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Abstract. Periodic gravity-capillary waves propagating at a constant velocity at the surface of a fluid of infinite
depth are considered. The surface tension is assumed to vary along the free surface. A numerical procedure is
presented to solve the problem with an arbitrary distribution of surface tension on the free surface. It is found that
there are many different families of solutions. These solutions generalize the classical theory of gravity-capillary
waves with constant surface tension. An asymptotic solution is presented for a particular distribution of variable
surface tension.

Key words: variable surface tension, water waves, capillary-gravity waves

1. Introduction

Gravity-capillary waves have very interesting properties. In particular there are many different
families of solutions characterized by dimples on their free surface. It is usual to study these
waves by assuming that the surface tension is constant. The purpose of this paper is to show
that the properties of gravity capillary waves remain qualitatively similar when the surface
tension is variable along the free surface.

Gravity-capillary waves with constant surface tension have been studied since the be-
ginning of the century. The evidence of multiple solutions was first shown by Harrisson
[1] and Wilton [2] who included surface tension in Stokes’s classical expansion for pure
gravity waves. This work was later extended by Pierson and Fife [3], Nayfeh [4], Chen and
Saffman [5] and others. Fully nonlinear numerical solutions were obtained by Schwartz and
Vanden-Broeck [6], Chen and Saffman [7] and Hogan [8].

There are physical situations in which the surface tension is variable along a free surface.
For example the variation in surface tension might be due to a non-uniformity of the tem-
perature or the presence of surfactants. Here we do not study how a particular distribution of
variable surface might occur. We look at the general problem of periodic waves with variable
surface tension. Then the equations force the surface tension to be a periodic function which
can therefore be represented as a Fourier series. We derive a numerical procedure which
incorporates this Fourier representation. In this approach all the coefficients in this Fourier
series are free parameters whose values we can choose. We present numerical results for
some typical values of these parameters. The results include as a particular case the findings
of Vanden-Broeck [9] for pure capillary waves.

Vanden-Broeck [9] showed that there are symmetric and nonsymmetric waves with vari-
able surface tension. For simplicity we restrict our attention to symmetric waves. We show that
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gravity-capillary waves with variable surface tension have properties very similar to those with
constant surface tension. Firstly, the linear theory predicts that there is a minimum speed below
which periodic waves fail to exist. Secondly, there are many different families of nonlinear
waves. We show that this multiplicity of solutions arises, like in the theory with constant
surface tension, from the fact that two linear waves whose wavenumbers are multiples of each
other can travel at the same speed. When the ratio of the wavenumbers is 2, the resulting
nonlinear waves are referred to as Wilton’s ripples. We present a semi-analytical theory of
Wilton’s ripples with arbitrary variable surface tension. In addition we derive an asymptotic
expansion for a particular distribution of surface tension.

The formulation and the numerical procedure are similar to those presented in Vanden-
Broeck [9]. A brief description is given in Section 2 and the reader is referred to Vanden-
Broeck [9] for further details. The numerical results are presented in Sections 3 and 4. The
asymptotic expansion is derived in Section 5. An important question is how the gradient of
surface tension is maintained. This is addressed at the end of Section 2, where we discussed
the relation between the inviscid flows presented in this paper and the corresponding slightly
viscous flows.

2. Formulation and numerical procedure

We consider a train of periodic waves with wavelength λ traveling to the left at a constant
phase velocity c. The fluid is inviscid, incompressible and of infinite depth. The flow is
assumed to be irrotational. We introduce a frame of reference moving with the wave, with
the origin at a trough and the y axis directed vertically upwards. As y → −∞, the velocity
approaches c. Gravity is acting in the negative y direction (see Figure 1).

We introduce the complex potential f = φ + iψ and choose f = 0 at x = 0. As discussed
in the introduction, there are non-symmetric solutions. For simplicity we shall restrict our
attention to waves which are symmetric with respect to x = y = 0.

