Figure S1. Typical stress-strain curves of DMA/C17.3M hydrogels under compression as the dependences of the nominal σ_{nom} (A) and true stresses σ_{true} (B) on the compression ratio λ. The dashed red arrow illustrates calculation of the real fracture stress for the hydrogel containing 50 mol% C17.3M from the maximum in σ_{true} vs λ curve. The corrected σ_{nom} vs λ curves up to the fracture point are shown in C.
Fig. S2. Gel fraction \(W_g \) and equilibrium water content (\(H_2O \% \)) of the hydrogels plotted against their hydrophobe content.

Fig. S3. DSC traces of the hydrogels. The type of the hydrogels and their hydrophobe content are indicated.
Fig. S4. G' (filled symbols), and G'' (open symbols) of the hydrogels during the heating - cooling cycle between 5 and 80 °C. The type of the hydrogels and their hydrophobe content indicated. $\omega = 6.28$ rad.s$^{-1}$, $\gamma_0 = 0.001$.
Fig. S5 G' (filled symbols) and G'' (open symbols) of the hydrogels with 20, 30, and 50 mol\% hydrophobe at 5 and 80 °C shown as a function of the frequency ω. $\gamma_0 = 0.001$.
Fig. S6. Young’s modulus E, compressive fracture stress σ_f, fracture strain ε_f, and toughness W of the hydrogels plotted against the fraction f_{cry} of units in crystalline domains. Hydrogels: DMA/C17.3M (\triangle), DMA/C18A (\blacksquare), AAc/C18A (\bullet).

Figure S7. (A): Two successive loading / unloading tensile cycles up a maximum elongation ratio λ_{max} of 3.5 and 4.0 for the hydrogel samples indicated. Note that between each cycle, the gel samples were immersed in water at 70 °C. 1st and 2nd cycles are shown by the solid and dashed curves, respectively.