Self-Healing Hydrogels Formed in Catanionic Surfactant Solutions

-Supporting Information-

Gizem Akay, Azadeh Hassan-Raeisi, Deniz C. Tuncaboylu, Nermin Orakdogen, Suzan Abdurrahmanoglu, Wilhelm Oppermann and Oguz Okay

a Department of Chemistry, Istanbul Technical University, 34469 Istanbul, Turkey,
b Institute of Physical Chemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany,
c Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey,
d Department of Chemistry, Marmara University, 34722 Istanbul, Turkey

Figure S1. (A, B): ICFs and $G(I)$'s of CTAB (top) and CTAB/SDS (85/15) solutions (bottom) at various angles θ indicated. Concentration = 0.24 M. Temperature = 35°C.
Figure S2. $G(\Gamma)$ vs Γ^{-1} (left) and $G(\Gamma)$ vs $\Gamma^{-1}q^2$ plots (right) at various angles θ for 0.24 M CTAB/SDS solutions at various SDS contents indicated. For a diffusion process, since Γ of a particular mode is q^2 dependent and is related to the diffusion coefficient as $\Gamma = D q^2$, the overlap of $G(\Gamma)$’s recorded at different angles into a single peak in $G(\Gamma)$ vs $\Gamma^{-1}q^2$ plots (right) indicates existence of diffusive processes in CTAB/SDS solutions.
Figure S3. Relative weight swelling ratio m_{rel} of the gels in water shown as a function of the swelling time. SDS contents of CTAB/SDS solutions used in the gel preparation are indicated. Temperature = 35°C. The maximum value of m_{rel} attained after about one day decreases as the SDS amount in CTAB/SDS solution used in the gel preparation increases. This is attributed to the neutralization of the surfactant solution with rising SDS amount, reducing the initial charge density of gels.

Figure S4. Zero shear viscosity for CTAB/SDS solutions without ($\eta_{o,\text{solvent}}$, open symbols) and with the polymers isolated from gels ($\eta_{o,\text{polymer}}$, filled symbols) as a function of SDS content. Polymer concentration = 0.5 w/v %. Temperature = 35°C.