We denote by u and v the horizontal and vertical components of the velocity. The basic
equations can be written as (see for example Crapper [10] for a derivation)

φxx + φyy = 0, (1)

φy = φxηx on y = η(x), (2)

1
2(φx

2 + φy
2) + gy + T

ρ
K = B on y = η(x), (3)

φ → cx as y → −∞, (4)

φ(x + λ, y) = cλ + φ(x, y), η(x + λ) = η(x). (5)

Here g is the acceleration of gravity, T the surface tension, ρ the density, K the curvature
and B the Bernoulli constant. The function y = η(x) describes the shape of the free surface.
Equation (1) is Laplace’s equation to be satisfied in the flow domain. Equations (2) and (3)
are the kinematic and dynamic boundary conditions on the free surface. The conditions (5)
impose the periodicity of the flow and (4) forces the flow to approach a uniform stream with
constant velocity c as y → −∞.
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Figure 1. Sketch of the flow and the coordinates. Only one wavelength of the wave is shown. As y → −∞, the
flow is uniform with constant velocity c.

We assume a variable surface tension along the free surface. Equations (3) and (5) imply
that T is then a periodic function of x, i.e.

T (x + λ) = T (x). (6)

The problem defined by (1–5) is difficult to solve for two reasons. The first is that the
boundary condition (3) is nonlinear. The second is that the shape of the boundaries (i.e. the
function y = η(x)) has to be found as part of the solution. As shown by Stokes, this second
difficulty can be avoided by taking φ and ψ as independent variables. The flow domain is then
mapped from the (x, y)-plane of Figure 1 to the lower half plane of the (φ,ψ)-plane. All the
quantities x, y, u and v are considered as functions of f . Relations (5) imply that there are
periodic in φ with period cλ. From (6), it then follows that T is a periodic function of φ with
period cλ. The assumed symmetry of the wave about φ = ψ = 0 implies that T is an even
function of φ. We therefore represent T as a Fourier cosine series, i.e.

T = T0

[
1 +

∞∑
n=1

ancos

(
nkφ

c

)]
. (7)

Here k = 2π/λ is the wavenumber and T0 is a constant.
This completes the formulation of the problem. We seek u − iv as an analytic function of

f , periodic in φ with period cλ. This function must approach c as ψ → −∞ and satisfy (3)
on ψ = 0.

To solve the problem numerically, we introduce dimensionless variables by choosing λ as
the unit length and c as the unit velocity. Next we define τ − iθ by

u − iv = eτ−iθ (8)

Following Vanden-Broeck [9], we rewrite (3) as

e2τ

2
+ γy − α

[
1 +

∞∑
n=1

an cos(2πnφ)

]
eτ ∂θ

∂φ
= B, (9)

where

γ = gλ

c2
and α = T0

ρλc2
. (10)
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Using the periodicity of the wave and the condition u − iv → 1 as ψ → −∞, we write

τ − iθ =
∞∑
n=1

une−2iπnf , (11)

where the coefficients un are real because of the assumed symmetry with respect to φ = 0.
Since u − iv = df/dz,

∂x

∂φ
+ i

∂y

∂φ
= 1

u − iv
= e−τ+iθ. (12)

Integrating (12) we rewrite (9) as

e2τ

2
+ γ

∫ φ

0
e−τ sin θ dφ − α

[
1 +

∞∑
n=1

an cos(2πnφ)

]
eτ ∂θ

∂φ
= B. (13)

Following Vanden-Broeck [9], we solve the problem numerically by truncating the infinite
series in (13) after N − 1 terms. We find N + 2 unknowns u1, u2, ..., uN−1, γ,α and B by
collocation. We introduce the N mesh points

φI = 1

2N
(I − 1), I = 1, . . . , N. (14)

By satisfying (13) at the mesh points (14), we obtain N nonlinear algebraic equations.
The integral in (13) is evaluated numerically. An extra equation is obtained by fixing the
steepness s of the wave (i.e. the difference of height between a crest and a trough divided by
the wavelength).

