
A Real-Time and Distributed System with
Programming Language Abstraction

Erhan Saridogan
Department of Software Research and Technology

Turkish Navy, Software Development Center
saridogan@usa.net

Nadia Erdogan
Department of Computer Engineering

Istanbul Technical University
erdogan@cs.itu.edu.tr

1. Abstract
As processing and time requirements of computer
systems increase over borders of single processor
architectures, it is becoming more and more attractive to
use distributed computing with additional real-time
capabilities. In several cases, traditional programming
languages have become insufficient to build distributed
systems easily, especially when real-time issues and
basic software quality factors such as reliability,
correctness, robustness, ease of design, development,
testing and maintenance are concerned. In this paper
basic issues relevant to distributed systems are reviewed,
a concurrent, object-oriented, real-time and distributed
programming language, CORD-PL, with its supportive
run-time system is introduced and its features are
described. The new system provides an efficient solution
for especially command and control systems by
embedding distribution and real-time issues within the
programming language structures.

Keywords: concurrent, object-oriented, real-time,
distributed, programming language

2. Introduction
Real-world systems consist of many distributed

components that are asynchronously interacting with
their environment. When distributed computing and
concurrent processing are considered, it can be
observed that conventional programming languages
have become insufficient due to inconvenient
structures for inter-process (IPC) and network
communication. These languages may be efficient
for software architectures that use single processor.
However, when it is necessary to distribute an
application over a computer network, programming

tends to become a burden on developers because of
difficulties in using the underlying system facilities.
Therefore it becomes essential to use a special layer,
a kind of middleware, for decoupling applications
from the underlying operating system and
networking.

Generally, applications are developed using a
classical language and several user defined libraries.
In this case, the importance of software
characteristics, methodology and development
issues get the focus. One of the most suitable styles is
object-oriented programming. The distributed form
of this approach requires communication between
distinct objects on different nodes. Tightly or loosely
coupled computer systems may be used depending
on the inter-object communication load. Real-time
applications that require time-critical input and
output operations are particularly difficult to design
and implement. Such systems may also be required to
have features like high reliability, efficiency,
robustness and real-time. Therefore, distributed real-
time programming languages have evolved to meet
those requirements within language constructs,
providing a high level interface.

One important application domain is the industrial
and military command and control systems which
require efficient infrastructure capable of handling
large amount of high frequency data. Automated
control systems collect data from various sensors or
input devices, evaluate them and remotely control
some actuators, preserving real-time constraints.
Although it is possible to implement such systems
using conventional methods, utilizing an efficient

middleware mechanism is more attractive as it is also
important to decouple application software from the
underlying operating system and networking. The
CORD System introduced in this paper proposes a
solution for especially this domain without an
explicit middleware approach, but a programming
language with a special run-time support system.

3. Distributed Real-Time Computing
A distributed real-time system is usually desired to

be fault-tolerant, reliable and efficient in both
computing and communication. In addition to basic
software engineering qualities like modularity,
extensibility and reusability, programming
languages to be used to develop such systems should
have some extra features as reviewed below.

3.1 Object-Oriented Programming Languages

Object-oriented programming (OOP) languages
have special constructs which divide programs into
smaller portions called objects that can only be
accessed via methods that are defined in their
interfaces. OOP languages have some common
properties like modularity, data abstraction,
automatic memory management, class definitions,
inheritance and polymorphism as specified in [1].
Languages having all properties are called object-
oriented, while object-based languages have the first
four properties. In the context of distributed
computing, objects are classified either as activities
or data. Many concurrent languages like Mentat [2],
RTC++ [3], Concurrent Smalltalk [4] and Eiffel [5]
have chosen to use objects as processing elements
that are subject to distribution. On the other hand,
Linda [6] and SR [7] use data objects while POOL-T
[8] uses both types.

3.2 Concurrency

Concurrent languages use special constructs for
creating processes depending on the underlying
operating system. Some systems allow threads to be
used within a process to support higher level of
concurrency. Mutual exclusion and synchronization
mechanisms must be provided to prevent concurrent
access to critical resources. It is usually the
programmer’s responsibility to implement shared
data protection and process synchronization through
facilities provided by the operating system.

