66505 (the optimal value determined by the optimizer for the functional I1). (a) The left half gives the contours of the

speed and the right half gives the velocity vector, (b) the left half gives the temperature and the right half gives the velocity vector.

Table 4

Maximum and minimum melt flow temperature and stream function values and maximum speed for no applied magnetic field and for

the optimal values (with respect to the functional I1) of the applied field strength and for constant (x ¼ 0) and best linear crucible wall

temperature profiles (x ¼ �1)

Hartmann no. Temperature Stream function Max speed

Wall profile Min Max Min Max

0 Constant �6.003 1.0 �86.81 0.59 694.5

0 Linear �6.003 1.484 �64.24 2.92 507.8

135.11178 Constant �6.003 1.0 �1.864 0.0 27.67

134.66505 Linear �6.003 1.484 �0.665 0.309 10.55
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is due to the small value of the Prandtl number.
Recall that the Prandtl number is the ratio of the
momentum and thermal diffusivities, i.e., it is a
measure of the relative size of the momentum
transport and conductive heat transfer effects. We

should point out that in the crystal region there
were other local maxima of the temperature
gradient in regions for away from the melt region;
these values were very insensitive to changes in
parameter values.

Fig. 9. Stream function and velocity in the melt and temperature in the crystal and melt for the optimal values of the Hartmann

number determined by the minimization of the functional I1 and x ¼ 0 (a constant crucible side wall temperature profile), (a) the left

half gives the contours of the stream function and the right half gives the velocity vector, (b) the left half gives the temperature and the

right half the velocity vector.

Fig. 10. Stream function and velocity in the melt and temperature in the crystal and melt for the optimal values of the Hartmann

number determined by the minimization of the functional I1 and x ¼ �1 (a constant crucible side wall temperature profile), (a) the left
half gives the contours of the stream function and the right half gives the velocity vector, (b) the left half gives the temperature and the

right half the velocity vector.
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5. Concluding remarks

In this paper, our goal has been to demonstrate
some of the techniques being used to develop an
integrated approach for intelligent modelling,
design and control of crystal growth processes.
This is a challenging task; however, the potential
benefits are large. Our current thrust has been on
developing control and optimization algorithms
that can be implemented into existing codes for the
MCz crystal growth process. Carrying out this
goal has involved an integration between the
experiments, modeling, simulations and control
experts and results.
In our studies we have shown how the choices of

design parameters and objective functional can

have a drastic effect on the success of an
optimization or control strategy. For example,
we have shown that optimization with respect to
the slope of a linear temperature profile along the
crucible wall has a mild effect on the size of
velocity and vorticity perturbations in the melt. On
the other hand, drastic reductions can be effected
by optimizing with respect to the strength of an
applied axial magnetic field and a negligible effect
is realized by optimizing with respect to crucible
and crystal rotation rates. This illustrates how, for
a specific design objective, optimization with
respect to some design parameters is much more
effective than with respect to others.
We have also shown that although optimization

with respect to the Hartmann number can

Table 5

Maximum temperature gradient in melt and crystal and functional values in melt I2 and crystal I3 for several values of the Hartman

number and of the crystal and crucible rotation Reynolds numbers

Hartmann no. Crucible rotation rate Crystal rotation rate jrT j2max Functional value

In melt In crystal In melt In crystal

0 0 1000 39.3172 2.21426 0.06796 15.25665

�500 0 38.5130 2.2693 0.06631 15.25669

�500 2000 36.1654 2.2252 0.06692 15.25668

�1000 1000 39.5406 2.3522 0.06645 15.25668

�3000 1000 38.7061 2.3035 0.06669 15.25667

30 0 1000 35.8517 2.0597 0.06479 15.25671

�500 0 37.9086 2.2316 0.06484 15.25670

�500 2000 36.1654 2.2252 0.06692 15.25668

�1000 1000 37.8650 2.2155 0.06478 15.25671

�3000 1000 37.1574 2.1715 0.06498 15.25669

134.66504 0 1000 35.3139 2.0896 0.06439 15.25674

�500 0 35.9296 2.1215 0.06439 15.25673

�500 2000 33.9489 2.0307 0.06440 15.25674

�1000 1000 35.4594 2.0883 0.06439 15.25673

�3000 1000 34.8467 2.0454 0.06441 15.25672

150 0 1000 35.2913 2.0884 0.06440 15.25674

�500 0 35.8170 2.1156 0.06439 15.25673

�500 2000 34.0652 2.0344 0.06440 15.25674

�1000 1000 35.3645 2.0854 0.06439 15.25673

�3000 1000 34.8196 2.0473 0.06441 15.25672

199 0 1000 35.2751 2.0852 0.06446 15.25674

�500 0 35.4982 2.0974 0.06446 15.25673

�500 2000 34.4264 2.0474 0.06446 15.25674

�1000 1000 35.2657 2.0804 0.06446 15.25673

�3000 1000 34.5574 2.0375 0.06446 15.25672
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drastically reduce the size of velocity and vorticity
perturbations in the melt, it has negligible effect on
the size of the temperature gradient in the crystal.
This illustrates how the same design parameter has
little influence on some functionals and great
influence on others.
Current and future work includes the refinement

and further development of practical control and
optimization strategies; the integration of our
results and algorithms into the latest version of
MASTRAPP3d which simulates three dimensional
MCz crystal growth processes; and the experi-
mental verification and system integration of the
control and optimization results obtained through
computations.
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