Using (12), we write this equation as∫ 1
2

0
e−τ sin θ dφ = s, (15)

where s is given. The integral in (15) is also evaluated numerically.
To derive the last equation we first introduce the capillary number

κ = 4π2 T0

ρgλ2
(16)

and the gravity parameter

µ = 2π
c2

gλ
. (17)

The parameters κ, α and γ are related by the identity

κ = 4π2 α

γ
. (18)

The last equation is given by (18) where the left-hand side is given.
This system of N + 2 nonlinear equations with N + 2 unknowns is solved by Newton’s

method.
After finding the coefficients un, the free-surface profile is obtained in the parametric form

x = x(φ), y = y(φ) by integrating numerically (12). We note that (7) defines T as a function
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of φ. This is an inverse formulation and T as a function of x is defined at the end of the
calculations by (7) and x = x(φ).

For γ = 0, the scheme reduces to the one used by Vanden-Broeck [9].
Let us mention that there is a variation of the numerical procedure in which the integral in

(13) is avoided. The idea is to differentiate (13) with respect to φ. This leads

e2τ ∂τ

∂φ
+ γe−τ sin θ − α

∂

∂φ

[[
1 +

∞∑
n=1

an cos(2πnφ)

]
eτ ∂θ

∂φ

]
= 0. (19)

The numerical procedure is then the same but with this new equation instead of (13). Both
numerical schemes were found to give equivalent results.

Before concluding this section, we discuss how the inviscid solutions presented in this
paper might approximate a slightly viscous flow (or more precisely a flow with high Reynolds
number). For viscous flows, an extra boundary condition needs to be satisfied on the free
surface, namely

d

dx

T

ρλc2
= 1

R
(
∂v

∂x
+ ∂u

∂y
), (20)

where

R = cλ

ν
. (21)

Here ν is the kinematic viscosity (see Lucassen-Reynders and Lucassen [11] for a derivation).
For constant T and ν �= 0, (20) implies that the tangential stress vanishes on the free sur-

face. For slightly viscous fluid and constant T , we can solve the flow problem approximately
by first constructing an inviscid solution (not satisfying (20)). In a second stage, a boundary-
layer solution is then constructed near the free surface where the tangential stress varies from
its inviscid value

1

R

(
∂v

∂x
+ ∂u

∂y

)
(22)

to zero (see Batchelor [12], pp. 364).
We propose to approximate the problem with variable surface tension in a similar way.

First we solve the inviscid problem ignoring (20). These are the solutions presented in this
paper. Then a boundary-layer solution can be added near the free surface where the tangential
stress varies from its inviscid value (22) to the value

d

dx

T

ρλc2
(23)

predicted by (20). We note that our approach reduces to the classical one presented in Batche-
lor [12] when T is constant. The boundary layer is not constructed here but the above argument
suggests that the inviscid solutions calculated in this paper provide a good approximation for
slightly viscous fluids away from a thin boundary layer near the free surface.

3. Linear theory

We can gain some preliminary insight into the problem by linearizing the equations around a
uniform stream.
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Assuming τ � 1 and θ � 1 we linearize (19) as

∂τ

∂φ
+ γθ − α

∂

∂φ

[[
1 +

∞∑
n=1

an cos(2πnφ)

]
∂θ

∂φ

]
= 0. (24)

When an = 0 (i.e. for constant surface tension ), the problem has an exact solution

τ − iθ = Ae−2iπf , µ = 1 + κ. (25a,b)

Here A is a constant.
Using (17) and (18), we can rewrite (25b) as

c2 = gλ

2π
+ T0

ρ

2π

λ
. (26)

Equation (26) is the familiar dispersion relation of linear gravity-capillary waves.
To describe the results further, it is convenient to introduce the new parameters

c̄ = µ1/2

κ1/4
= c(

gT0

ρ

)1/4 and λ̄ = 2πκ−1/2 = λ(
T0

ρg

)1/2 . (27)

The parameters c̄ and λ̄ can be viewed as the dimensionless velocity and the dimensionless
wavelength if we choose (gT0/ρ)

1/4 as the unit velocity and (T0/ρg)
1/2 as the unit length.

Using (27) we rewrite (26) as

c̄2 = λ̄

2π
+ 2π

λ̄
. (28)

Relation (28) is shown graphically in Figure 2 where we plot values of c̄2 versus λ̄ (see
solid curve). When λ̄ = 2π, c̄2 has a minimum.

