HOMEWORK \# $\mathbf{4}^{1}$

1. [25 points] Find the eigenvlues and eigenfunction of the following Saturm-Liouville equation

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0 \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& y(0)-y^{\prime}(0)=0 \tag{2}\\
& y(1)+y^{\prime}(1)=0 \tag{3}
\end{align*}
$$

2. [25 points] Use the separation of variables, $u(x, y)=X(x) Y(y)$, to solve the following partial differential equation

$$
\begin{equation*}
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{4}
\end{equation*}
$$

in a domain with $0<x<1$ and $0<y<1$. The boundary conditions are

$$
\begin{array}{ll}
u(x, 0)=f_{1}(x), & u(0, y)=0 \\
u(x, 1)=f_{2}(x), & u(1, y)=0 \tag{6}
\end{array}
$$

where

$$
f_{1}(x)=f_{2}(x)= \begin{cases}2 x, & 0<x<\frac{1}{2} \tag{7}\\ 2-2 x, & \frac{1}{2}<x<1\end{cases}
$$

3. [25 points] Solve the boundary value problem (BVP)

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0 \tag{8}
\end{equation*}
$$

in a square enclosure $[0,1] \times[0,1]$, subject to

$$
\begin{align*}
\psi(x, 0) & =0 \tag{9}\\
\psi(x, 1) & =x-x^{2} \tag{10}\\
\psi(0, y) & =0 \tag{11}\\
\psi(1, y) & =0 \tag{12}
\end{align*}
$$

4. [25 points] Use the separation of variables, $u(r, \theta)=R(r) \Theta(\theta)$, to solve the following partial differential equation

$$
\begin{equation*}
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial u}{\partial r}\right]+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \tag{13}
\end{equation*}
$$

[^0]in a domain with $1<r<2$ and $0<\theta<\pi$. The boundary conditions are
\[

$$
\begin{array}{ll}
u(1, \theta)=0, & u(2, \theta)=1 \\
u(r, 0)=0, & u(r, \pi)=0 \tag{15}
\end{array}
$$
\]

[^0]: ${ }^{1}$ Return date is on 11 May 2012.

