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Abstract: A Jacobian-free Newton–Krylov (JFNK) method with effective preconditioning strategies is

introduced to solve a diffusion-based tumor growth model, also known as the Fisher–Kolmogorov

partial differential equation (PDE). The time discretization of the PDE is based on the backward Euler

and the Crank–Nicolson methods. Second-order centered finite differencing is used for the spatial

derivatives. We introduce two physics-based preconditioners associated with the first- and second-

order temporal discretizations. The theoretical time and spatial accuracies of the numerical scheme

are verified through convergence tables and graphs that correspond to different computational

settings. We present efficiency studies with and without using the preconditioners. Our numerical

findings indicate the excellent performance of the newly proposed preconditioning strategies. In

other words, when we turn the preconditioners on, the average number of GMRES and the Newton

iterations are significantly reduced.

Keywords: Fisher–Kolmogorov equation; JFNK method; physics-based preconditioner

1. Introduction

Gliomas are the most common and very aggressive type of brain tumor. They have
been known to be incurable due to their large invasion capacity. It is important to have
good mathematical models and their numerical solutions to understand the true nature
and the underlying physical mechanism of this phenomenon. Over the years, researchers
have paid a lot of attention to the modeling part and solution techniques. A set of several
review articles on this topic can be found in the following references [1–5]. Widely used
mathematical models are based on the nonlinear reaction–diffusion type partial differential
equations (PDEs) to describe the time evolution of the tumor growth. It is difficult to solve
these models analytically because of the existence of nonlinearity and discontinuity in
the source and diffusion coefficient terms. On the other hand, numerical solutions and
computer simulations have been good alternatives. In the last two decades, there have been
several attempts such as variational iteration method (VIM) [6], stochastic models [7,8],
finite element methods (FEM) [9–12], finite difference schemes (FDSs) [6,11,13,14], cubic
B-spline collocation methods [12], hybrid models [7,10], and Bayesian approaches [15] to
approximately solve the mathematical model and simulate the time behavior of the tumor
concentrations in the glioma cells.

In 2015, Wu et al. [6] introduced a variational iteration method (VIM) to study this prob-
lem by transforming the reaction–diffusion equation into an equivalent integral equation.
This method enables one to avoid the treatment of the time derivatives as in classical finite
difference sense. However, the method involves the so-called Picard iteration procedure
that can be computationally very inefficient.

Later on, Mach et al. [9] investigated the finite-element nonlinear Galerkin method
(FEM) in one spatial dimension and its application to the selected reaction–diffusion
systems. Another FEM approach was carried out by Dehghan and Narimani [16] in 2018
and called the element-free Galerkin method to simulate the effects of cancer cell invasion
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on the surrounding tissue. We note that even though the FEM is preferable for irregular
geometries compared to the FDS, the FEM is more prone to stability issues especially when
the discontinuous diffusion coefficients and sharp gradients exist in the system.

In 2020, Dehghan and Narimani [17] used a collocation meshless technique called the
radial basis function-generated finite difference (RBF-FD) scheme to solve the reaction–
diffusion model in multi-dimensional settings. They employed a first-order semi-implicit
scheme to approximate the time variable and solved the resulting linear system of algebraic
equations using the biconjugate gradient stabilized (BiCGSTAB) iterative scheme with
a zero-fill incomplete lower–upper (ILU) preconditioner. An obvious drawback of this
approach is that, despite being incomplete, it involves an expensive LU decomposition, let
alone the positive-definite requirement of the CG method.

Another study was carried out by Kapoor and Joshi in [12]. They used a modified cubic
uniform algebraic hyperbolic tension B-spline differential quadrature method to discretize
the spatial partial derivatives in 1D and 2D reaction–diffusion systems. They utilized a
strong stability preserving Runge–Kutta (SSP-RK4) time scheme to solve the resulting
ordinary differential Equation (ODE). One disadvantage of this approach is that it can be
expensive to implement due to the high number of function evaluations in the cubic spline
procedure and due to the stability restrictions imposed by the explicit SSP-RK4 method.

In this study, we adopt the proliferation–invasion (PI) model that is assumed to capture
the most fundamental features of cancer cells (e.g., cell growth cannot be restrained and
can occupy surrounding tissues). In this model, the rate of change of cell density can
be written as a sum of the invasion of cells into nearby tissue (heterogeneous diffusion
coefficient times the cell density) and the proliferation of cells (in terms of logistic growth).
The resulting equations are similar to the reaction–diffusion equation with radiotherapy
and chemotherapy effects [18]. We note that we neglect the effects of radiotherapy and
chemotherapy in this paper because, for the time being, we aim to introduce an accurate
and effective solution methodology and test its convergence and efficiency on a simplified
model. However, we will consider a more realistic model with all additional effects
included in a follow-up study [17]. We also note that a one-dimensional simplified model
was numerically studied by the co-author of this work in [19]. The major drawback of [19]
is that it relies on the construction, storage, and inversion of the Jacobian matrix of the
nonlinear system. This approach can be computationally very inefficient and very difficult
to implement in a situation where discontinuous or solution-dependent diffusion coefficient
exists together with nonlinear source terms, which is the case herein.

In this paper, we utilize a Jacobian-free Newton–Krylov (JFNK) method with new
effective preconditioning strategies to solve the growth model. The JFNK methods are
synergic combinations of Newton type-methods for the super linearly convergent solution
of nonlinear equations and Krylov subspace methods for solving the linear equations [20].
The implementation of a JFNK method requires the solution of a linear system that comes from
the Newton correction step. Generally, the linear system is solved based on a particular Krylov
subspace method and the generalized minimal residual (GMRES) iterative method [20,21].
The main advantage of a Jacobian-free Newton–Krylov method is that it does not require
the formation, storage, and inversion of the Jacobian matrix. Perhaps, this itself is the
main reason why the JFNK methods became very popular in the scientific community.
They have been successfully used to solve boundary or initial valued problems coming
from diverse areas; compressible or incompressible fluid dynamics problems, heat transfer
engineering and thermal hydraulic problems, neutronics applications, solid mechanics
problems, astrophysical applications, and optimization problems from industry to name a
few [20,22–28].

As part of the JFNK method, we need to include a preconditioning step to accelerate
the convergence of the Krylov block. We note that the preconditioning step became almost
standard for any type of iterative scheme [21,29,30]. Here, we introduce very effective
preconditioning techniques that share similarities to those presented in [31–35] in such a
way that they all rely on the underlying physics. In the literature, these kinds of methods
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are referred to as physics-based or physical preconditioning. The main benefit of this
preconditioning strategy is that one can target a particular part of the model that creates
stiffness or causes slow convergence and only apply the procedure to such a part rather than
to the entire system. The numerical results in Section 4 indicate that the new preconditioners
perform very well, decreasing the average number of GMRES and the Newton iterations to
very low numbers.

The organization of this paper is as follows: In Section 2, we define the governing
equations. In Section 3, we describe the Jacobian-free Newton–Krylov (JFNK) method
together with the new physics-based preconditioning techniques. In Section 4, we present
our numerical results to verify the numerical convergence of the proposed schemes and to
show the performance and capabilities of the new preconditioning strategies. In Section 5,
we summarize our concluding remarks and hint at possible future works.