When an �= 0 , we no longer have an exact solution because the linear problem has variable
coefficients. Therefore we solve the linear problem numerically by the scheme of Section 2
with (13) replaced by (24). The coefficients un were found to decrease rapidly. For example
u1 ≈ 0·1047, u2 ≈ −0·0856, . . ., u78 ≈ 0·0000000174 for a8 = 0·15, aj = 0, j �= 8 and
κ = 0·5.

Numerical values of c̄2 versus λ̄ are shown in Figure 2 for a8 = 0·15 and a8 = 0·45. As a8

increases the curve moves down. Figure 2 shows that the relation between c̄ and λ̄ for variable
surface tension is similar to that with constant surface tension. In particular, the three curves
of Figure 2 have a minimum. This behavior does not depend on the particular choice a8 �= 0,
aj = 0, j �= 8 and similar results were found for other values of an.

A consequence of the existence of minima in Figure 2 is that waves of different wave-
lengths can travel at the same speed. In particular a wave of wavelength λ̄ and a wave whose
wavelength is λ̄/m (where m is an integer) can travel at the same speed if κ = (2π/λ̄)2 is
equal to some critical value κm.

When the surface tension is constant (i.e. an = 0 for all n), κm can be calculated analyti-
cally as follows. Using (28), we see that waves of wavelength λ̄ and λ̄/m travel at the same
speed if

λ̄

2π
+ 2π

λ̄
= λ̄

2πm
+ 2πm

λ̄
. (29)
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Figure 2. Values of c̄2 versus λ̄. Here c̄ and λ̄ are the di-
mensionless velocity and the dimensionless wavelength
defined in (27). The curves from top to bottom corre-
spond to a8 = 0, a8 = 0·15 and a8 = 0·45 with aj = 0,
j �= 8. The three curves have a minimum.

Figure 3. Free surface profile of a Wilton ripple with
D = A in (31). Here A = 0.1. Only one wavelength is
shown.

Relation (27) and (29) give

κm = 1

m
. (30)

When the surface tension is variable (i.e. an �= 0), κm cannot generally be calculated
analytically. Therefore we present at the end of this section a numerical procedure to evaluate
κm.

For κ = κm and constant surface tension, the solution (25a) is incomplete and the general
solution of the linear problem is

τ − iθ = Ae−2iπf + De−2iπmf , (31)

where A and D are constants. The value of D cannot be determined within the framework of
the linear theory. To find D, we need to use a nonlinear theory, i.e. use (19) instead of (24).
For constant surface tension, Wilton [2] found D = ±A for κ = κ2 = 1

2 . His calculation was
based on an expansion in powers of the amplitude of the wave. There are two ‘Wilton ripples’
corresponding to D = A and D = −A. One has a crest dimple and the other a trough dimple.
There are shown in Figures 3 and 4 for A = 0·1.

For κ = κm and variable surface tension, the general solution of the linear problem can be
written as

τ − iθ = AL1(f ) + DL2(f ), (32)

where L1(f ) and L2(f ) are, respectively, the two linear solutions of wavelengths λ̄ and λ̄/m.
We note that for constant surface tension L1(f ) = e−2iπf and L2(f ) = e−2iπmf , so that (32)
reduces to (31).

We conclude this section by describing the procedure to compute κm when the surface
tension is variable . For simplicity we assume m = 2. We consider two linear waves whose
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Figure 4. Same as Figure 3 with D = −A. Figure 5. Values of the critical capillary number κ2 ver-
sus a8 with aj = 0, j �= 8. The variable surface tension
is defined by (7).

ratio of the wavelengths is equal to 2 (i.e. L1(f ) and L2(f )). In dimensionless variables they
are represented by the expansions (11) and

τ′ − iθ′ =
∞∑
n=1

u′
ne−2iπnf . (33)

We require (11) to satisfy (24) and (33) to satisfy a modification of (24) (denoted by (24′))
obtained by replacing with γ and α by the new parameters γ̄ and ᾱ. These new parameters
satisfy

ᾱ

γ̄
= 4

α

γ
and γ̄ᾱ = γα. (34, 35)

