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The distortion of a bubble in a corner flow
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The distortion of a two-dimensional bubble (or drop) in a corner flow of an inviscid in-

compressible fluid is considered. Numerical solutions are obtained by series truncation. The

results confirm and extend previous calculations.

1 Introduction

Over the years many solutions have been obtained for the deformation of two dimen-

sional bubbles in a flow. Both steady and unsteady solutions were considered. Here we

concentrate our attention to steady solutions, (see, for example, Baker & Moore [1], and

the references cited in that paper for time dependent solutions).

McLeod [4] obtained an exact solution for a free bubble rising in a fluid. Vanden-

Broeck & Keller [12] showed numerically that McLeod’s solution is a member of a one

parameter family of solutions. They also solved the flow past a bubble attached to a

wall (i.e. the configuration of Figure 1 with α = π). This problem was also considered by

Meiron [5], Shankar [6] and Tanveer [7]. Vanden-Broeck & Keller [13] considered the

related problem of the deformation of a bubble attached to the walls of a rectangular

wedge (i.e. the configuration of Figure 1 with α = π/2). When reflected into the walls, this

configuration models the distortion of a bubble in a straining flow.

The solutions in Vanden-Broeck & Keller [12, 13] were obtained numerically by

boundary integral equation methods. It was found that the families of solutions ultimately

approach limiting configurations in which opposite sides of the bubble touch each other.

In Vanden-Broeck & Keller [13], numerical solutions were not obtained close to the

limiting configuration, and an approximate analytical solution was derived to describe the

limiting configuration. This approximate solution was extended to other values of α in

Vanden-Broeck [8]. It was also shown [8] that solutions can be found past the limiting

configurations by forcing contact of the opposite sides at one point or along a segment.

In this paper, we present another numerical procedure to compute solutions for the

flow configuration of Figure 1. The scheme is based on series truncation, and is similar

in philosophy (if not in details) to those used by Vanden-Broeck [9–11] and Daboussy

et al. [3]. Numerical solutions are obtained for all values of α and of the contact angle β.

The results of Vanden-Broeck & Keller [12, 13] are recovered for α = π and α = π/2. In
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Figure 1. Sketch of the flow and coordinates.

addition, the results of Vanden-Broeck & Keller [13] are extended numerically up to the

limiting configuration.

The solutions for values of α not equal to π or π/2 are not covered in the calculations

of Vanden-Broeck & Keller [12, 13], although approximate solutions based on slender

body theory were derived [8]. The fully nonlinear solutions derived in this paper are of

interest, since flows in wedges have recently been used to model the flow in a crack in a

seawall struck by a wave [2]. The present calculations provide an additional model for

cracks by allowing a trapped bubble at the apex of the wedge.

The problem is formulated in § 2. The numerical procedure is described in § 3 and the

numerical results are presented in § 4.

2 Formulation of the problem

We consider the two-dimensional flow configuration shown in Figure 1. The flow domain

is bounded by the two walls AE and CD and by the free surface AC . The fluid is assumed

to be inviscid and incompressible, and the flow to be irrotational and steady. We take

into account the effect of the surface tension T at the interface, but we ignore the flow

inside the bubble OACO, assuming that the pressure is a constant PB throughout it. The

angle between the two walls is denoted by α, and the contact angle between walls and the

free surface is denoted by β (see Figure 1). We introduce Cartesian coordinates with the

origin at the intersection of the two walls and the x-axis along the wall CD.

We introduce the potential function φ and the streamfunction ψ. We choose ψ = 0

along the walls and along the bubble and φ = 0 at the point B in the middle of the free

surface profile (see Figure 1). We denote by ±b the values of φ at C and A. Next, we

define dimensionless variables by taking T/(ρb) as the reference velocity and ρb2/T as

the unit length. Then the flow region corresponds to the upper half (i.e. ψ > 0) of the

(φ, ψ) plane. The bubble surface corresponds to the segment −1 < φ < 1, ψ = 0 of the

φ axis (see Figure 2).
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Figure 2. The complex potential plane.

On the free surface AC, Bernoulli’s equation yields

1
2
(u2 + v2)− T

ρ
K =

pS − pB
ρ

, (1)

where u and v denote the x and y components of the velocity, K is the curvature of the

free surface, and pS is the stagnation pressure.

In terms of our dimensionless variables, we rewrite (1) as

1
2
(u2 + v2)−K = ξ, (2)

where

ξ =
ρb2

T 2
(pS − pB). (3)

The kinematic boundary conditions on the walls yield

v = 0 on CD, (4 a)

and

v = u tan α on AE. (4 b)

Finally, we impose a contact angle β at φ = ±1 by the relations

v = u tan β at φ = 1, (5 a)

v = −u tan(β − α) at φ = −1. (5 b)

In (5a) and (5b), the angle β is assumed to be prescribed.

This completes the formulation of the problem. We seek u− iv as an analytic function

of f = φ+ iψ in the lower half plane ψ < 0 satisfying equations (2), (4) and (5).
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Figure 3. The complex t-plane.

3 Numerical procedure

In this section we derive a numerical scheme based on series truncation to solve the

problem of Figure 1. The scheme supplements the work of Vanden-Broeck & Keller

[12, 13], where solutions for α = π and α = π/2 were calculated by boundary integral

equation methods.

We first map the flow domain into the inside of a unit disk in the complex t-plane by

the transformation

f = −1 + t2

2t
. (6)

This transformation maps the walls on the real diameter and the free surface on the

unit circle (see Figure 3). The point B in Figures 2 and 3 is the point on the free surface

where φ = 0. We shall seek solutions which are symmetric with respect to B.

