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Abstract In the application areas of polymer hydrogels, precise information on

their molecular constitution as well as their elastic properties is required. Several

interesting molecular features control the elastic properties of the hydrogels. In this

chapter, we describe general properties of hydrogels formed by free-radical cross-

linking copolymerization of vinyl/divinyl monomers in aqueous solutions. Special

attention is paid to the relationships between the formation conditions of hydrogels

and their properties such as swelling behaviour, elastic modulus, and spatial

inhomogeneity. New developments achieved in the design of hydrogels with a

good mechanical performance and a fast response rate is also presented.
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FH Flory–Huggins

MBAAm N,N-methylene bisacrylamide

PAAc Poly(acrylic acid)

PAAm Poly(acrylamide)

PDMAAm Poly(N,N-dimethylacrylamide)

PEG-300 Poly(ethylene glycol) of molecular weight 300 gmol�1

PNIPAAm Poly(N-isopropyl acrylamide)

TBA/AAm Poly(N-t-butylacrylamide-co-AAm)

Symbols

Co Initial monomer concentration (g monomer / 100 mL solution)

f Effective charge density of the network

Gr Reduced elastic modulus

Go Modulus of elasticity after gel preparation

Ns Number of segments between two successive cross-links

Qv Volume swelling ratio (swollen gel volume / dry gel volume)

Rex,q Excess scattering intensity at the scattering vector q
V Gel volume at a given degree of swelling

Veq Equilibrium swollen normalized gel volume

Vo Gel volume in after-preparation state

Vr Normalized gel volume

Vsol Equilibrium swollen gel volume in solution

Vw Equilibrium swollen gel volume in water

xi Ionic monomer mole fraction in comonomer feed

a Linear deformation ratio

DGel Gibbs free energy of elastic deformation

DGion Ionic contribution to Gibbs free energy

exl Cross-linking efficiency of cross-linker

’2 Volume fraction of cross-linked polymer in gel

’0
2

Volume fraction of cross-linked polymer after gel preparation

nc Effective cross-link density

1 Introduction

Hydrophilic gels called hydrogels are cross-linked materials absorbing large quan-

tities of water without dissolving. Softness, smartness, and the capacity to store

water make hydrogels unique materials (Tanaka 1981; Shibayama and Tanaka

1993). The ability of hydrogels to absorb water arises from hydrophilic functional

groups attached to the polymer backbone while their resistance to dissolution arises
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from cross-links between network chains. Water inside the hydrogel allows free

diffusion of some solute molecules, while the polymer serves as a matrix to hold

water together. Another aspect of hydrogels is that the gel is a single polymer mole-

cule, that is, the network chains in the gel are connected to each other to form one

big molecule on macroscopic scale. It is natural to expect that the conformational

transitions of the elastically active network chains become visible on the macroscopic

scale of hydrogel samples. The gel is a state that is neither completely liquid nor

completely solid. These half liquid-like and half solid-like properties cause many

interesting relaxation behaviours that are not found in either a pure solid or a pure

liquid. From the point of view of their mechanical properties, the hydrogels are

characterized by an elastic modulus which exhibits a pronounced plateau extending

to times at least of the order of seconds, and by a viscous modulus which is consider-

ably smaller than the elastic modulus in the plateau region (Almdal et al. 1993).

Hydrogels may exhibit drastic volume changes in response to specific external

stimuli, such as the temperature, solvent quality, pH, electric field, etc. (Dusek and

Patterson 1968; Tanaka 1978). Depending on the design of the hydrogel matrices,

this volume change may occur continuously over a range of stimulus level, or,

discontinuously at a critical stimulus level. The volume transition behaviours of

hydrogels received considerable interest in the last three decades and large parts of

the work have been collected in different reviews (Shibayama and Tanaka 1993;

Khokhlov et al. 1993).