Relations (34) and (35) express the facts that the ratio of the wavelengths is equal to 2 and
that the waves travel at the same speed. We truncate the infinite series in (11) and (33) after
N terms and satisfy (24) and (24′) at the mesh points (14). This yield 2N equations for the
2N + 4 unknowns u1, u2, . . . , uN, u′

1, u
′
2, . . . , u

′
N,α, γ, ᾱ and γ̄. Relations (34) and (35)

provide two more equations. We obtained the last two equations by fixing the steepness of
the waves. We note that the numerical results are independent of the actual values chosen
for the steepness since the problem is linear. This system of algebraic equations is solved by
Newton’s method. The value of κ2 is then given by

κ2 = 4π2α

γ
. (36)

Values of κ2 versus a8 with aj = 0, j �= 8 are shown in Figure 5.
We note that the scheme gives in addition to the value of κ2, the two linear solutions L1(f )

and L2(f ). These solutions will be useful for the theory of Wilton’s ripples presented in the
next section.
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Figure 6. Free surface profiles for a8 = 0·15, aj = 0, j �= 8 and s = 0·0032 (Figure 6a), s = 0·0153 (Figure 6b)
and s = 0·028 (Figure 6c). Here s is equal to the ordinates of the crests. The solid curves are the nonlinear
solutions and the broken curves correspond to the right-hand side of (37).

Figure 6. Continued. Figure 7. Free surface profiles for κ = 0·33, aj = 0,
j �= 8 and a8 = 0 (solid curve), a8 = 0·15 (broken
curve) and a8 = 0·30 (dotted line).

4. Nonlinear theory

We used the numerical scheme of Section 2 to compute solutions for various values of s,
an and κ. The coefficients un were found to decrease rapidly as n increases. For example
u1 ≈ 0·02239, u2 ≈ −0·0162, ..., u78 ≈ 0·00000002 for a8 = 0·15, aj = 0, j �= 8, κ = 0·5
and s = 0·007.

First we checked the scheme by reproducing the results of Schwartz and Vanden-Broeck
[6] for constant surface tension . Next we used the scheme to generalize the Wilton ripples
(i.e. waves for κ = κ2) to the case of variable surface tension. Here we present typical results
for a8 �= 0 and aj = 0 for j �= 8. For a given values of a8, the corresponding value of κ2 can
be calculated by the scheme described at the end of Section 3 (see Figure 5). We then compute
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a nonlinear solution for these values of a8 and κ by the scheme of Section 2. We denote the
computed values of τ − iθ by Nl(f ). In the limit as s → 0, we expect that

Nl(f ) → AL1(f ) + DL2(f ), (37)

where L1(f ) and L2(f ) are the two linear solutions calculated at the end of Section 3. To
check (37) we find A and D by imposing two conditions. The first is that Nl(f ) and AL1(f )+
DL2(f ) have the same steepness. The second is that∫ λ/2

o

[Nl(φ) − AL1(φ) − BL2(φ)]2dφ (38)

is minimum. The last condition imposes that the difference between the right- and left-hand
sides of (37) is minimum in the L2 norm. We can now compare the right- and left-hand sides
of (37). Typical results for a8 = 0·15, aj = 0, j �= 8 are shown in Figure 6. The solid curve
corresponds to Nl(f ) and the broken curve to AL1(f ) + DL2(f ). The results show that the
agreement between the solid and broken curve improves as the steepness s is decreased. Since
we chose the origin at the through, the steepness is simply the ordinate of the crests. This
constitutes a check on (37) and on the various numerical procedures.

Finally we present in Figure 7, numerical results for κ = 0·33 and various values of a8,
aj = 0, j �= 8. Here we found that the dimples are less pronounced and that the wave is
getting flatter near the trough as we increase a8.

