Supporting Information

Silk Fibroin-Based Multiple-Shape-Memory Organohydrogels

Cigdem Buse Oral¹, Esra Su², Oguz Okay¹*

¹ Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey;

orcid.org/0000-0003-2717-4150; Phone: +90 212 285 3156; Email: okayo@itu.edu.tr

² Faculty of Aquatic Sciences, Istanbul University, 34134 Fatih, Istanbul, Turkey; Phone: +90 539

301 2726; Email: esra.su@istanbul.edu.tr

Table of Contents

Table S1. Gel fraction W_g and equilibrium water content *EWC* of OHGs (S2)
 Table S2. Synthesis conditions of PC18A/n-docosane (Doco) blends.
 (S3)Table S3. Synthesis conditions of PC18A/n-octadecane (Octa) blends. (S3)(S3) Table S4. Synthesis conditions of PC18A/n-dotriacontane (Dotria) blends.
 Table S5. Synthesis conditions of PC18A/n-tetradecane (Tetra) blends.
 (S4) Table S6. Synthesis conditions of PC18A/n-octadecane/n-docosane blends. (S4)Table S7. Synthesis conditions of OHGs with PC18A and n-octadecane in the oil phase. (S4) Table S8. Synthesis conditions of OHGs with PC18A, n-octadecane, and/or n-docosane in the oil phase. (S5)Table S9. Synthesis conditions of OHGs with PC18A, n-octadecane, and/or n- dotriacontane in the oil phase. (S5)Table S10. Synthesis conditions of OHGs with PC18A, n-octadecane, n- dotriacontane, and ntetradecane in the oil phase. (S6)Figure S1. Crystallization temperature T_{cry} of neat PC18A and HCs plotted against the number of carbon atoms n_C . (S6)Figure S2a. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and tetradecane at various combinations. (S7) Figure S2b. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and octadecane at various combinations. (S8)Figure S2c. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and docosane at various combinations. (S9)Figure S2d. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and docosanol at various combinations. (S10)

Figure S2e. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and dotriacontane at various combinations. (S11)

Figure S3. Crystallization temperature (T_{cry}), and melting enthalpy (ΔH_m) of dimer combinations of in-situ formed PC18A and HC blends. (S12)

Figure S4. DSC scans of ternary alkane blends ($PC18A/C_{18}H_{38}C_{22}H_{46}$). (S12)

Figure S5. DSC scans of ternary alkane blends containing equal amounts of PC18A, $C_{18}H_{38}$ and $C_{22}H_{46}O$ (S13)

Figure S6. DSC scans of OHGs containing dimer, trimer, and quadruple combinations of equal amounts of alkanes and PC18A in the microinclusions. (S13)

Figure S7. DSC scans of OHGs with equal amounts of blend components in the microinclusions (upper panel), and of the neat hydrophobes (bottom panel). (S14)

Figure S8. Amide I region of FTIR spectra for OHGs. The original data are shown by the filled circles while the results of curve fitting for the original spectrum and hidden peaks are shown by the solid and dashed curves, respectively. (S14)

Figure S9. Storage modulus *G*' (circle) and loss factor *tan* δ (triangle) of an OHG specimen containing PC18A/C₁₈H₃₈/C₃₂H₆₆ at a weight ratio of 37.5/37.5/25 shown as a function of temperature. $\omega = 1 \text{ rad} \cdot \text{s}^{-1}$. Heating rate = 1 °C·min⁻¹. (S15)

wt. %	of the h	ydropho	bic comp	ponents in	OHGs	14/	ETA/C	
PC18A	$C_{14}H_{30}$	$C_{18}H_{38}$	$C_{22}H_{46}$	$C_{22}H_{46}O$	$C_{32}H_{66}$	vvg	EVVC	
25	0	75	0	0	0	1.1 ± 0.1	50%	
50	0	50	0	0	0	1.1 ± 0.2	50%	
12.5	0	37.5	0	0	50	0.46 ± 0.05	77%	
33.33	0	33.33	0	0	33.33	1.0 ± 0.1	50%	
37.5	0	37.5	0	0	25	1.1 ± 0.1	41%	
12.5	50	12.5	0	0	25	0.73 ± 0.04	66±1%	
25	25	25	0	0	25	0.9 ± 0.1	62 ± 3 %	
37.5	12.5	37.5	0	0	12.5	1.1 ± 0.1	52 ± 2 %	

Table S1. Gel fraction W_g and equilibrium water content *EWC* of OHGs

Sample	C18A	Doco	Irgacure	Doco	Doco
No	(g)	(g)	(mg)	wt. %	mol %
1	3	1	4.1	25	25.8
2	2.8	1.2	3.9	30	30.9
3	2.6	1.4	3.6	35	36.0
4	2.4	1.6	3.3	40	41.1
5	2.2	1.8	3	45	46.1
6	2	2	2.8	50	51.1
7	1.8	2.2	2.5	55	56.1
8	1	3	1.4	75	75.8

Table S2. Synthesis conditions of PC18A/n-docosane (Doco) blends at various compositions. Irgacure was used at 0.2 mol% of C18A monomer.