Polymeric hydrogel networks may be formed by various techniques, however

the most common synthetic route is the free-radical cross-linking copolymerization

of a hydrophilic non-ionic monomer such as acrylamide (AAm) with a small

amount of a cross-linker, e.g., N,N’-methylenebis(acrylamide) (MBAAm). In

order to increase their swelling capacity, an ionic comonomer is also included

into the reaction mixture. Since the monomers for hydrogel preparation are usually

solid at the usual polymerization temperature, it is necessary to carry out the

polymerization reactions in an aqueous solution. Hydrogel structure and, thus, the

hydrogel properties are closely related to the conditions under which the hydrogels

are formed, i.e., the cross-linker concentration, the initial degree of dilution of the

monomers and the chemistry of the units building the network structure. The

understanding of the formation mechanism of hydrogels under various experimental

conditions is of great interest to predict their physical properties.

2 Swelling and Elasticity of Hydrogels

The equilibrium swelling degree and the elastic modulus of hydrogels depend

on the cross-link and charge densities of the polymer network as well as on the

cross-linked polymer concentration after the gel preparation. Although the theories

predict the swelling properties and the elastic behavior of hydrogels formed under

various conditions, the agreement between theory (see Chap. 3 Sect. 1.2) and

experiments is only qualitative. Figure 1 illustrates the characteristic features of
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poly(acrylamide) (PAAm) hydrogels prepared from AAm and MBAAm in aqueous

solutions (Kizilay and Okay 2003a; Orakdogen and Okay 2006a). In Fig. 1a, the

modulus of elasticity after the gel preparation, Go, is plotted against the cross-linker

(MBAAm) content for three series of gels prepared at various initial monomer

concentration Co. Hydrogels exhibit elastic moduli in the range of 0.01 to 10 kPa,

which are much smaller than the calculated values from their cross-linker contents.

The initial period of the Go versus MBAAm % plots can be used to estimate the

lower limit of the cross-linker concentration required for the onset of gelation. The

best-fit curves through the Go versus % MBAAm data intersect with the positive

abscissa at 0.03, 0.19, and 0.55 mol %MBAAm for Co¼ 7, 5, and 3 %, respectively

(Orakdogen and Okay 2006a). Thus, the larger the dilution degree of the reaction

system, the higher is the threshold concentration of MBAAm for the formation of

an infinite network. Figure 1b shows cross-linker concentration dependence of the

cross-linking efficiency exl of MBAAm, that is the fraction of MBAAm forming

effective cross-links. exl is less than 20% and, it further decreases below 1% as the

initial monomer concentration is decreased. This is a consequence of the increase of

probability of cyclization and multiple cross-linking reactions as the initial mono-

mer concentration decreases (Funke et al. 1998).

The polymer network concentration at the state of gel preparation (index o),

represented by the cross-linked polymer volume fraction ’0
2, also alters significantly

the hydrogel structure and, in turn, alters the hydrogel properties. The effect of ’0
2

on the hydrogel properties is illustrated in Fig. 2 for polyacrylic acid (PAAc)

hydrogels prepared at various ’0
2 (Yazici and Okay 2005). In Fig. 2a, the modulus

of elasticity Go and the effective cross-link density nc of PAAc hydrogels are

plotted against ’0
2. Figure 2b shows ’0

2 dependence of the swelling ratio of PAAc

gels in terms of the volume swelling ratio Qv (volume of swollen gel in water /

volume of dry gel). Go increases from 1.4 kPa to 50 kPa as ’0
2 is increased. The

inset to Fig. 2a shows that the modulus data can be described by a power law

mol % MBAAm
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0.0 0.5 0.01.51.0 0.5 1.51.0
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Fig. 1 The elastic modulus Go of PAAm hydrogels after preparation (a) and the cross linking

efficiency exl (b) shown as a function of MBAAm concentration. Initial monomer concentration

Co¼ 3 (filled circle), 5 (open circle), and 7 w/v % (filled triangle). Reprinted from Orakdogen and

Okay (2006a) with kind permission of Springer ScienceþBusiness Media
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G0 / ’0
2

� �x
where x¼ 2.1 � 0.1. The exponent is much larger than the linear

dependence (x¼ 1) predicted by the theory of rubber elasticity (Flory 1953; Treloar

1975), and indicates existence of non-idealities during the gel formation process.

Increasing number of wasted MBAAm molecules in cycles on raising the dilution

of the reaction solution explains this discrepancy (Naghash and Okay 1996).

Indeed, nc is an increasing function of ’0
2 (Fig. 2a), that is, the higher the initial

monomer concentration, the larger the effective cross-link density of the hydrogels

and the smaller their swelling capacity (Fig. 2b).