5. Perturbation results

In the previous sections, the surface tension is a prescribed (periodic) function of φ. The
numerical procedures can be extended to cases in which the surface tension is prescribed as a
function of other quantities along the free surface. As an example we present in this section
results for a variable surface tension which depends on the curvature of the free surface. More
precisely we replace (7) by

T = T0[1 − ε̃K], (39)

where ε̃ is a given constant. The numerical procedure of Section 2 applies unchanged if we
replace the square bracket in (9) by[

1 + ε̃

λ
eτ ∂θ

∂φ

]
. (40)

We denote this equation by (9′) The linearization of (9′) is (24) with an = 0 for all n. In other
words the linearization of (9′) is the classical linear problem with constant surface tension
whose solution is given by (25a) and (25b). This nice property suggests that for the variable
surface tension (39), it should be easy to improve on the linear theory by constructing an
expansion in powers of the amplitude of the wave. This is achieved up to second order in this
section. This provides us with some analytical results to supplement the numerical calculations
presented in the previous sections.

Since we are only calculating solutions up to second order in the amplitude, it is more
convenient to use Cartesian coordinates instead of the variables φ and ψ.



The influence of variable surface tension on capillary-gravity waves 279

The governing equations in dimensional variables are then (1), (2), (4), (5) and

1

2
(φx

2 + φy
2) + gy − T0

ρ

[
1 + ε̃

ηxx

(1 + ηx
2)

3/2

]
ηxx

(1 + ηx
2)

3/2 = 1

2
c2 on y = η(x). (41)

Here we chose the origin of y such that the Bernoulli constant is c2/2.
We seek a solution in the form of an expansion in powers of a small parameter ε. Thus we

write

η(x) = εη1(x) + ε2η2(x) + · · · , (42)

φ(x, y) = cx + εφ1(x, y) + ε2φ2(x, y) + · · · , (43)

c = c0 + εc1 + ε2c2 + · · · , (44)

The parameter ε is a measure of the wave amplitude. Here we define it as ε = ak where a is
the first Fourier coefficient of η(x).

Substituting (42)–(44) in (1), (2), (4), (5) and (41) and equating the coefficients of ε, we
obtain

φ1xx + φ1yy = 0, (45)

φ1y = c0η1x on y = 0, (46)

c0φ1x + gη1 − T0

ρ
η1xx = 0, (47)

φ1 → 0 as y → −∞, (48)

φ1(x + λ, y) = φ1(x, y), η1(x + λ) = η1(x). (49)

Similarly, equating the coefficients of ε2, we obtain

φ2xx + φ2yy = 0, (50)

φ2y − c0η2x = −φ1yyη1 + (c1 + φ1x)η1x on y = 0, (51)

−T0

ρ
η2xx + c0φ2x + gη2 =

−c0φ1xyη1 − c1φ1x − 1
2(φ1x

2 + φ1y
2) + T0

ρ
ε̃η2

1xx on y = 0, (52)

φ2 → 0 as y → −∞, (53)

φ2(x + λ, y) = φ2(x, y), η2(x + λ) = η2(x). (54)

We note that (45–49) is the linear problem with constant surface tension.
We first assume that

κ �= 1

m
. (55)
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As shown in Section 3, the solution of the linear problem (45–49) is unique and given by

φ1(x, y) = −c0A1e
kysin (kx), (56)

η1(x) = A1cos (kx), (57)

c0
2 = g

k
+ T0

ρ
k, (58)

where k = 2π/λ is the wavenumber and A1 is a constant. Here we chose x = 0 at a crest of
the wave. The definition of ε implies that A1 = 1/k.

Next we use separation of variables to write the solution of (50), (53) and (54) as

φ2(x, y) =
∞∑
n=1

Fnenkysin(nkx) (59)

and we seek η2(x) in the form

η2(x) = E0 +
∞∑
n=2

Encos(nkx). (60)

We started the sum in (60) at n = 2 in accordance with our definition of ε

Substituting (59) and (60) in (51) and (52) and equating the constant terms in (51) and the
coefficients of sin x and cos x in (51) and (52), we obtain

E0 = T0

2ρg
ε̃A1

2k4, kF1 = −kc1A1, kc0F1 = kc0c1A1. (61, 62, 63)

Similarly, equating the coefficients of sin(2x) and cos(2x) in (51) and (52) yields

2kF2 + 2kc0E2 = k2c0A1
2, (64)