3.3 Communication

In a concurrent environment objects implemented
as processes use IPC mechanisms of the underlying

operating system. Concurrent languages like Mentat,
ES-Kit C++ [9] and Pearl [10] have special constructs
that provide communication in a synchronous or
asynchronous manner. Ada, which is not a distributed
language, but a concurrent one, uses rendezvous
mechanism, like SR, to exchange information
between tasks. In a distributed environment, objects
communicate using messages that are passed through
various network layers. Distributed operating
systems such as Mach [11] hide the network level
communication so that all programs seem to execute
on a single machine. Common Object Request
Broker Architecture (CORBA) [12] is a widely
accepted and rapidly developing standard for
commercial products used in implementing
distributed applications over heterogeneous
computer networks by using object-technology with
almost any high-level language.

3.4 Real-time Aspects

Some mission critical systems require real-time
constraints to provide fast response to events
occurring at non-regular rates. Soft real-time systems
do not fail if a response time constraint is not met, but
performance is degraded. Hard real-time systems
have to meet deadlines strictly, otherwise system
failure occurs. Firm real-time systems are
somewhere in between, where low probability of
missing a deadline can be tolerated. Generally, hard
real-time systems are designed to work with special
hardware due to the importance of deadlines. Timing
constraints for such systems are predicted off-line, as
in RT-Synchronizer [13], and sufficient resource is
allocated for unpredictable events.

4. CORD Programming Language: CPL
After a thorough study of the available research

work, we have decided to combine several features
required by a real-time programming language into
one programming language as an extension to C++.
Since a higher level of abstraction to logically
connect distributed processors considering real-time
requirements is needed, a special layer, a kind of
middleware, running on top of the operating system
is built. This layer is called the CORD-RTS standing
for Concurrent, Object-oriented and Real-time
Distribution Run-Time System. Therefore the
language is given the name CPL (The CORD
Programming Language).

4.1 The CORD System

The CORD System is designed to allow

programmers to develop distributed soft-real time
applications in CPL that are independent of operating
system and network topology. Figure 1 illustrates the
system architecture with a sample CPL program.

Figure 1. The CORD System Architecture

The CORD Run-Time System (RTS) : Each node
runs a copy of the RTS whose components are
illustrated in Figure 2 and described below:

Figure 2. The CORD System Layout

Object Manager is the general controller which
manages nodal communicaiton, keeps track of
running programs, classes and their instances. The
manager maintains a distributed database for
programs and keeps it up-to-date at all times. When
the manager is initiated, it creates the nodal passive
data storage as a shared memory segment and the
Object Output Queue which is a priority-based, one-
way communication channel. The manager provides
message-based communication between program
components and controls the publish-subscribe
mechanism providing registration and distribution of
published object data. It carries out a special hand-
shaking mechanism when an object is moved from
one node to another.

Net Manager handles access to the network by
considering the CORD network. When the manager
is initiated it reads a configuration file to obtain the

relevant node addresses and creates a database for
them. It uses an initiation parameter to indicate the
time, in milliseconds, to wait before packing
messages into a network datagram for a specific
destination node.

Device Manager is optionally executed on a node,
if that node is to be used for device access. This
manager keeps track of all the installed devices and
the registered device objects, opens and sets the
devices for reading or writing. It coordinates multiple
accesses to a device enabling shared and remote use.
It also keeps a list of active objects and their methods
for a specific device object data for publish-subscribe
mechanism. When new data is read from a device, the
manager calls the registered method of the subscribed
active objects. This subscription mechanism is
separated from the Object Manager in order to speed
up device data distribution.

Error Manager has to be initiated before the others
with an option indicating the location of an error
report, which may be a disk file, standard output or
both. All elements of the CORD System report their
errors in a specific format to this manager.

A Shell is provided to interpret user commands
interactively to provide system control and
monitoring. Users can open any number of shells to
get information about the system and status of
programs, classes and objects.

Main program : A CPL program is a collection of
executables which constitute a global, distributed
application. Therefore, each CPL program must have
a main module, like a conventional program, which is
executed on the RTS. This module, actually an
executable, registers itself and all its classes to the
RTS, and then creates the necessary objects. Those
objects may later create other objects over the
network. Terminating the main module results in the
termination of all its class instances, regardless of
their location.