2. Governing Equations

The governing PDEs are based on the proliferation–invasion (PI) model [17–19,36] to
describe glioma cell invasion throughout the brain as a reaction–diffusion process;

∂c(x, y, t)

∂t
=

∂

∂x

(
D

∂c(x, y, t)

∂x

)
+

∂

∂y

(
D

∂c(x, y, t)

∂y

)
+ ρc(x, y, t)

(
1 − c(x, y, t)

cmax

)
, (1)

where c(x, y, t) is the tumor concentration of glioma cells at spatial locations x, y and time t,
ρ is the net proliferation rate in units day−1, and D(x, y) is the diffusion coefficient. Notice
that we can solve Equation (1) as a one- or two- dimensional model by simply turning the y
derivatives off and on. The birth and death rates are included in ρ, assuming a Verhulst
(logistic growth) law including a tissue-carrying capacity cmax [37]. The diffusion coefficient
can depend on the values of the concentration and may vary from patient to patient [38]. In
this study, we use discontinuous diffusion coefficient profiles that contain low (gray region)
and high (white region) diffusion zones [38]. In one- dimensional test cases, we use

D(x) =





0.13 if 0 ≤ x ≤ 7.5 (gray region)
0.65 if 7.5 < x ≤ 42.5 (white region)
0.13 if 42.5 < x ≤ 50 (gray region) ,

(2)

where x belongs to the interval I = [0, 50], and in two -dimensional cases, as suggested by
Shim et al. [39], we set

D(x, y) =

{
0.65 if 0 ≤ d ≤ 17.5 (white region)
0.13 otherwise (gray region) ,

(3)

where d =
√
(x − x0)2 + (x − y0)2 and (x0 y0) = (25, 25) is the center of the two-

dimensional computational domain D = [0, 50]× [0, 50]. The zero-flux boundary conditions
and one and two- dimensional Gaussian initial tumor profiles are defined as

cx(0, y, t) = cx(50, y, t) = cy(x, 0, t) = cy(x, 50, t) = 0, (4)

c(0, t) = g(x) =
1√
2πǫ

e
− 1

2

(
x−x0

ǫ

)2

c(x, y, 0) = g(x, y) =
1√
2πǫ

e
− d2

2 ǫ2 , (5)

where we use ǫ = 0.01 in our calculations. Figure 1 illustrates one- and two- dimensional
Gaussian initial tumors and discontinuous diffusion coefficient profiles.
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Figure 1. Left column: One- and two-dimensional initial tumor concentrations; Right column: One-

and two-dimensional discontinuous diffusion coefficients.

3. Numerical Algorithm

We present two implicit time discretization methods: one is based on the first-order
backward Euler and the other is the second-order Crank–Nicolson scheme. Here, we
purposely considered two different time-convergent schemes. The first reason is the fact
that the local time error can accumulate differently depending on the time accuracy of the
method. Furthermore, the second reason is that the time accuracy can affect the overall
performance of the JFNK method. In Section 4, we present a head on comparison study for
the two time methods and the aforementioned numerically verified behaviors. The spatial
derivatives are discretized using the second-order centered finite differencing procedure
on a staggered grid configuration. An obvious advantage of using a staggered grid is that
it enables us to position the discontinuous diffusion coefficients exactly at the cell edges,
rather than extrapolating them from the cell centers.

3.1. The Backward Euler (BE) Method

The first-order backward Euler (BE) time scheme together with the second-order space
discretization of Equation (1) can be given in the following form

cn+1
i,j − cn

i,j

∆t
−

Di+ 1
2 ,jc

n+1
x i+ 1

2 ,j
− Di− 1

2 ,jc
n+1
x i− 1

2 ,j

∆x
−

Di,j+ 1
2
cn+1

y i,j+ 1
2

− Di,j− 1
2
cn+1

y i,j− 1
2

∆y

−ρcn+1
i,j

(
1 −

cn+1
i,j

cmax

)
≈ 0, (6)
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where cn
i,j approximates the true solution at the grid location (xi, yj) and time tn (e.g.,

cn
i,j ≈ c(xi, yj, tn) = c(i∆x, j∆y, n∆t) and the following derivatives are approximated by

cn+1
x i+ 1

2 ,j
≈

cn+1
i+1,j − cn+1

i,j

∆x
cn+1

x i− 1
2 ,j

≈
cn+1

i,j − cn+1
i−1,j

∆x

cn+1
y i,j+ 1

2

≈
cn+1

i,j+1 − cn+1
i,j

∆y
, cn+1

y i,j− 1
2

≈
cn+1

i,j − cn+1
i,j−1

∆y
.

Here, ∆x = xi+ 1
2
− xi− 1

2
and ∆y = yj+ 1

2
− yj− 1

2
are the size of the (i, j)th cell in x and

y directions, (xi, yj) represents the center of the (i, j)th cell, and (xi± 1
2
, yj± 1

2
) denote the left,

right, top, and bottom edges of the (i, j)th cell (Figure 2). The spatial domain [0, 50]× [0, 50]
is divided into Mx and My sections in the x and y directions. We use the uniform grids in

this study, implying that (∆xi , ∆yj) = (∆x , ∆y) = ( 50
Mx

, 50
My

) where i = 0, . . . Mx − 1 and

j = 0, . . . My − 1.

j

i j(x  , y )

i−1/2
(x     ,  y )i+1/2 j

(x ,  y    )j−1/2i

j+1/2(x ,  y    )i

(x     ,  y )

c

i+1/2,ji−1/2,j

i,j−1/2

i,j+1/2

c

c

c

c
i,j

Figure 2. A staggered grid cell (left) and a solution representation (right).

We utilize the following discrete Neumann boundary conditions for Equation (4)

cn+1
x − 1

2 ,j
≈ 0, cn+1

x Mx− 1
2 ,j

≈ 0, cn+1
y i,− 1

2

≈ 0, cn+1
y i,My− 1

2

≈ 0. (7)

Equation (7) can be used to set the ghost cell values in the x direction as

0 ≈ cn+1
x − 1

2 ,j
≈ (cn+1

0,j − cn+1
−1,j)/∆x ⇒ cn+1

−1,j ≈ cn+1
0,j ,

0 ≈ cn+1
x Mx− 1

2 ,j
≈ (cn+1

Mx ,j − cn+1
Mx−1,j)/∆x ⇒ cn+1

Mx ,j ≈ cn+1
Mx−1,j,

and, similarly, in the y direction as

0 ≈ cn+1
y i,− 1

2

≈ (cn+1
i,0 − cn+1

i,−1)/∆y ⇒ cn+1
i,−1 ≈ cn+1

i,0 ,

0 ≈ cn+1
y i,My− 1

2

≈ (cn+1
i,My

− cn+1
i,My−1)/∆y ⇒ cn+1

i,My
≈ cn+1

i,My−1.