Increasing number of ionic groups in hydrogels is known to increase their swelling

capacities. This is mainly due to the simultaneous increase of the number of counter-

ions inside the gel, which produces an additional osmotic pressure that swells the gel

(Flory 1953). The excess swelling over the swelling of the corresponding non-ionic

hydrogels can be suppressed with increasing salt concentration in the external solu-

tion, which decreases the concentration difference of the counterions between the

inside and outside the gel phase. Figure 3 illustrates the typical swelling behaviour of

ionic PAAm hydrogels of various charge densities in water and in aqueous NaCl

solutions (Durmaz and Okay 2000). The ionic comonomer used in the hydrogel

preparation is sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (AMPS

Na). AMPS Na units dissociate completely over the entire pH range so that AMPSNa

containing hydrogels exhibit pH-independent swelling. Increase of the AMPS Na

content from 0 to 80 mol % results in a 27-fold increase in the hydrogel volume in

water. In 1.0 M NaCl solution, the swelling ratio is almost independent on the ionic

group content due to screening of charge interactions within the hydrogel.

Since ionic hydrogels are highly swollen in water, their swelling equilibrium

is mainly determined by the mixing entropy of the counterions, which is balanced

by the gel´s rubberlike elasticity. According to the theory of rubber elasticity of

0.04 0.08 0.12 0.16

Qv
103

102

101

b

Qv

0.00 0.04 0.08 0.12 0.16

G
o

 / 
kP

a

0

20

40

60

0

50

100

150

200

250

Go

a

ncn c 
/  

m
o

l.m
–3

j2
0 j2

0

Fig. 2 The modulus of elasticity Go, the effective crosslink density nc (a) and the volume swelling

ratio Qv of PAAc hydrogels in water (b) as function of the polymer network concentration ’0
2;

1.2 mol % MBAAm. The inset to Fig. 2a shows a double logarithmic Go vs. ’
0
2 plot. Reprinted

from Yazici and Okay (2005) with kind permission from Elsevier
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Gaussian chains (Flory 1953), the Gibbs free energy of elastic deformation DGel

scales with the deformation ratio as

DGel � Ns
�1 a2; ð1Þ

where Ns is the number of segments between two successive cross-links, and a the

linear deformation ratio. a is related to the normalized gel volume Vr by the

equation a ¼ V=Voð Þ1=3 ¼ Vr
1=3, where V is the gel volume at a given degree

of swelling and Vo is the gel volume in the reference state, i.e., at the state after

preparation. On the other hand, the existence of fixed ions on the network chains

results in an unequal distribution ofmobile counterions between the inside and outside

of the gel. The ionic contribution to the Gibbs free energy DGion may be written as

DGion � f ln f ’0
2

�
a3

� �
; ð2Þ

where f is the effective charge density of the network (Flory 1953). Balancing

the two opposite free energy contributions represented by DGel and DGion by

minimizing their sum with respect to a, one obtains1

1 To minimize the energy function, one needs to take the derivatives of the energy contributions

with respect to a, and set the sum of the derivatives to zero. Thus, since @DGel=@a � Ns
�1 a and

@DGion=@a � f= a, one obtains a � f Nsð Þ1=2, i.e., (3) in the text.
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Fig. 3 Equilibrium volume swelling ratio Qv of ionic PAAm hydrogels shown as function of the

NaCl concentration in the external solution;1.2 mol % MBAAm. AMPS Na mole fraction xi in the
comonomer mixtures is indicated. Reprinted from Durmaz and Okay (2000) with kind permission

from Elsevier
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Veq � f Nsð Þ3=2 ; ð3Þ
which indicates a scaling parameter of 3/2 between the equilibrium swollen normal-

ized gel volume Veq and the number of charges per network chain f Ns.

Figure 4a shows the double-logarithmic plot of Veq against f Ns. Experimental

data are for poly(N-isopropyl acrylamide) (PNIPAAm) hydrogels prepared in the

presence of the ionic comonomer AMPS Na (Gundogan et al. 2002). The dotted

curve in the Figure represents the prediction of (3), i.e., Flory–Huggins (FH) theory

with a scaling parameter of 3/2. The solid curve is the best fitting curve to the

experimental swelling data, which gives a scaling relation Veq � f Nsð Þ3=4 . The
scaling parameter 3/4 is much smaller than the predicted value of 3/2 of the FH

theory. An exponent between 0.6 and 0.8 has been reported for both weak and strong

polyelectrolyte hydrogels equilibrium-swollen in water (Durmaz and Okay 2000;

Silberberg-Bouhnik et al. 1995; Bromberg et al. 1997; Melekaslan and Okay 2000).