Table S3. Synthesis conditions of PC18A/n-octadecane (Octa) blends at various compositions. Irgacure was used at 0.2 mol% of C18A monomer.

Sample	C18A	Octa	Irgacure	Octa	Octa
No	(g)	(g)	(mg)	wt. %	mol %
9	3	1	4.1	25	29.8
10	2.8	1.2	3.9	30	35.3
11	2.6	1.4	3.6	35	40.7
12	2.4	1.6	3.3	40	46.0
13	2.2	1.8	3	45	51.1
14	2	2	2.8	50	56.0
15	1.8	2.2	2.5	55	60.9
16	1	3	1.4	75	79.3

Table S4. Synthesis conditions of PC18A/n-dotriacontane (Dotria) blends at various compositions. Irgacure was used at 0.2 mol% of C18A monomer.

Sample	C18A	Dotria	Irgacure	Dotria	Dotria		
No	(g)	(g)	(mg)	wt. %	mol %		
17	3	1	4.1	25	19.4		
18	2.8	1.2	3.9	30	23.6		
19	2.6	1.4	3.6	35	27.9		
20	2.4	1.6	3.3	40	32.4		
21	2.2	1.8	3	45	37.1		
22	2	2	2.8	50	41.9		
23	1.8	2.2	2.5	55	46.8		
24	1	3	1.4	75	68.3		

Sample	C18A	Tetra	Irgacure	Tetra	Tetra
No	(g)	(g)	(mg)	wt%	mol %
25	3	1	4.1	25	35.3
26	2.8	1.2	3.9	30	41.2
27	2.6	1.4	3.6	35	46.8
28	2.4	1.6	3.3	40	52.2
29	2.2	1.8	3	45	57.2
30	2	2	2.8	50	62.1
31	1.8	2.2	2.5	55	66.7
32	1	3	1.4	75	83.1

Table S5. Synthesis conditions of PC18A/n-tetradecane (Tetra) blends at various compositions. Irgacure was used at 0.2 mol% of C18A monomer.

 Table S6. Synthesis conditions of PC18A/n-octadecane/n-docosane blends.

Sample	Octa	Doco	C18A	Irgacure	Octa	Doco	C18A	Octa	Doco	C18A
No	(g)	(g)	(g)	(mg)	wt%	wt%	wt%	mol %	mol %	mol %
33	1	2	1	1.4	25	50	25	17.5	28.6	53.9
34	0.5	3	0.5	0.7	12.5	75	12.5	11.1	54.6	34.2
35	1.2	1.2	1.6	2.2	30	30	40	20.4	16.7	62.9
36	1.4	2	0.6	0.8	35	50	15	19.0	22.3	58.7
37	1.4	0.2	2.4	3.3	35	5	60	23.8	2.8	73.4
38	1.4	1.6	1	1.4	35	40	25	19.9	18.7	61.4
39	1.6	1	1.4	1.9	40	25	35	21.8	11.1	67.1
40	1.6	2	0.4	0.6	40	50	10	19.6	20.1	60.4
41	1.8	1.5	0.7	1	45	37.5	17.5	21.0	14.3	64.7
42	3	0.6	0.4	0.6	75	15	10	23.6	3.9	72.6

Table S7.

Synthesis conditions of OHGs with PC18A and n-octadecane in the oil phase.

Phases	Raw Materials	OHG-1	OHG-2	
	SF (9.5 w/v%)	3.42	1 mL	
	Distilled Water	0.355 mL		
Water	Ethanol	0.83	5 mL	
Phase	DMAA	0.389 mL		
(∑5 mL)	BAAm	5.83 mg		
	Irgacure 2959	1.6	9 mg	
Oil	C18A	2 g	1 g	
Phase	n-octadecane	2 g	3 g	
(∑5 mL)	Irgacure	2.8 mg	1.4 mg	
	Octadecane wt. %	50	75	

Phases	Raw Materials	OHG-3	OHG-4	OHG-5		
	SF (9.5 w/v%)		3.421 mL			
Water	Distilled Water		0.355 mL			
Phase $(\sum 5 \text{ mL})$	Ethanol	0.835 mL				
(<u>2</u> 3 mL)	DMAA	0.389 mL				
	BAAm		5.83 mg			
	Irgacure		1.7 mg			
	C18A	3.5 g	3.5 g	3.5 g		
Oil Phase	n-octadecane	0.5 g	-	0.25 g		
(∑5 mL)	n-docosane	-	0.5 g	0.25 g		
	Irgacure 2959	4.8 mg	4.8mg	4.8 mg		
	Octadecane wt. %	12.5	0	6.25		
	Docasane wt. %	0	12.5	6.25		
	C18A wt. %	87.5	87.5	87.5		

Table S8. Synthesis conditions of OHGs with PC18A, n-octadecane, and/or n-docosane in the oil phase.