3.2. The Crank–Nicolson (CN) Method

The Crank–Nicolson method is a second-order accurate scheme in both time and space.
It utilizes the time average of the flux and source terms together with the centered spatial
discretizations. Along with these principles, the governing equation yields
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cn+1
i,j − cn

i,j

∆t
− 1

2




Di+ 1
2 ,jc

n+1
x i+ 1

2 ,j
− Di− 1

2 ,jc
n+1
x i− 1

2 ,j

∆x
+

Di+ 1
2 ,jc

n
x i+ 1

2 ,j
− Di− 1

2 ,jc
n
x i− 1

2 ,j

∆x




− 1

2




Di,j+ 1
2
cn+1

y i,j+ 1
2

− Di,j− 1
2
cn+1

y i,j− 1
2

)

∆y
+

Di,j+ 1
2
cn

y,i,j+ 1
2

− Di,j− 1
2
cn

y i,j− 1
2

∆y




− 1

2

(
ρcn+1

i,j

(
1 −

cn+1
i,j

cmax

)
+ ρcn

i,j

(
1 −

cn
i,j

cmax

))
≈ 0. (8)

Equations (6) and (8) can be viewed as a system of nonlinear algebraic equations (e.g.,
F(c)≈ 0) that need to be solved for the unknown cn+1. The resulting nonlinear equation
system will be solved using the Jacobian-free Newton Krylov (JFNK) method [20,31,34].
After applying a desired number of nonlinear iterations, the JFNK method guarantees
the convergence of all nonlinearities in the system. Of course, we have to keep in mind
that, in order for the JFNK method—just like the other nonlinear solvers—to converge to a
physically correct solution, we have to provide a good initial guess. This is not an issue
here, because we are solving an initial value problem. In other words, at the beginning
of each time update, we have a very good initial guess coming from the previous time
step solution.

3.3. The Jacobian-Free Newton–Krylov Method

In the following section, we briefly describe the JFNK method. The JFNK method has
two components, namely the Newton and Krylov blocks. The Newton block iteratively
solves F(c) ≈ 0 over the sequence of a linear system defined by

J(ck)δck ≈ −F(ck),

ck+1 ≈ ck + δck, k = 0, 1, · · · (9)

where J(ck) = ∂F
∂c is the Jacobian matrix and δck is the update vector. The Newton iteration

is stopped if the following criterion is matched

‖F(ck)‖2 < tolres‖F(c0)‖2, (10)

where tolres is the user-defined tolerance, typically 10−8. The resulting linear system at the
Newton correction step (Equation (9)) is solved utilizing a Krylov subspace method. In
particular, we use the Arnoldi-based GMRES method [21]. At the beginning of the GMRES
iteration, we need to define an initial residual, r0, for a given initial guess δc0,

r0 ≈ −F(c)− Jδc0. (11)

Since the Krylov (GMRES) iteration is executed at a fixed k, we omit the index k for
convenience in Equation (11). Let j denote the Krylov iteration index. The jth Krylov
iteration minimizes the quantity ‖Jδcj + F(c)‖2 within a subspace of small dimensions
relative to n (the number of unknown vectors) in a least-squares sense. δcj is drawn from

the subspace spanned by the Krylov vectors, {r0, Jr0, J2r0, · · · , Jj−1r0}, and can be written
as the following combination

δcj ≈ δc0 +
j−1

∑
i=0

βi(J)
ir0, (12)
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where the term βi minimizes the residual. We terminate the Krylov iteration using the
following inexact Newton criteria [40]

‖Jδcj + F(c)‖2 < γ‖F(c)‖2. (13)

Here, parameter γ is chosen to determine the convergence of the linear solver at each New-
ton iteration (we usually set γ = 10−3). We note that one main advantage of the Krylov
subspace method that we use here is that it does not need the formation of the Jacobian ma-
trix. It only requires the matrix-vector multiplication, Jv, where v ∈ {r0, Jr0, J2r0, · · · }. This
is why it is simply referred to as the Jacobian-free implementation, in which the operation of
the Jacobian matrix times a vector can be estimated by

Jv ≈ F(c + ǫv)− F(c)

ǫ
, (14)

where ǫ = 1
n‖v‖2

∑
n
i=1 b|ci|+ b, n is the dimension of the linear system, and b is a constant

whose magnitude is within a few orders of magnitude of the square root of machine
round-off (it is typically set to 10−6 for 64-bit double precision).

Remark 1. We remark that we do not employ any global convergence strategy such as the trust
region method or line search method to improve the convergence of the nonlinear block [21,41] in
this research. Typically, the line search or trust region of globalization methods are employed if the
initial guess is far from the solution or the converged solution is not physically the correct one. The
main reason why we do not use such methods is that, in both methods, one needs to calculate the
direction search vectors which require the knowledge of a Jacobian matrix (exact or approximate),
but in our matrix’s free implementation, we do not calculate the Jacobian matrix by any means.
The second reason is that we are solving an initial value problem and, at the beginning of each
nonlinear iteration, the previous time step solutions become a very good initial guess for the next
set of solutions. With regard to the second point, we also note that, despite the fact they are time
implicit, our integration techniques do not use arbitrarily large time steps for accuracy reasons.
Furthermore, this prevents us drifting far away from the next time level solutions.

As we pointed out earlier, we utilize preconditioning techniques to accelerate the
convergence of the JFNK’s Krylov step. Usually, the original linear system (9) is modified
when a preconditioner is in use (the Jacobian matrix is multiplied by a preconditioning
matrix from the left or right). When the linear system is multiplied by a preconditioning
matrix from the left, the resulting method is called the left preconditioner (or the right
preconditioner if the multiplication is performed from the right). We note that the left
preconditioner also modifies the right-hand side of the linear system (9), meaning that the
modified nonlinear residuals must be recovered. This brings additional coding complexity
and computational costs [20,21,42]. On the other hand, the right preconditioner does
not affect the right-hand side term and does not possess the aforementioned difficulties.
Therefore, we prefer the right preconditioning (RP) strategy in this paper.

The RP procedure modifies and improves the linear system (9) as follows

JP−1(Pδc) ≈ −F(c), (15)

where P is the preconditioning matrix. The action of the right preconditioning can be
defined similarly to (14), e.g.,

JP−1v ≈ F(c + ǫP−1v)− F(c)

ǫ
, (16)

where v is the Krylov vector. The execution of this procedure involves the following steps:

Step-1: Given v, solve Pz = v for z (e.g., z = P−1v)
Step-2: Perform Jz ≈ (F(c + ǫz)− F(c))/ǫ,
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where z is the preconditioned Krylov vector. Below, we describe two different ways of
obtaining z′s.

3.4. The Physics-Based Preconditioners

3.4.1. Based on the Backward Euler Method

We follow the steps of Kadioglu et al. [31,34] to derive the preconditioning equation.
First, we recast the discretization (6) as

ck+1
i,j − cn

i,j

∆t
− [((D(x, y)cx))x]

k+1
i,j − [((D(x, y)cy))y]

k+1
i,j ≈ f k

i,j, (17)

where k represents the kth nonlinear iteration. Adding and subtracting ck
i,j to the time part

and [((D(x, y)cx))x]ki,j , [((D(x, y)cy))y]ki,j to both sides of Equation (17), we obtain

δci,j

∆t
− [((D(x, y)cx))x]

k+1
i,j + [((D(x)cx))x]

k
i,j − [((D(x, y)cy))y]

k+1
i,j + [((D(x)cy))y]

k
i,j

≈ −
ck

i,j − cn
i,j

∆t
+ [((D(x, y)cx))x]

k
i,j + [((D(x, y)cy))y]

k
i,j + f k

i,j, (18)

where δci,j = ck+1
i,j − ck

i,j. Assuming the equal diffusion coefficients at both iterates,

we have

δci,j −
∆t

∆x2
Di+ 1

2 ,j(δci+1,j − δci,j) +
∆t

∆x2
Di− 1

2 ,j(δci,j − δci−1,j)

− ∆t

∆y2
Di,j+ 1

2
(δci,j+1 − δci,j) +

∆t

∆y2
Di,j− 1

2
(δci,j − δci,j−1) ≈ −resci,j, (19)

where resci,j represents the nonlinear residual term at the kth iteration,

resci,j ≈ ck
i,j − cn

i,j − ∆t[((D(x, y)cx))x]
k
i,j − ∆t[((D(x, y)cy))y]

k
i,j − ∆t f k

i,j. (20)

Combining the common terms yields

−cδci−1,j − bδci+1,j + aδci,j − dδci,j+1 − eδci,j−1 ≈ −resci,j, (21)

where

a = 1 +
∆t

∆x2
Di+ 1

2 ,j +
∆t

∆x2
Di− 1

2 ,j +
∆t

∆y2
Di,j+ 1

2
+

∆t

∆y2
Di,j− 1

2
,

b =
∆t

∆x2
Di+ 1

2 ,j, c =
∆t

∆x2
Di− 1

2 ,j, d =
∆t

∆y2
Di,j+ 1

2
, e =

∆t

∆y2
Di,j− 1

2
.

for i = 1, · · · , Mx − 1 and j = 1, · · · , My − 1.