Class Servers : In order to create active objects as
processing units, a server process is used from which
child processes are forked. There are as many active
class servers as the number of active classes declared
in a program. The CPL preprocessor creates an
executable program for each CPL active class as a
server. When a main program is loaded, all of its
classes are registered to all CORD nodes. The Object
Manager of each node activates the class servers,
making them ready to create objects. Object creation
requests causes the class server to fork a child process
which registers itself as a new active object.

LAN

NODE-1 NODE-2

active

passive
object

object
active
object

active
object

active
object

main
program

CORD-RTS

Hardware

Operating System

.

CORD-RTS

Hardware

Operating System

device

Object

System Data Bus

Manager

Output Queue (priority)

File/Display

Device
Manager

Net
Manager

Error
Manager

All CORD

Input

(FIFO)

device

device

device

Shell
CPL

elements

Channel

Elements

Objects : There are three new types of objects in
CPL, in addition to regular C++ objects. These are
instances of active, passive and device classes that are
described in the next section.

4.2 Classes

CPL introduces three new types of classes in
addition to regular C++ classes. These are active,
passive and device classes, from which active,
passive and device objects are created respectively.
CPL compiler also supports compile-time, static and
public inheritance for these classes provided that the
classes are of the same type.

Active class : Active classes are implemented
using Unix-like processes for class servers. Instances
of this type of classes are the primary processing
elements capable of calling methods of other objects.
Active object methods are called remotely by using
only special messages generated by the CPL
preprocessor, however CPL programmers just issue
a normal method call. Active classes may have static
or dynamic data parts that are specified in the class
definition. Dynamic data with the specified size is
manipulated by the object and stored in a reliable
storage on the node, controlled by the Object
Manager. Static data elements are stored inside the
object context. During object migration, the dynamic
data part is copied to a new location in the destination
node and a new active object is created initializing
from the data copied to that node. These classes have
priority values for scheduling that are applied to the
objects when they are created. There may be any
number of time triggered methods called periodically
at specified intervals. Thread-based timers with
millisecond accuracy are used but scheduling issues
are left to the operating system. Published methods
are listed in the class interface to be used by other
classes. If subscription to a specific method of a class
is indicated, then the object created from that class
subscribes automatically to the related class
methods. When a subscribed method is published by
the producer object, the indicated method of the
subscriber is called by the Object Manager. Active
class body has a main part that is executed right after
the elaboration. Active objects can be accessed from
any node of a distributed environment provided that
the necessary naming and scope resolution is
achieved.

Passive class : Instances of passive classes are
used as a means of data storage and are not capable of
calling methods of other objects. These objects can

be accessed within the context of an active object
located on the same node, providing very fast read or
write functions. It is up to the programmer whether or
not to set an explicit lock for accessing data by means
of the two macros, CPL_LOCK and
CPL_UNLOCK, implemented using semaphores.

Device class : A device class defines a standard
and coherent interface for input and output devices.
The class definition specifies the type of the access,
priority, data type, buffer size and speed of data
transfer. All device controls are performed by the
nodal Device Manager. The manager can also
provide active object subscription mechanism for
read access. An active object, that needs to be
triggered by a device input, subscribes for that device
class method with its own method. An active object
can read a device data whenever it wants, by
specifying the age of the data. If the age of the data
maintained in the Device Manager buffer is older
than the requested age, then the device is read
asynchronously. Otherwise, current data is returned
to the caller.

4.3 Communication

CPL object communication can be synchronous,
asynchronous or broadcast. These modes are
implicitly set by the CPL compiler. Actually,
programmers never use and see messages; instead,
they use the method calls in the class definitions. All
method calls, replies and published methods are
converted into system level messages with priority,
source object, destination object and a time stamp.
Therefore all method parameters have an indicator,
in, out or inout, to specify the type of communication.
If a method has only in parameters, or no parameter,
it causes an asynchronous, or one-way, call, from the
caller to the callee. If there is at least one out or one
inout parameter, then the call is said to be
synchronous, or two-way and blocked. The caller has
to wait for a reply from the callee for the specified
amount of time before raising an exception.
Subscription is a way of asynchronous method
invocation without having to know the source
objects. A publisher broadcasts its method, as a
message, to all nodes, and each Object Manager
checks its subscriber list for this method and
distributes it to each of the subscribers.