We denote the complex velocity by ζ = u− iv. We consider ζ as a function of t. Since

there are angled corners at t = ±1, ζ has singularities at these points. The appropriate

singularities are

ζ ∼ (t∓ 1)2− 2β
π as t→ ±1. (7)

Furthermore as t −→ 0,

f ∼
(

1

t

)1− α
π

. (8)

We represent the complex potential ζ by the expansion

ζ = (1− t2)2− 2β
π

(
−1

t

)1− α
π
∞∑
n=1

ant
n−1. (9)

The kinematic conditions (4) on the walls AE and CD imply that the coefficients an are

real. It can be checked that (9) satisfies (4) and (5). Therefore, we can expect the series in

(9) to converge for |t| < 1. The coefficients an must be determined to satisfy the condition

(2) on the free surface AC .

We use the notation t =| t | eiσ so that points on AC are given by t = eiσ , where
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0 6 σ 6 π. Using (6), we find that φ = − cos(σ) on the free surface. Since

∂x

∂φ
+ i

∂y

∂φ
=

1

u− iv =
u+ iv

u2 + v2
, (10)

we can then write the curvature as

K = − 1

sin(σ)

uvσ − vuσ√
u2 + v2

, (11)

and Bernoulli’s equation (2) yields

1
2
(u2 + v2) +

1

sin(σ)

uvσ − vuσ√
u2 + v2

= ξ (12)

on the free surface AC.

We solve the problem approximately by truncating the infinite series in (9) after N − 2

terms. Thus, we write

ζ ∼ (1− t2)2− 2β
π

(
−1

t

)1− α
π
N−2∑
n=1

ant
n−1, (13)

and we introduce the N − 2 collocation points

σI = π
I − 1/2

N − 2
, I = 1, ..., N − 2. (14)

Substituting t = eiσI into (13) and taking the real and imaginary parts, we obtain the

values of u and v at the mesh points (14) in terms of the coefficients an. Similarly, we

substitute t = eiσ into (13), differentiate with respect to σ, and take the real and imaginary

parts to obtain uσ and vσ at the mesh points (14) in terms of an. Substituting these values

in (12) evaluated at the mesh points (14), we have N−2 equations for the N−1 unknowns

ξ and an, n = 1, . . . , N − 2. We obtain one more equation by fixing an extra parameter δ.

Here we choose

δ = −ξ 2α/(2π−α)

a
2π/(2π−α)
1

. (15)

The last equation is then given by (15), where the left-hand side is given. The particular

choice (15) is motivated by the fact that (15) reduces to the parameters γ used in Vanden-

Broeck & Keller [12, 13] when α = π and α = π/2. This facilitates comparisons. For

given values of α, β and δ, the system of N − 1 nonlinear algebraic equations with N − 1

unknowns is solved by Newton’s method. Once a solution was obtained for given values

of α, β and δ, a continuation method was used (i.e. the solution was used as an initial

guess to compute a new solution for perturbed values of the parameters α, β and δ and

so on).

4 Discussion of results

We used the numerical scheme described in § 3 to compute solutions for given values

of α, β and δ. The coefficients an were found to decrease very rapidly. For example,

for α = β = π/2 and δ = −1.3, a1 ≈ 0.93, a11 ≈ −0.36, a21 ≈ 0.028, a41 ≈ 0.000095

and a65 ≈ 0.000000072. Most of the results presented in this paper were obtained with

N = 160.
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Figure 4. Free surface profiles for (a) α = π/2 and β = π/2 with δ = 1, (b) δ = 0 and

(c) δ = δ0 = −1.3.

Typical free surface profiles are shown in Figures 4–6. As δ → ∞, the bubble tends

to a circular arc. It is easily shown that it is consistent with (2) and (15). As δ → ∞,

ξ → −∞ and (2) implies that K → −ξ. Therefore, the bubble profile approaches an

arc of a circle of radius −1/ξ as δ → ∞. As δ decreases the bubble elongates in the

direction which bisects the angle α. When δ reaches a certain value δ0(β, α), opposite sides

of the bubble touch each other. For β 6 α/2 this point of contact is at the intersection

of the two walls (see Figure 6), while for β > α/2 it is off the walls (see Figures 4

and 5).

The solutions for α = π were previously calculated elsewhere [3–6]. For β� π/2, they

model the deformation of a bubble attached to a wall. For β = π/2 they also represent

half of free bubble.

In Vanden-Broeck & Keller [13], solutions for α = π/2 and δ > −1.24 were obtained

by a boundary integral equation method. Here these results are extended up to the value

δ = −1.3 at which opposite sides of the bubble touch at one point (see Figure 4).

Finally, let us mention that our scheme can also be used to compute solutions for

α > π. It corresponds to a flow around a corner with a bubble attached at its apex. A

typical profile is shown in Figure 7. We note that the velocity is finite everywhere along

the streamline ψ = 0. This is to be contrasted with the flow in the absence of a bubble,

for which the velocity is infinite at the apex of the corner.
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Figure 5. Free surface profiles for (a) α = π/3 and β = 2π/3 with δ = −1.35, (b) δ = −2.0 and

(c) δ = δ0 = −2.05.

Figure 6. Free surface profiles for (a) α = π/3 and β = π/12 with δ = 0.5 and (b) δ = δ0 = 0.32.



178 E. Ozugurlu and J.-M. Vanden-Broeck

Figure 7. Free surface profile for α = 3π/2, β = 3π/4 and δ = 0.

5 Conclusions

We have used a series truncation method to calculate the deformation of a bubble in a

corner flow. Our results include as particular cases those Vanden-Broeck & Keller [12, 13].

We were able to extend the calculations up to the limiting configurations, where opposite

sides of the bubbles touch each other.
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