3.4.2. Based on the Crank–Nicolson Method

To obtain the preconditioning equation, we recast the discretization (8) as

ck+1
i,j − cn

i,j

∆t
−

[((D(x, y)cx))x]
k+1
i,j + [((D(x, y)cx))x]ni,j

2

−
[((D(x, y)cy))y]

k+1
i,j + [((D(x, y)cy))y]ni,j

2
≈

f k
i,j + f n

i,j

2
. (22)

If we follow the similar steps as in Section 3.4.1, we obtain the following update formula

−cδci−1,j − bδci+1,j + aδci,j − dδci,j+1 − eδci,j−1 ≈ −resci,j, (23)



Appl. Sci. 2023, 13, 6579 9 of 23

where

resci,j ≈ ck
i,j − cn

i,j −
∆t

2
([((D(x, y)cx))x]

k
i,j + [((D(x, y)cx))x]

n
i,j)

−∆t

2
([((D(x, y)cy))y]

k
i,j + [((D(x, y)cy))y]

n
i,j)−

∆t

2
( f k

i,j + f n
i,j), (24)

and

a = 1 +
∆t

2∆x2
Di+ 1

2 ,j +
∆t

2∆x2
Di− 1

2 ,j +
∆t

2∆y2
Di,j+ 1

2
+

∆t

2∆y2
Di,j− 1

2
,

b =
∆t

2∆x2
Di+ 1

2 ,j, c =
∆t

2∆x2
Di− 1

2 ,j, d =
∆t

2∆y2
Di,j+ 1

2
, e =

∆t

2∆y2
Di,j− 1

2
.

for i = 1, · · · , Mx − 1 and j = 1, · · · , My − 1.
Notice that we need boundary conditions when solving Equations (21) and (23) for

δc. Essentially, we define few ghost cell values similarly to those described in Section 3.1
as δc−1,j ≈ δc0,j and δcMx ,j ≈ δcMx−1,j for j = 1, · · · , My − 1 and δci,−1 ≈ δci,0 and
δci,My

≈ δci,My−1 for i = 1, · · · , Mx − 1. The update Equations (21) and (23) are solved
iteratively to produce the preconditioned Krylov vector z.

The iterative procedure is based on a multi-grid V-cycle method specifically designed
for our applications. A typical multi-grid V-cycle method consists of few recursively
applied Gauss–Seidel (GS) or other basic such as Jacobi iterations from finest to coarsest
and from coarsest to finest grid levels [41,43]. It is well known that the GS or other basic
iterative methods (sometimes referred to as smoothers) are very good at smoothing the
high frequency errors in just a few iterations. However, they are extremely slow to produce
fully converged solutions. Often, the iteration count for convergence is related to the
problem size (e.g., Mx × My in our 2D cases) which is impractical. We take advantage of
the GS smoother to design our multi-grid V-cycle in the following way. At the beginning
of each V-cycle, we perform two Gauss–Seidel iterations to remove or smooth out the
high-frequency errors occurring at the finest grid. Then, we restrict ourselves to a coarser
grid at which we form coarse grid solutions and the related coarse residuals to apply two
more GS sweeps. We note that, at this coarse level, the previously low-frequency errors act
like high-frequency ones and the application of a small number of GS sweeps are sufficient
to smooth them out. This continues recursively until we reach the coarsest level (two
grid cells in each direction) at which we perform hundred GS iterations. At the end of
the coarsest level iterations, we recursively apply the prolongation step to interpolate the
coarse level solutions to the finer levels at which we carry out two more GS sweeps. The
completion of these steps defines one multi-grid V-cycle. In our test problems, we carry out
five V-cycles that we found sufficient to decrease the GMRES iteration count to very small
numbers. However, one can always increase or decrease the number of multi-grid V-cycles
depending on the physical model and its numerical discretization.

Remark 2. We remark that the preconditioning procedure that we are using in this paper is
referred to as the physics-based or partial differential equation (PDE)-based method [20,22,29,41].
A different physical process usually corresponds to a different class of PDE’s. For example, the
diffusion process is modeled by a parabolic type of PDE or a wave phenomenon described by a
hyperbolic type of PDE. Some physical process, fluid flow for instance, can have a mixture of
hyperbolic and parabolic characteristics. More importantly, some physical process can have multiple
time-scale behavior resulting in less or more stiff terms in the governing equations. Depending on
the stiffness measure, there exist well-established numerical techniques such as explicit algorithms
(for non-stiff problems), implicit algorithms for stiff problems, or a semi-implicit algorithm for the
mixed equation systems. We also note that stiff parts in the system are the source of the stringent
time step stability restrictions. Therefore, having some physical insight regarding the model helps
target specific stiff parts (diffusion terms in our case) to step over fine time scales resulting in
the accelerated convergence of the linear algebra problem (Krylov step in our case). We remark
that there exist matrix-based preconditioning technologies such as LU decomposition, incomplete
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LU and its variants, or other sorts of approaches [25,29]. They can be successfully implemented
to accelerate the convergence. However, the main disadvantage of almost all of them is that they
all require some information about the Jacobian matrix of the nonlinear system. As noted earlier,
forming the Jacobian matrix can be complicated and storing it can be expensive. Our matrix-free
method (JFNK) does not require the formation or storage of the Jacobian matrix. Our preferred
physics-based preconditioner also has the same characteristics and avoids the explicit formation of
the preconditioning matrix and its inverse, but it rather computes the effect of the inverse of the
preconditioning matrix multiplied by a Krylov vector. This basic structure of our preconditioning
procedure provides a unique opportunity for flexible and straight forward code executions. The
reliability and efficiency of the preconditioners are demonstrated in the following section.