The discrepancy between theory and experiment is related to the non-Gaussian

behaviour of fully swollen hydrogels in water. The theory (3) assumes that the

polymer network is a collection of Gaussian chains, which can be extended to

infinity. However, the network chains in the equilibrium swollen ionic hydrogels as

given in Fig. 4a are three to nine times as elongated as in the dry state. At such high

swelling ratios, deviation from the Gaussian statistics may appear due to the finite

extensibility of the network chains. A further evidence for the non-Gaussian

behaviour of the network chains in the swollen hydrogels comes from the elasticity
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Fig. 4 The equilibrium swollen normalized gel volume Veq of ionic PNIPAAm hydrogels as

function of the number f Ns of charges per network chain (see (3)) (a) Reduced modulusGr of ionic

PNIPAAm hydrogels as function of the normalized gel volume Vr (b) The mole fractions xi of
AMPS Na are indicated in the figure. Reprinted from Gundogan et al. (2002) with permission of

American Chemical Society
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data. In Fig. 4b, the dependence of the reduced modulus Gr of ionic PNIPAAm

hydrogels is shown as a function of the normalized gel volume Vr (Gundogan et al.

2002). The reduced modulus Gr is defined as the ratio of the elastic modulus of the

gel at a given degree of swelling Qv ¼ 1=’2 to that one of the same gel after its

preparation. Gr is given for a network of Gaussian chains by (Flory 1953)

Gr ¼ G ’2ð Þ=G ’o
2

� � ¼ Vr
�1=3: ð4Þ

However, Fig. 4b shows that the dependence of the reduced modulus on the gel

volume cannot be described by a single scaling exponent. For the gel volumes Vr of

less than 0.4, the reduced modulus Gr decreases sharply with increasing volume Vr.

The rapid decrease of Gr with increasing gel volume Vr in the first regime is usually

interpreted as the transition of the polymer from the glassy to the rubbery state by

addition of solvent (Gundogan et al. 2002). In the range of the gel volumeVr between

0.4 and 3.5, the slope of Gr versus Vr plot is �0.32, close to the theoretical value of

�1/3. Thus, PNIPAAm hydrogels in this regime behave as Gaussian. For gel

volumes larger than 3.5, the reduced modulus Gr starts to increase with increasing

gel volume with a slope of 0.22 which is an indication of the limited extensibility of

the network chains and is connected with the high stretching of the network chains.

Swelling behaviour of hydrophobically modified hydrogels has also received

considerable attention due both to fundamental and to technological interests

(Hirotsu 1993). Such hydrogels generally exhibit a temperature sensitivity, which

is associated with the temperature dependence of hydrogen bonding and hydropho-

bic interactions (Hirotsu 1993; Arndt et al. 2001). A phenomenon called reentrant

swelling transition was also observed in hydrophobically modified hydrogels im-

mersed in aqueous solutions of organic solvents or linear polymers (Katayama et al.

1984; Melekaslan and Okay 2001; Okay and Gundogan 2002). In such a transition,

the gel first collapses and then reswells if a particular external parameter such as the

organic solvent or linear polymer concentration is continuously varied. As a

consequence, the organic solvent (or linear polymer) first flows from the gel to

the solution phase but then reenters the gel phase at higher concentrations. Exam-

ples of such transitions are illustrated in Fig. 5 for PNIPAAm, poly(N,N-dimethyl-

acrylamide) (PDMAAm), and poly(N-t-butyl-acrylamide-co-AAm) (TBA/AAm)

hydrogels immersed in aqueous solutions of poly(ethylene glycol) of molecular

weight 300 gmol�1 (PEG-300), acetone, and dimethylsulfoxide (DMSO), respec-

tively (Melekaslan and Okay 2001; Orakdogen and Okay 2006b; Ozmen and Okay

2003). The competing attractive forces between the gel components are responsible

for the reentrant transition behavior of hydrophobically modified hydrogels.