Active objects convert method calls into messages
indicating the destination and send them to the RTS.
The sender object does not have to know where the
receiver object is located, or in what state it is. The

RTS finds the location of the destination object and
forwards the message either to the object itself (if it is
located on that node) or to the RTS on the node where
the object resides. The RTS on the destination node
transfers the message to the object.

4.4 Real-time Issues

CPL and its accompanying run-time system is
designed to develop soft real-time systems easily.
Therefore, some linguistic timing constructs are
defined in CPL in order to specify real-time
constraints at statement level in millisecond domain.
Special language structures such as timed loops,
time-triggered method calls and action blocks are
provided. Process scheduling is left to the existing
operating system.

As expected from a real-time programming
language, CPL is a strongly typed language, enabling
exception handling, dynamic memory management,
abstract data type support and modularity.

Real-time filters are used inside the CORD
System. Each manager checks the time-out value of
a message to decide if there is sufficient time for
communication delay and processing. Otherwise, it
does not forward the message and sends a system
reply to the sender.

All active objects send their messages to the RTS
with an assigned priority ranging from 1 to 10 and a
time-out value defining the validity period of the
message. The programmer should assign suitable
priorities and time-out values to method calls
explicitly for efficient resource utilization, otherwise
system defaults are used.

Priority inversion feature is provided for the
objects that are running with lower priority. When a
high priority message is received, the receiving
object increases its scheduling priority up to the
priority of the incoming message. After the message
is processed, the scheduling priority is lowered again.

4.5 Distribution

CPL object creation is performed in a similar way
used in C++ constructors with additional location
information as a string. Objects use four-level
naming convention. Of these, the first level uses
program identification which enables multiple
copies of the same distributed program to run
simultaneously. The second level is the class type, the
third one is class identification, and the fourth level is
the object identification. In order to speed up
processing, numeric representation of logical names
are transparently used within the system.

Migration of active objects is performed by
stopping the process, copying the contents of the
dynamic data and starting a new process at the new
location. For this purpose, active classes declare if
they want to use dynamic data storage which is in a
safe memory area.

4.6 System Characteristics

CPL applications are isolated from the computer
infrastructure. However, standard C++ libraries as
well as operating system calls can directly be used in
addition to the Application Program Interface (API).

The CORD-RTS heavily relies on a globally
accurate system time as it processes the time stamps
of each message for time-out evaluation. Each node
has to be synchronized up to a certain level for
assigning time stamps. The current development
environment uses NTP 4.0 over ATM providing
synchronization up to 100 microseconds.

The CORD-RTS must be initialized before a
program is executed. The target network system
configuration can be specified in a special
instantiation file which is read during initialization.
This procedure includes defining the logical network
and starting up the necessary managers.

CPL objects are created global to all nodes with a
unique identification. An object can be accessed by
any active object within the same network. This
seems in contradiction with some of the software
engineering rules like abstraction and information
hiding. However, CPL classes use the same visibility
and access rules as C++ so that an object is visible
only in the block it is declared and can only be
accessed via its methods.

CPL enables programmers to develop a distributed
program without concentrating on the low level
communication primitives and the physical layout of
the system. Programmers write CPL modules as if
they were writing a regular C++ module, either using
full capabilities of C++ or CPL specific keywords
and structures for distribution. CPL modules are then
fed to the CPL compiler to generate separate client
and server stub code to access the RTS. The resultant
modules are compiled with an existing C++ compiler
to generate the necessary executables for each active
class and for the main module. These files are then
loaded onto the target nodes and executed.

4.7 Keywords

It is becoming a common practice to use keywords
rather than calls to library functions, in order to make
programming process less problematic. Besides,

learning the rules of a language is easier than learning
a given library. Hence, we added extra keywords, as
described in Table 1, to the existing C++ grammar.