4. Results

4.1. 1D Case

4.1.1. Convergence Analysis

The theoretical order of accuracy of the numerical schemes that we use here is first
-order in time and second order in space for the backward Euler and second order in time
and second order in space for the Crank–Nicolson method. Of course, these theoretical
orders exist for the linear models and linear methods. Whenever the model becomes
nonlinear or sharp structures appear in the solution, it may become difficult to verify the
expected order of accuracy. We have both situations in our model and solution profiles.
Therefore, it makes sense to check whether we lose numerical accuracy in time or space.
To do this, we will perform temporal and spatial convergence analysis, that subsequently
described. Although there exists analytical solutions to the Fisher–Kolmogorov equation in
certain situations [44], we prefer computational means to carry the convergence analysis.
This is mainly because our numerical analysis can be easily applied to more general cases
such as a coupled nonlinear fluid dynamical system with more physical effects. The time
convergence analysis was performed in the following manner. We fix the number of grid
points (e.g., M = 2048) and run the code with sequentially refined time steps up to the
final time t f inal = 10. For instance, we obtain the following approximate solution set

c∆t, c
∆t
2 , c

∆t
4 , . . . , c

∆t

2k where k = 0, 1, . . . , 8 and ∆t = 10−1. Then, we measure the Lp norms
of errors between two consecutive time step solutions, e.g.,

||c∆t − c
∆t
2 ||p, ||c ∆t

2 − c
∆t
4 ||p, . . . ,

where p ∈ {1, 2, ∞}. These time errors can be superimposed (in log scale) on top of
the reference first- and second-order slope indicator lines to provide insights into the
convergence behavior. Alternatively, one can define the time rate of convergence by

r = ln
(
||E(∆t/2k−1)||/||E(∆t/2k)||

)
/ ln 2, (25)

where
E(∆t/2k−1) = ||c∆t/2k−1 − c∆t/2k ||p k = 1, . . . , 8.

Based on the second description, we made convergence tables to demonstrate and
verify the theoretical time order of accuracy of the numerical schemes. Table 1 illustrates
the time behavior of the Crank–Nicolson method using different norms. The convergence
rates slightly change depending on the norm, however, they are all very close to the
theoretical value which is two. In Table 2, we verify the time convergence behavior of the
backward Euler method. Naturally, time errors are bigger compared to the Crank–Nicolson
results, but again, we have a perfect match between the theoretical and numerical rate of
convergence. This verification analysis is very important because it not only means that we
have a reliable code implementation, but it also numerically proves that the JFNK method
consistently converges all nonlinearities in the physical system as intended.
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Table 1. Crank–Nicolson, M = 2048, ∆t = 10−1.

Time Convergence Analysis with E = ||c∆t/2k−1
− c∆t/2k

||p in Columns 1, 3, 5

p = 1, k = 1, · · · , 8
Conv. Rate
(r in (25))

p = 2, k = 1, · · · , 8
Conv. Rate
(r in (25))

p = ∞, k = 1, · · · , 8
Conv. Rate
(r in (25))

7.22 × 10−5 2.0000 4.28 × 10−5 2.0004 1.38 × 10−4 2.0005

5.55 × 10−6 2.0000 1.07 × 10−5 2.0001 3.44 × 10−5 2.0001

1.39 × 10−6 2.0029 2.67 × 10−6 1.9985 8.59 × 10−6 1.9973

3.46 × 10−7 1.9980 6.69 × 10−7 1.9992 2.15 × 10−6 1.9998

8.67 × 10−8 1.9711 1.67 × 10−7 2.0105 5.38 × 10−7 2.0172

2.21 × 10−8 1.9506 4.15 × 10−8 2.0359 1.33 × 10−7 2.0687

5.72 × 10−9 1.9014 1.01 × 10−8 2.0615 3.17 × 10−8 2.1685

1.53 × 10−9 2.42 × 10−9 7.05 × 10−9

Table 2. Backward Euler, M = 2048, ∆t = 10−1.

Time Convergence Analysis with E = ||c∆t/2k−1
− c∆t/2k

||p in Columns 1, 3, 5

p = 1, k = 1, · · · , 8
Conv. Rate
(r in (25))

p = 2, k = 1, · · · , 8
Conv. Rate
(r in (25))

p = ∞, k = 1, · · · , 8
Conv. Rate
(r in (25))

1.34 × 10−3 0.9969 2.17 × 10−3 0.9984 6.56 × 10−3 0.9996

6.72 × 10−4 0.9983 1.08 × 10−3 0.9989 3.28 × 10−3 0.9989

3.36 × 10−4 0.9991 5.43 × 10−4 0.9993 1.64 × 10−3 0.9991

1.68 × 10−4 0.9995 2.71 × 10−4 0.9996 8.21 × 10−4 0.9995

8.41 × 10−5 0.9998 1.36 × 10−4 0.9998 4.11 × 10−4 0.9997

4.21 × 10−5 0.9999 6.79 × 10−5 0.9999 2.05 × 10−4 0.9998

2.10 × 10−5 0.9999 3.39 × 10−5 0.9999 1.03 × 10−4 0.9999

1.05 × 10−5 1.70 × 10−5 5.14 × 10−5

To numerically demonstrate the spatial convergence, we perform nine runs using ∆x
2k

( k = 0, 1, . . . , 8) and a fixed fine time step ∆t = 10−5 where ∆x = 50
26 . In these runs,

the time scheme is set to be the CN method that, by construction, contributes smaller
time errors to the truncation term. With these settings and similar error norm measures
described above, we formed Table 3 at the final time t f inal = 10. Table 3 clearly shows
second-order spatial convergence. Again, this is a good indication of reliable and accurate
code implementation. This also means that we can readily extend our work to multi-
dimensional and more complex models. Here, we note that one could fix ∆t/∆x2 or
∆t2/∆x2 and perform only one convergence analysis (space–time) for each numerical
scheme to check the possible accuracy loss. However, in this way, it may be difficult to
identify the source of inaccuracies (e.g., it could be related to the time or space terms in the
truncation functional). Therefore, performing separate analysis as we did here is important
to minimize the influence of the time error to the spatial one.

Figure 3 shows the time simulation of the tumor concentration of glioma cells from
the initial to the final time t f inal = 1000 (days). We have two sets of figures. The figures
in the left column correspond to the coarse grid (M = 128) and the figures on the right
column belongs to the fine grid (M = 4096) runs. All runs are executed using the Crank–
Nicolson time scheme with the same time step ∆t = 0.01. The simulation starts with a
high concentration of glioma cells in a very narrow region. The concentration diffuses
for a while (approximately 50 days), then it starts ramping up and spreading at the same
time. The sub-figures show that the tumor cells spread the entire region in approximately
75 days. The last row of the figure indicates that the tumor concentration slowly reaches the
steady state in approximately 1000 days. We see the effects of the discontinuous diffusion
coefficient (e.g., the symmetric kinks in the solution profiles in the middle row). Clearly, the
tumor cells in the high diffusion zone spread much faster than those in the low zone. We
also notice the effects of the grid refinement. Fine grid runs (right column) capture better
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(more accurate) solution profiles that can be very significant in the sense that the amount of
medical treatment (overdose/underdose) can depend on this.

In Figure 4, we compare our computational results with the results of [19] for a series
of time runs. Both results are using M = 100 grid points and fixed time steps ∆t = 10−2. We
can see that the results are very similar. This is expected because both numerical schemes
are second-order accurate in space and time. However, as far as efficiency is concerned,
our algorithm is much faster to converge with two Newton and one GMRES iteration per
Newton step for the aforementioned grid and time step options.
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Figure 3. Time simulations of tumor concentration of glioma cells with ρ = 0.012 day−1, ∆t =

0.01 ≈ 14.4 min, ∆x = 50
M . Left column: M = 128; and right column: M = 4096.
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Table 3. Spatial errors and Conv. rate between sequentially refined grid solutions with ∆t = 10−5.