3 Inhomogeneity of Hydrogels

Another non-ideal feature of hydrogels is the so-called spatial gel inhomogeneity

(Shibayama 1998; Bastide and Candau 1996). In contrast to ideal gels with a

homogeneous distribution of cross-links, hydrogels always exhibit an inhomogeneous
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cross-link density distribution, known as the spatial gel inhomogeneity. The

spatial inhomogeneity is undesirable because it dramatically reduces the optical

clarity and strength of hydrogels. Since the gel inhomogeneity is closely connected

to the spatial concentration fluctuations, scattering methods such as light scattering,

small angle X-ray scattering, and small angle neutron scattering have been

employed to investigate the spatial inhomogeneities. The gel inhomogeneity can

be manifested by comparing the scattering intensities from the gel and from a semi-

dilute solution of the same polymer at the same concentration (Lindemann et al.

1997). The scattering intensity from gels is always larger than that from the polymer

solution. The excess scattering over the scattering from polymer solution is related to

the degree of the inhomogeneities in gels.

In general, the spatial inhomogeneity increases with the gel cross-link density

due to the simultaneous increase of the extent of network imperfections produc-

ing regions more or less rich in cross-links. On the other hand, the inhomogeneity

decreases with the ionization degree of gels due to the effects of the mobile

counter ions, electrostatic repulsion and the Donnan potential (Kizilay and Okay

2003b). The degree of swelling of gels subjected to scattering measurements

also affects the scattering intensities (Kizilay and Okay 2004; Gundogan et al.

2004; Orakdogen et al. 2005). The scattering intensity at low scattering vectors is

enhanced as the swelling degree is increased. This behaviour was interpreted as the

enhancement of the difference of polymer concentration between the more and the

less cross-linked regions. The initial monomer concentration used in the gel prepara-

tion significantly affects the scattering intensities (Kizilay and Okay 2003a, 2004;

Gundogan et al. 2004). An inflection point was observed in the excess scattering

versus monomer concentration plot, at which the inhomogeneity attained a maximum

value.
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Vsol / VwVsol / Vw
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TBA/AAm

0.00 0.25 0.50 0.75 0.7 0.8 0.9 1.01.00 0.25 0.50 0.75 1.00
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a cb
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Fig. 5 Variation of the volume ratio Vsol/Vw (equilibrium swollen gel volume in solution /

equilibrium swollen gel volume in water) of PNIPAAm, PDMAAm, and TBA/AAm (60/40 by

mole) hydrogels ( filled symbols) and PAAm hydrogels (open symbols) with the volume fraction F
of PEG-300, acetone, and DMSO in the outer aqueous solution. (a) reproduced from Melekaslan

and Okay (2001) with permission fromWiley-VCH Verlag GmbH&Co. KGaA; (b, c) reproduced
from Orakdogen and Okay (2006b) and Ozmen and Okay (2003) with permissions from Elsevier
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Figure 6 shows excess scattering intensity Rex, q plotted as a function of ’0
2 for

PAAm hydrogels with 1.5 mol % MBAAm cross-linker (Kizilay and Okay 2004).

Rex, q significantly increases as the gel swells beyond its swelling degree after

preparation. Moreover, PAAm gels at both states exhibit a maximum scattering

intensity at a critical polymer network concentration. As the monomer concentra-

tion is increased, the effective density of cross-links also increases (Fig. 1), so that

the spatial inhomogeneity becomes larger. Opposing this, increasing monomer

concentration, i.e., decreasing the degree of swelling of the gels after preparation

reduces progressively the concentration difference between densely and loosely

cross-linked regions of gel, so that the apparent inhomogeneity decreases. The

interplay of these two opposite effects determines the inhomogeneity in PAAm

gels and results in the appearance of a maximum gel inhomogeneity at a critical

monomer concentration.