4k2E2
T0

ρ
+ gE2 + 2kc0F2 = 1

2k
2c0

2A1
2 + 1

2

T0

ρ
ε̃k4A1

2. (65)

Finally, by equating coefficients of sin(nx) and cos(nx) in (51) and (52) for n = 3, 4, · · ·
we have

nkFn + nkc0En = 0, (66)

n2k
2
En

T0

ρ
+ gEn + nkc0Fn = 0. (67)

Solution of (62–65) gives

F1 = 0, c1 = 0 (68)

and

E2 = − 1

2k

c0
2 − T0

ρ
ε̃k2

(2k T0
ρ

− g

k
)
, F2 = c0T0

2ρ
[ 3 − kε̃

2k T0
ρ

− g

k

]. (69, 70)
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Here we have used A1 = 1/k and (58).
Eliminating Fn between (66) and (67), we get[(

(nk)2 T

ρ
+ g − nkc0

2

)]
En = 0. (71)

Relations (66) and (67) imply

En = Fn = 0 for n = 3, 4, . . . , (72)

provided the square bracket in (71) is different from zero. This requirement is satisfied if (55)
holds.

Up to second order the solution is defined by (42–44), where the various terms are given by
(56–61), (68–70) and (72). We note that the denominators of the second-order approximation
(69), (70) vanish when κ = 1

2 . Similar singularities in the higher-order terms occur when
κ = 1/m. These singularities are related to the fact that the solution (56), (57) of the linear
problem is incomplete when κ = 1/m.

We now examine in details the case κ = 1/2 (i.e. we develop a theory of the Wilton ripples
for the variable distribution of surface tension (39)).

The complete solution of the linear problem is then

φ1(x, y) = −c0A1ekysin (kx) − c0A2e2kysin (2kx), (73)

η1(x) = A1cos (kx) + A2cos (2kx), (74)

where c0 is defined by (58). Relations (73), (74) are equivalent to (31). The difference is that
the independent variables are φ and ψ in (31) and x and y in (73), (74). Following the analysis
in the case κ �= 1/m, we substitute (73) and (74) in the right-hand sides of (51) and (52) and
we seek φ2 and η2 in the form (59) and (60). Equating the constant terms and the coefficients
of sin x, cos x, sin 2x, cos 2x, . . .. in (51) and (52) give equations for A2, c1, Fn and En. Here
we present only the calculations leading to the determination of the constants A2 and c1 in the
linear solution.

By equating the coefficients of sin x in (51) and of cos x in (52), we have

kF1 = 3
2k

2c0A1A2 − kc1A1, (75)

kc0F1 = 1
2k

2c0
2A1A2 + kc0c1A1 + 4

T0

ρ
ε̃k4A1A2. (76)

Similarly, by equating the coefficients of cos 2x in (52) and sin 2x in (51) we have

2kF2 + 2kc0E2 = k2c0A1
2 − 2kc1A2, (77)

4k2E2
T0

ρ
+ gE2 + 2kc0F2 = 1

2
k2c0

2A1
2 + 2kc0c1A2 + 1

2

T0

ρ
ε̃k4A1

2. (78)

Solving (75–78) we get

c1 = 1
2kc0A2 − 2

T0

ρ
ε̃k3 A2

c0
(79)
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and

A2
2 = 1

4
A1

2
c0

2 − T0

ρ
ε̃k2

c0
2 − 4

T0

ρ
ε̃k2

. (80)

Relation (80) shows that A2
2 increases as ε̃ increases. Similarly, Equation (79) implies that |c1|

decreases as ε̃ increases.
Note that, when ε̃ = 0, we recover the relation

A2 = ± 1
2A1 (81)

obtained by Wilton [2] for constant surface tension. The corresponding free-surface profiles
are shown in Figures 3 and 4.

6. Conclusions

We have generalized the theory of periodic gravity capillary waves by allowing the surface
tension to vary along the free surface. We have found that the linear theory predicts a minimum
of the phase velocity. We have shown numerically and analytically that this minimum implies
the existence of multiple solutions similar to the ones obtained for constant surface tension.
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