Spatial Convergence Analysis with E = ||c∆x/2k−1
− c∆x/2k

||p in Columns 1, 3, 5

p = 1, k = 1, · · · , 8 Conv. Rate p = 2, k = 1, · · · , 8 Conv. Rate p = ∞, k = 1, · · · , 8 Conv. Rate

6.67 × 10−4 1.9975 1.93 × 10−3 1.9987 9.70 × 10−3 1.9224

1.67 × 10−4 2.0006 4.83 × 10−4 1.9985 2.56 × 10−3 1.9972

4.18 × 10−5 2.0001 1.21 × 10−4 1.9999 6.41 × 10−4 1.9994

1.04 × 10−5 2.0002 3.02 × 10−5 1.9950 1.60 × 10−4 1.9847

2.61 × 10−6 2.0015 7.57 × 10−6 2.0064 4.05 × 10−5 2.0220

6.52 × 10−7 1.9639 1.88 × 10−6 2.0005 9.97 × 10−6 2.0647

1.67 × 10−7 1.9678 4.71 × 10−7 2.0402 2.38 × 10−6 2.2178

4.27 × 10−8 1.14 × 10−7 5.12 × 10−7
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Figure 4. Comparison of the results of [19] versus ours for time t = 1, 5, 10, 50.

4.1.2. Performance Study of the Preconditioners

In this section, we include an efficiency study to monitor the performance of the new
preconditioners. We ran the code with a fixed ∆t = 10−1 and M = 2048 grid points until
the final time t f inal = 5.0. As we pointed out earlier, the time accuracy of the numerical
scheme affects the convergence speed of the JFNK method. In other words, more accurate
time schemes result in better conditioned systems (the condition number is improved).
This automatically accelerates the convergence of the linear solver (Krylov block) and
consequently may decrease the number of nonlinear iterations (Newton block). Therefore,
we expect that the JFNK method based on the Crank–Nicolson and the backward Euler
time schemes behave differently. Indeed, we observe this behavior in Figure 5. Without the
preconditioners, the average numbers of nonlinear and linear iterations are significantly
different for the two time schemes. In fact, the JFNK method with the backward Euler
scheme takes almost twice the number linear and nonlinear iterations to achieve the same
final time run. A truly meaningful acceleration manifests when we turn the preconditioners
on (Figure 5). The average number of Newton iterations are from four to six, which are very
reasonable, but the average number of GMRES iterations (linear iterations) significantly
drops whenever we activate the preconditioners. Notice that when the time progresses, the
sharp structure smears and the solution profile becomes smoother (Figure 3). Then, the
JFNK method with the preconditioners converges effortlessly, requiring only one GMRES
iteration (second raw of Figure 5).
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Figure 5. One-dimensional performance study of the preconditioners. Left column: with the CN

scheme; and right column: with the BE scheme.

Another important aspect of our algorithm is the convergence rate of the nonlinear
block. In the literature, it is reported that the JFNK method has the super-linearly conver-
gence rate property [20,41]. We computationally verify this behavior in Figure 6. Figure 6
shows the convergence rate as a function of nonlinear iterations. To produce this figure,
we use M = 2048 grid points and a fixed time step ∆t = 10−1. The code runs until the
final time t f inal = 1.0 with the second-order version (Crank–Nicolson-based) of the pre-
conditioner (Section 3.4.2). Figure 6 clearly indicates that the rate of convergence of our
algorithm with the new preconditioner is super linear.
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Figure 6. Convergence rate as the function of nonlinear iteration for the JFNK method with the new

preconditioner that utilizes the Crank–Nicolson scheme (Section 3.4.2).

4.2. Two-Dimensional Case

In Section 4.1, by solving one-dimensional test cases, we were able to demonstrate the
accuracy and the effectiveness of the numerical schemes. We expect a similar performance
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from the algorithm when it is applied to multi-dimensional and more complicated models.
This is essentially because any multi-dimensional problem can be put into a nonlinear
equation form with an increasing number of components in the unknown vector. However,
this is not an issue for the JFNK method, because it is known to self-consistently guarantee
the convergence of all nonlinearities in the system. Indeed, just to support the above dis-
cussion, we performed a time convergence analysis by solving the two-dimensional model
with the initial and boundary settings described in Section 2. Table 4 clearly verifies the
second-order convergence. Figure 7 illustrates the two-dimensional performance study by
employing the second-order space and time scheme. Sub-figures show the average number
of Newton and GMRES iterations in time with and without using the preconditioner. With
the preconditioner, the method runs extremely efficiently, needing only a few Newton and
GMRES steps. This remarkable performance is due to the newly devised physics-based
preconditioners and their internal multi-grid mechanism whose convergence is indepen-
dent of the problem size. Here, we would like to note that we never intend to measure the
CPU time performance of our algorithms. This is because such a study can depend on the
computer technology and the code implementation that can vary from person to person.

Figure 8 shows the time history of the glioma cell invasion in a two-dimensional setting.
Again, we start with a very high concentration of glioma cells (approximately 40 cells) in a
very narrow region at the center of the computational domain (50 × 50 mm). The tumor
concentration rapidly spreads into the high diffusion zones in approximately 50 days (third
row in Figure 8). Upon hitting the low-diffusion zones, the spreading slows down for a
while but the concentration starts building up and eventually reaches the steady state value
(40 cells). Sub-figures in Figure 8 also indicate the sharp capturing of the tumor profiles
with our second-order time and space scheme.

Table 4. 2D: Crank–Nicolson, Mx = My = 2048, ∆t = 10−1.

Time Convergence Analysis with E = ||c∆t/2k−1
− c∆t/2k

||p in Columns 1, 3, 5

p = 1, k = 1, · · · , 5 Conv. Rate p = 1, k = 1, · · · , 5 Conv. Rate p = ∞, k = 1, · · · , 5 Conv. Rate

2.04 × 10−3 2.0007 2.66 × 10−4 2.0008 1.10 × 10−4 2.0001

5.09 × 10−4 2.0003 6.64 × 10−5 2.0002 2.76 × 10−5 2.0000

1.27 × 10−4 2.0057 1.66 × 10−5 2.0026 6.90 × 10−6 2.0030

3.17 × 10−5 2.0087 4.14 × 10−6 2.0071 1.72 × 10−6 2.0079

7.87 × 10−6 1.03 × 10−6 4.28 × 10−7

Figure 7. Two-dimensional performance study of the preconditioners with the CN time scheme.



Appl. Sci. 2023, 13, 6579 16 of 23

Figure 8. Time history of the solution profiles. First row: t = 0.1, t = 0.2, t = 0.5. Second row: t = 1.0,

t = 5.0, t = 10.0. Third row: t = 50.0, t = 75.0, t = 100.0. Fourth row: t = 250.0, t = 500.0, t = 1300.0.

5. Conclusions

In this paper, we introduced a Jacobian-free Newton–Krylov method with very ef-
fective preconditioning strategies to study tumor growth dynamics. The JFNK method
does not require the formation, storage, and inversion of the Jacobian matrix that make
it very unique. We utilized two physics-based preconditioners which are associated with
the time integration schemes to accelerate the JFNK’s convergence. Our preconditioners
rely on physical models rather than prescribed matrices. This provides more practical
applications and flexible coding. We solved test problems to demonstrate the numerical
convergence (both in time and space) of the proposed schemes. Theoretical temporal and
spatial accuracies were verified through tables. We performed efficiency studies in one-
and two-dimensional settings and provided figures that illustrate the average number of
linear and nonlinear iterations with and without using the preconditioners. Our study
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clearly indicates that the JFNK method with the new preconditioners works very well. The
average number of GMRES iterations drops down to very low numbers. This is a very
important conclusion because, when we apply the methodology to more complex tumor
dynamics (coupled with fluid dynamics [11]), the efficiency will be crucial. We are currently
working on more realistic coupled fluid dynamics and interface dynamics model with full
radiotherapeutic and chemotherapeutic effects to simulate the tumor growth behavior and
will report our findings in a separate journal paper.