Table 1. CPL Keywords

Sample CPL class declarations are shown below:
declare {

typedef int Natural;
}

active class Class_B inherits Class_A {
priority 5;
data: //within an object context

int mem_size
Natural num_elem;

dynamic 1024: //amount of safe memory needed
Link_List element_list;

methods:
Start(); //asynchronous call
GetNumOfElem(out: Natural N); //synchronous call
Compute(in: int X; out: int Y);//synchronous call
Calculate(inout: int Z); //synchronous call
Insert(in: int Num); //asynchronous call

periodic 1000: //millisecond
Do_Processing();

publish:
NewData(int Val); //broadcast when called

subscribe:
Compute to Class_C.NewData;//own method to another

};

body Class_B {
GetNumOfElem(out: Natural N) {

N = num_elem;
}
...//other method bodies
class_main:

cout << "This is class B| << endl;
}

passive class Class_P {
data:

float values[100];
methods:

Insert(in: int Key, out: float Value);
Get(in: int Key; out: float Value);

};
body Class_P {
Insert(in: int Key, out: float Value) {

CPL_LOCK;
values[Key] = Value; //regular assignment
CPL_UNLOCK;

}
Get(in: int Key; out: float Value) { ... }
}
device class Serial_Comm {
read int; //data type to read from device
priority 4; //message priority
buffer 10; //number of elements in buffer
speed 19600; //data transfer rate
}; //Implicit method: Read_Data

Object creation and method calls:
Class_A obj1; obj1.Bind(); //bind to an existing one
Class_A obj2(initial_val) on "NODE_4"; //new object
Class_A* obj3 = new Class_A on"NODE_4"; //new object
obj1.GetA(val, PRIO_3, 200) timeout { ReportTimeout(); }
obj1.GetA(val, PRIO_4, 50) retry 4 { ReportError(); }

Timed loops:
do {

Sensor.Check_Status(status);
} every 1000; //activated every 1 second exactly

do {
a.Read();
b.Write();
CORD_RTS.Sleep(1000); //API call

} until 20:45:00.0; //continue until this time

5. Performance Analysis
During the system development, various tests

were performed in order to discover the system
bottlenecks and time consuming parts. Table 2 shows
some performance figures in microseconds obtained
by averaging the time consumed by one object calling
another object’s method.

The first test environment consists of two Sun
Sparc4 (100 MHz) workstations with SunOS 4.1.3 on
10 Mbs ethernet. The second one is a stand-alone
Sparc notebook (70 MHz) with Solaris 2.5 and the
third one consists of four Sun Ultra60 (300 MHz)
workstations with Solaris 2.5 on 155 Mbs-ATM
network with LAN emulation. The test results have
shown that inter-object communication can be
reduced dramatically if passive objects are used.
However, active object communication latency
increases as the number of active objects requiring
parallel execution increases.

Keyword Meaning

active, passive,
device Each keyword defines a CPL class type.

declare A block of global declarations to be used by each class.
inherits A list of CPL classes used for public inheritance.
uses Specifies a list of CPL class to be included by a CPL class.

includes<F> F is the name of a file to be included during preprocessing.

priority <P>
P specifies the processing priority of the objects created from an
active class, ranging from 1 to 10.

data A list of data member declarations, for both active and passive kept
inside the object context.

dynamic
A list of active class data member declarations mapping to the safe
memory whose amount is specified as B in bytes.

methods A list of CPL methods to be called by active objects.
in, out, inout CPL method parameter specifications.

periodic <T> A list of parameterless active class methods to be activated at every
T milliseconds.

publish
A list of active class methods, without any body, as an interface to
publish mechanism. These methods are not activated unless they are
called explicitly from one of own class methods.

subscribe-to
A list of declarations indicating which method is to be called when the
specified publish-method of another active class is actually
published.

body
Each CPL class must have a body part that contains the
implementations of its constructor and call methods.

class_main Active classes may have main parts in the class body containing any
number of statements to be executed right after object elaboration.

program Specifies the main module of a distributed CPL program.

read-write Specifies the device access type either for reading or writing.

buffer B indicates the number of elements to be held in object buffer.

speed <S> S indicates the device data transfer rate in bauds.

do-every <T> Denotes a timed loop executed every T milliseconds.

do-until <T> Denotes a timed loop executed until current time equals T.

on "S" S specifies on which node an object is to be created.

timeout { ... } If a time-out occurs the statement inside block are executed.

retry <N> { ... }
If an error occurs during a call of maximum N times, the statements
inside the block are executed.