Table S9. Synthesis conditions of OHGs with PC18A, n-octadecane, and/or n- dotriacontane in the oil phase.

Phases	Raw Materials	OHG-6	OHG-7	OHG-8		
	SF (9.5 w/v%)		3.421 mL			
Water	Distilled Water		0.355 mL			
Phase $(\Sigma 5 \text{ mL})$	Ethanol		0.835 mL			
(<u>></u> 5 mL)	DMAA		0.389 mL	1.5 g 1.5 g 1 g		
	BAAm	5.83 mg				
	Irgacure		1.7 mg			
01	C18A	0.5 g	1.33 g	1.5 g		
Phase	n-octadecane	1.5 g	1.33 g	1.5 g		
(∑5 mL)	n-dotriacontane	2 g	1.33 g	1 g		
	Irgacure 2959	0.7 mg	1.8 mg	2.1 mg		
	Octadecane wt. %	37.5	33.3	37.5		
	Dotriacontane wt. %	50	33.3	25		
	C18A wt. %	12.5	33.3	37.5		

Phases	Raw Materials	OHG-9	OHG-10	OHG-11		
	SF (9.5 w/v%)		3.421 mL			
Water	Distilled Water		0.355 mL			
Phase $(\sum 5 \text{ mL})$	Ethanol	0.835 mL				
(<u>2</u> 5 mL)	DMAA	0.389 mL				
	BAAm		5.83 mg			
	Irgacure		1.7 mg			
01	C18A	1.5 g	1 g	1.5 g		
Phase	n-octadecane	0.5 g	1 g	1.5 g		
(∑5 mL)	n-dotriacontane	1 g	1 g	0.5 g		
	n-tetradecane	1 g	1 g	0.5 g		
	Irgacure 2959	2.1 mg	1.4 mg	2.1 mg		
	Octadecane wt. %	12.5	25	37.5		
	Dotriacontane wt. %	25	25	12.5		
	Tetradecane wt. %	25	25	12.5		
	C18A wt. %	37.5	25	37.5		

Table S10. Synthesis conditions of OHGs with PC18A, n-octadecane, n- dotriacontane, and n-tetradecane in the oil phase.

Figure S1. Crystallization temperature T_{cry} of neat PC18A and HCs plotted against the number of carbon atoms n_c .

Figure S2a. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and tetradecane at various combinations.

Figure S2b. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and octadecane at various combinations.

Figure S2c. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and docosane at various combinations.

Docosanol wt. % =

Figure S2d. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and docosanol at various combinations.

S10

Figure S2e. Heating and cooling DSC scans of dimer combinations of in-situ formed PC18A and dotriacontane at various combinations.

Figure S3. Crystallization temperature (T_{cry}), and melting enthalpy (ΔH_m) of dimer combinations of in-situ formed PC18A/HC blends plotted against the hydrophobe mole fraction in the blends.

Figure S4. DSC scans of ternary alkane blends ($PC18A/C_{18}H_{38}C_{22}H_{46}$) at various combinations as indicated by wt. %.

Figure S5. DSC scans of ternary alkane blends containing equal amounts of PC18A, $C_{18}H_{38}$ and $C_{22}H_{46}O$ (Doco-OH)

Figure S6. DSC scans of OHGs containing dimer, trimer, and quadruple combinations of equal amounts of alkanes and PC18A in the microinclusions.

Figure S7. DSC scans of OHGs with equal amounts of blend components in the microinclusions (upper panel), and of the neat hydrophobes (bottom panel).

Wavenumber / cm⁻¹

Figure S8. Amide I region of FTIR spectra for OHGs. The original data are shown by the filled circles while the results of curve fitting for the original spectrum and hidden peaks are shown by the solid and dashed curves, respectively. Composition of the microinclusions are: PC18A/ $C_{18}H_{38}$ microinclusions with 75 (a) and 50 wt. % $C_{18}H_{38}$ (b). PC18A/ $C_{18}H_{38}$ / $C_{32}H_{66}$ at weight ratios 37.5 / 37.5 / 25 (c). PC18A/ $C_{14}H_{30}$ / $C_{18}H_{38}$ / $C_{32}H_{66}$ at equal weight ratios (d).

Figure S9. Storage modulus G' (circle) and loss factor tan δ (triangle) of an OHG specimen containing PC18A/C₁₈H₃₈/C₃₂H₆₆ at a weight ratio of 37.5/37.5/25 shown as a function of temperature. $\omega = 1 \text{ rad} \cdot \text{s}^{-1}$. Heating rate = 1 °C·min⁻¹. Three of four transitions at 46, 58, and 72 °C are observable in G' vs. temperature plot. Although the transition at the lowest temperature of 25 °C is not seen, the peak in tan δ at this temperature reveals its existence.