Author Contributions: Conceptualization, S.Y.K. and E.O.; methodology, S.Y.K.; software, S.Y.K.;

validation, S.Y.K. and E.O.; formal analysis, S.Y.K.; investigation, S.Y.K. and E.O.; resources, S.Y.K.;

data curation, S.Y.K. and E.O.; writing—original draft preparation, S.Y.K.; writing—review and

editing, S.Y.K.; visualization, S.Y.K. and E.O.; supervision, S.Y.K.; All authors have read and agreed to

the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The proof of convergence of the numerical schemes is not straightforward, especially
for nonlinear equations and nonlinear schemes. One practical and widely used technique
is the Lax’s equivalency theorem that roughly states that a linear scheme is convergent
if and only if it is consistent with the governing partial differential equations (PDE) and
remains stable [45–48]. This theorem is very restrictive because it requires the governing
equations being linear with smooth solutions. Thus, it is not directly useful if we are solving
nonlinear PDEs. In a finite volume community, the stability concept is replaced by the
Total Variation Diminishing (TVD) property for the nonlinear methods in order to achieve
convergence [47,48]. This is commonly used when dealing with shock (discontinuous)
problems. We note that our solutions remain smooth despite having large gradients. There
is another approach called the method of frozen coefficients to analyze the convergence
property of nonlinear schemes [49,50]. The main principle of this approach is that if one
has an idea about the maximum value of a certain coefficient and the coefficient does
not show large variation in time, then one can freeze such a coefficient while performing
the convergence analysis. We adopt this approach here, because although our diffusion
coefficient is discontinuous constant in time and the factors in our source term can only
reach to a certain maximum value.

Appendix A.1. Stability Analysis

To apply the method of frozen coefficients, we make the following assumptions. We
set the diffusion coefficient to its maximum value D = Dmax = 0.65. Furthermore, notice
that the source term ρc(1 − c

cmax
) has a maximum function value C0 = ρcmax/4 with the

constant ρ. We note that, by freezing these coefficients, we practically linearize the model
for which the standard stability analysis is applicable. For simplicity purposes, we consider
the one-dimensional version of Equation (1). The extension of the same analysis to the
two dimensional model is straightforward. Finally, we can ignore the constant source
term C0, because, by a simple transformation c̃ = c − C0, the in-homogeneous equation
becomes a homogeneous one. Now, we are ready to apply the procedures of the stability
analysis [45,46] to the following simplified model with prescribed boundary conditions

ct = Dmax cxx , cx|x=0 = 0, cx|x=50 = 0. (A1)
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We consider the second-order Crank–Nicolson scheme below (the analysis for the first-order
scheme would be similar)

cn+1
i − cn

i

k
=

Dmax

2

(
cn+1

i+1 − 2cn+1
i + cn+1

i

h2

)
+

Dmax

2

(
cn

i+1 − 2cn
i + cn

i

h2

)
(A2)

where h = ∆x and k = ∆t. Letting r = Dmax ∆t
∆x2 (A2) becomes

− r

2
cn+1

i−1 + (1 + r)cn+1
i − r

2
cn+1

i+1 =
r

2
cn

i−1 + (1 − r)cn
i +

r

2
cn

i+1, i = 0, . . . , M − 1. (A3)

Our second-order boundary condition treatment at the left boundary leads to

cn,n+1
0 − cn,n+1

−1

h
= 0 ⇒ cn,n+1

−1 = cn,n+1
0 , (A4)

and at the right boundary we have

cn,n+1
M − cn,n+1

M−1

h
= 0 ⇒ cn,n+1

M = cn,n+1
M−1 . (A5)

Making use of (A4) and (A5) in (A3), we have

(1 +
r

2
)cn+1

0 − r

2
cn+1

1 = (1 − r

2
)cn

0 +
r

2
cn

1 , (A6)

− r

2
cn+1

M−2 + (1 +
r

2
)cn+1

M−1 =
r

2
cn

M−2 + (1 − r

2
)cn

M−1. (A7)

Now, considering (A3), (A6) and (A7), the numerical scheme in matrix form becomes




1 + r
2 − r

2 0 0 . . . 0
− r

2 (1 + r) − r
2 0 . . . 0

...
0 . . . − r

2 (1 + r) − r
2 0

. . .

0
... 0 − r

2 (1 + r) − r
2

0 . . . 0 0 − r
2 1 + r

2




︸ ︷︷ ︸
Q1

×




cn+1
0

cn+1
1
...

cn+1
i
...

cn+1
M−2

cn+1
M−1




︸ ︷︷ ︸
cn+1

=




1 − r
2

r
2 0 0 . . . 0

r
2 1 − r r

2 0 . . . 0
...

0 . . . r
2 1 − r r

2 0
...

0 . . . 0 r
2 1 − r r

2
0 . . . 0 0 r

2 1 − r
2




︸ ︷︷ ︸
Q

×




cn
0

cn
1
...

cn
i
...

cn
M−2

cn
M−1




︸ ︷︷ ︸
cn

,

or
Q1 cn+1 = Q cn. (A8)

Noting that Q = 2 I − Q1, we have Q1 cn+1 = (2 I − Q1) cn or cn+1 = (2 Q−1
1 − I) cn

or cn+1 = Q̃ cn with Q̃ = (2 Q−1
1 − I). Since Q1 is a symmetric matrix, its eigenvalues are
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real, and if λ is an eigenvalue of Q1, then µ = 2
λ − 1 is an eigenvalue of Q̃ [45]. Moreover,

Q−1
1 and therefore Q̃ are also symmetric because

I = (Q1 Q−1
1 )T = (Q−1

1 )TQT
1 = (Q−1

1 )TQ1 ⇒ (Q−1
1 )T = Q−1

1 . (A9)

Here, we intend to utilize the Proposition 3.1.13 from the text [45] to prove the stability
of the numerical scheme. For that, we use one last piece of information coming from the
application of the Gerschgorin Circle theorem [45] which implies that

|λ − (1 +
r

2
)| ≤ r

2
or |λ − (1 + r)| ≤ r. (A10)

By working these inequalities out, we obtain 1 ≤ λ ≤ 1 + r or 1 ≤ λ ≤ 1 + 2r, meaning
that λ ≥ 1. Using this information, we clearly have

|µ| = | 2

λ
− 1| ≤ 1. (A11)

Putting together all the information derived above, we satisfy the hypotheses of Proposition
3.1.13, meaning that the numerical scheme is unconditionally stable.

Appendix A.2. Accuracy Analysis

The consistency or accuracy analysis usually means how accurately the numerical
solution approximates the true (or analytical) solution or how accurately the analytical
solution satisfies the numerical method [45]. Below, we present the consistency analysis
for the Crank–Nicolson scheme, and a similar analysis can also be easily applied to the
backward Euler method. The analysis is simply based on the substitution of several Taylor
series into the numerical scheme. Let P and Pk, h represent the analytical and numerical
operators, respectively, i.e.,

Pc =
∂c

∂t
− ∂

∂x

(
D(x)

∂c

∂x

)
− ρc

(
1 − c

cmax

)
, (A12)

Pk,hc =

(
cn+1

i − cn
i

k

)
− 1

2

Di+1/2
cn+1

i+1 −cn+1
i

h − Di−1/2
cn+1

i −cn+1
i−1

h

h

− 1

2

Di+1/2
cn

i+1−cn
i

h − Di−1/2
cn

i −cn
i−1

h

h

− 1

2
ρcn+1

i

(
1 − cn+1

i

cmax

)
− 1

2
ρcn

i

(
1 − cn

i

cmax

)
, (A13)

where k = ∆t, h = ∆x. We say that the numerical operator is consistent with the analytical
one or Pk,h is consistent with P if Pφ − Pk,hφ → 0 as h, k → 0 with any smooth function
φ. Here, we also assume that the diffusion coefficient D is smooth for analysis purposes,
otherwise, we had to set D to a constant maximum value as we did in Section A.1 and our
analysis would be much easier. Moreover, since D is a function of x only, we use D′ = dD

dx

and D′′ = d2D
dx2 .