Table 2. Performance Figures (in microseconds)

6. Fault Tolerance
The CORD-RTS itself can be considered as fault

tolerant as all RTSs are synchronized with each other.
Restarting an RTS on a node causes it to request
program, class and object database update from other
RTSs. Active class servers acting as hot stand-by
servers and shadow objects increases fault-tolerance.
In case an active object fails, its server can detect this
immediately and recreates a new object. In case of a
node failure, a mechanism at the application level
which detects the fault can easily re-initiate the active
objects from the class servers, constructing the object
from its last saved state. An implicit mechanism is not
provided in the current version of the CORD-RTS.

If an active object crashes, it has to be recreated
immediately and its previous internal state have to be
retrieved. This can be achieved by keeping the state
variables outside the object context. Passive objects
or dynamic part of class declaration can be used for
this purpose. Replicating this data over the network
and synchronizing them is another part of this study
and shall be implemented in future versions.

7. Conclusion
Using linguistic mechanisms for embedding real-

time constraints and distribution simplifies program
design and implementation. Such a capability even
reduces the need for system level programming skill

enabling the programmer to concentrate on
functional behavior rather than complex, low level
communication. For that reason, the ability to
express distribution issues and real-time constraints
through language constructs is focused. Military or
industrial command and control systems with soft
real-time requirements, distributed knowledge-
based systems or parallel computing are potential
areas for CPL implementation. Since CPL provides
an abstraction over the CORD-RTS and the operating
system, it is always possible to easily port application
code written in CPL to new platforms. Simple
modifications to the CORD infrastructure will be
sufficient for adaptation.

8. Reference
[1] Object-Oriented Software Construction, B. Meyer,

Prentice Hall, Englewood Cliffs, N.J., 1988.

[2] A.S. Grimshaw, "Easy-to-Use Object Oriented Parallel
Processing with Mentat", IEEE Computer, May 1993.

[3] Y. Ishikawa, H.Tokuda, C.W.Mercer, "An Object-
Oriented Real-Time Programming Language", Computer,
Oct. 1992.

[4] Y. Yokote, "The Design and Implementation of
Concurrent Smalltalk", World Scientific, Vol.21, 1990.

[5] B. Wyatt, K. Kavi, S. Hufnagel, "Paralellism in Object-
Oriented Languages: A Survey", IEEE Software, Nov.
1992.

[6] P.G. Robinson, J.D. Arthur, "Distributed Process
Creation Within a Shared Data Space Framework",
Software-Practice&Experience, Vol.25(2),Feb. 1995.

[7] G.R. Andrews, "The Distributed Programming Language
SR - Mechanism, design and implementation", Software-
Practice & Experience, Vol.12(8), Aug. 1982.

[8] P. America, "POOL-T: A Parallel Object-Oriented
Programming", Research Directions in Object-Oriented
Programming, B.D.Shriver, P.Wegner, MIT Press,
Cambridge, Mass. 1987.

[9] K. Smith, A. Chatterjee, "A C++ Environment for
Distributed Application Execution", Tech.Report ACT-
ESP-275-90, Micro-electronics Computer Technology
Corp., Austin, Tex. 1990.

[10] A.D.Stoyenko, W.A.Halang,"Extending Pearl for
Industrial Real-Time Applications", IEEE Software, July
1993.

[11] D.Kirschen, "An Overview of the Mach Operating
System", Operating Systems Technical Committee
Newslettter, 3(2), 1989.

[12] Object Management Group, The Common Object Request
Broker: Architecture and Specification Rev.2.1, Aug.
1997.

[13] S.Ren, G.A.Agha, "RTsynchronizer: Language Support
for Real-Time Specifications in Distributed Systems",
ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems, June 1995.

Test Sparc-4 Sp.Book Ultra-60

Asynchronous (one-way)
method call, same node

850 1300 550

Asynchronous (one-way)
method call, different node 2400 - 1100

Published method,
same node 900 1300 600

Published method,
different node

2200 - 1200

Published device data,
same node 1100 1500 700

Synchronous (two-way)
method-call, same node 2600 3500 1550

Synchronous (two-way)
method-call, different nodes

6700 - 2250

Reading passive object with
Lock/Unlock 180 220 50

Reading passive object with-
out Lock/Unlock 0.18 0.25 0.15

Asynchronous read from a lo-
cal device

2200 2400 1800

Active object creation,
same node < 8000 < 10000 < 5000

Passive object creation,
same node < 4000 < 5000 < 2000

Active object migration - - < 15000