4 Hydrogels with Improved Properties

The design of hydrogels with a good mechanical performance is of crucial impor-

tance in many existing and potential application areas of soft materials. Several

attempts, such as topological gels and double network gels, have been made in

recent years to design hydrogels with even better mechanical performance (Tanaka

et al. 2005). The nanoscale dispersion of layered silicates or clays in polymer

networks is one of the techniques offering significant enhancements in the material

properties of hydrogels. Haraguchi et al. prepared such nanocomposite hydrogels

starting from AAm-based monomers together with Laponite as a physical cross-

linker, replacing the traditional chemical cross-linkers (Haraguchi and Takehisa
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q¼ 1� 10�2 nm �1 shown as

function of ’0
2. The filled and

open symbols represent

results of measurements after

gel preparation and after

equilibrium swelling in water,

respectively; 1.5 mol %

MBAAm. Reprinted from
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permission from Elsevier
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2002). Laponite, a synthetic hectorite clay, when suspended in water, forms disc-

like particles with a thickness of 1 nm, a diameter of about 25 nm, and a negative

surface charge density stabilizing dispersions in water. Formation of a cross-linked

polymer network using a small amount of Laponite indicates that these nanoparti-

cles act as a multifunctional cross-linker with a large effective functionality (Okay

and Oppermann 2007).

A fast response of hydrogels to the external stimuli is also a requirement in many

application areas of these materials. However, the kinetics of hydrogel volume

change involves absorbing or desorbing solvent by the polymer network, which is a

diffusive process. This process is slow and even slower near the critical point of

volume phase transition (Shibayama and Tanaka 1993). Increasing the response

rate of hydrogels has been one of the challenging problems in the last 25 years

(Arndt Schmidt et al. 2004). In order to increase their response rate, several

techniques were proposed (see also Chap. 3 Sect. 3.2):

l Submicrometer-sized gel particles: Since the rate of response is inversely pro-

portional to the square of the size of the gel (Shibayama and Tanaka 1993), small

hydrogel particles respond to the external stimuli more quickly than bulk gels

(Oh et al. 1998).
l Gels having dangling chains: Attachment of linear polymer chains on the gel

particles is another approach to increase the response rate of hydrogels (Yoshida

et al. 1995). Dangling chains in a gel easily collapse or expand upon an external

stimulus because one side of the dangling chain is free.
l Macroporous gels: Another technique to obtain fast-responsive hydrogels is to

create voids (pores) inside the hydrogel matrix, so that the response rate becomes

a function of the microstructure rather than the size or the shape of the gel

samples (Okay 2000). For a polymer network having an interconnected pore

structure, absorption or desorption of water occurs through the pores by convec-

tion, which is much faster than the diffusion process that dominates the non-

porous hydrogels.

The basic technique to produce macroporous hydrogels involves the free-radical

cross-linking copolymerization of the monomer-cross-linker mixture in the pres-

ence of an inert substance (the diluents), which is soluble in the monomer mixture

(Okay 2000). In order to obtain macroporous structures, a phase separation must

occur during the course of the network formation process so that the two-phase

structure formed is fixed by the formation of additional cross-links. After polyme-

rization the diluent was removed from the network, leaving a porous structure

within the highly cross-linked polymer network. Thus, the inert diluent acts as a

pore-forming agent and plays an important role in the design of the pore structure of

cross-linked materials. Another technique to create a macroporous network struc-

ture is the use of inert templates in the preparation of hydrogels. By this technique,

the polymer formation reactions are carried out in the presence of templates; a

macroporous structure in the final hydrogel matrix appears after extraction of

template materials. For example, by the cryogelation technique, the polymer

formation reactions are carried out below the bulk freezing temperature of the

General Properties of Hydrogels 11



reaction system (Lozinsky 2002). The essential feature of such reaction systems is

that the monomers and the initiator are concentrated in the unfrozen microzones of

the apparently frozen system. The polymerization and cross-linking reactions

proceed in the unfrozen microzones of the reaction system. A macroporous struc-

ture in the final material appears due to the existence of solvent crystals acting as a

template for the formation of the pores. The advantage of these so-called “cryogels”

compared to the macroporous hydrogels obtained by phase separation is their high

mechanical stability (Dinu et al. 2007). They are very tough and can withstand high

levels of deformations, such as elongation and torsion; they can also be squeezed

under mechanical force to drain out their solvent content. A typical SEM image of

such materials in their dried state is shown in Fig. 7a illustrating their honeycomb

morphology. These materials respond against the external stimuli such as the

solvent composition change immediately (Fig. 7b).
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