We utilize the following Taylor expansions about (i h, n k),

φn+1
i = φn

i + k φt +
k2

2!
φtt +

k3

3!
φttt + . . . (A14)

φn
i+1 = φn

i + h φx +
h2

2!
φxx + . . . (A15)
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φn
i−1 = φn

i − h φx +
h2

2!
φxx + . . . (A16)

φn+1
i+1 = φn

i + hφx + k φt +
h2

2!
φxx + 2

hk

2!
φxt +

k2

2!
φtt +

h3

3!
φxxx + 3

h2k

3!
φxxt + 3

hk2

3!
φxtt +

k3

3!
φttt + . . . (A17)

φn+1
i−1 = φn

i − hφx + k φt +
h2

2!
φxx + 2

hk

2!
φxt +

k2

2!
φtt −

h3

3!
φxxx + 3

h2k

3!
φxxt + 3

hk2

3!
φxtt +

k3

3!
φttt + . . . (A18)

Di+1/2 = Di +
1

2
h D′ +

h2

4
D′′ + . . . (A19)

Di−1/2 = Di −
1

2
h D′ +

h2

4
D′′ + . . . (A20)

We also need to form the following quantities,

φn+1
i − φn

i

k
= φt +

k

2
φtt +

k2

3!
φttt + . . . (A21)

φn+1
i+1 − φn+1

i

h
= φx +

h

2
φxx + k φxt +

h2

3!
φxxx +

hk

2
φxxt +

k2

2
φxtt

+
h3

4!
φxxxx +

h2k

6
φxxxt +

hk2

4
φxxtt +

k3

6
φxttt + . . . (A22)

φn+1
i − φn+1

i−1

h
= φx −

h

2
φxx + k φxt +

h2

3!
φxxx −

hk

2
φxxt +

k2

2
φxtt

− h3

4!
φxxxx +

h2k

6
φxxxt −

hk2

4
φxxtt +

k3

6
φxttt + . . . (A23)

Di+1/2

(
φn+1

i+1 − φn+1
i

h

)
− Di−1/2

(
φn+1

i − φn+1
i−1

h

)

= hDiφxx + hkDiφxxt +
h3

12
Diφxxxx +

hk2

2
Diφxxtt + hD′

iφx + hkD′
iφxt

+
hk2

2
D′

iφxtt +
h3k

6
D′

iφxxxt +
hk3

6
D′

iφxttt +
h3

4
D′′

i φxx +
h3k

4
D′′

i φxxt

+
h5

48
D′′

i φxxxx +
h3k2

8
D′′

i φxxtt +
hk2

2
D′

iφxtt + O(h6) + O(hk4). (A24)

Di+1/2

(
φn

i+1 − φn
i

h

)
− Di−1/2

(
φn

i − φn
i−1

h

)
= hDiφxx + hkD′

iφx +
h3

6
D′

iφxxx

+
h3

12
Diφxxxx +

h3

4
D′′

i φxx +
h5

48
D′′

i φxxxx +
h5

120
D′

iφxxxxx + O(h2). (A25)

Using all necessary information, the new and old diffusion-related terms in (A13) become

− 1

2h

[
Di+1/2

(
φn+1

i+1 − φn+1
i

h

)
− Di−1/2

(
φn+1

i − φn+1
i−1

h

)]

− 1

2h

[
Di+1/2

(
φn

i+1 − φn
i

h

)
− Di−1/2

(
φn

i − φn
i−1

h

)]
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= −Diφxx − D′
iφx −

1

2
kDiφxxt −

1

2
kD′

iφxt −
h2

12
Diφxxxx

− h2

4
D′′

i φxx −
h2

12
D′

iφxxx −
k2

4
Diφxxtt −

k2

4
D′

iφxtt −
h2k

12
D′

iφxxxt −
h2k

8
D′′

i φxxt

−1

2
k3D′

iφxttt −
h2k2

16
D′′

i φxxtt −
h4

48
D′′

i φxxxx −
h4

240
D′

iφxxxxx + O(h5) + O(k4). (A26)

Using the necessary Taylor series, the source term in (A13) becomes

1

2

[
φn+1

i

(
1 − φn+1

i

cmax

)
+ φn

i

(
1 − φn

i

cmax

)]
= φn

i

(
1 − φn

i

cmax

)
+

k

2
φt

(
1 − 2φn

i

cmax

)

+ k2

[
1

2
φtt

(
1 − φn

i

cmax

)
− φ2

t

cmax

]
+ O(k3). (A27)

Now, putting all the information from (A14) to (A27) together and dropping the
indices, we have

Pφ − Pk,hφ =
k

2

(
φtt − Dφxxt − D′φxt − ρφt + 2ρ

φφt

cmax

)
− k2

4

(
Dφxxtt + D′φxtt +

k

3
D′φxttt

)

− h2

4

(
D′′φxx +

k

3
D′φxttt +

1

3
Dφxxxx +

k

3
D′φxxxt +

k

2
D′iφxxtt +

k2

4
D′′φxxtt

)
+ O(h3) + O(k3). (A28)

Notice that if we take a partial derivative of the original PDE with respect to t, then we
obtain

φtt − Dφxxt − D′φxt − ρφt + 2ρ
φφt

cmax
= 0.

Now, Pφ − Pk,hφ = O(k2) + O(h2) → 0 as h, k → 0 clearly assume that the coefficients
and partial derivatives in (A28) are bounded. Furthermore, (A28) indicates that the order
of accuracy of the numerical scheme is two in both time and space.

Finally, we will show that our boundary condition treatments are also consistent. We
will do this for the left-end boundary point, but similar steps can be applied to the right
boundary. We need to show that

cn+1
− 1

2

=
cn+1

0 − cn+1
−1

h
− ∂

∂x
c(x, t)|x=0 → 0 (A29)

as h → 0. As usual we replace the discrete values by the smooth function φ and use the
following Taylor series about (− 1

2 , (n + 1)k) in (A29). Note that x = 0 corresponds to the
staggered grid value of x−1/2.

φn+1
0 = φn+1

−1/2 +
h

2
φx +

h2

4.2!
φxx +

h3

8.3!
φxxx . . .

φn+1
−1 = φn+1

−1/2 −
h

2
φx +

h2

4.2!
φxx −

h3

8.3!
φxxx . . . (A30)

φn+1
0 − φn+1

−1

h
− ∂

∂x
φ(x, t)|x=0 =

(h)2

4!
φxxx|x−1/2

+ · · · = O(h2). (A31)

Clearly, as h → 0,
φn+1

0 −φn+1
−1

h − ∂
∂x φ(x, t)|x=0 → 0, as long as φxxx is bounded.

Equation (A31) also indicates that the second order of accuracy is preserved at this boundary.
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