HOMEWORK \# 3^{1}

1. Use the Laplace transform to solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+3 y^{\prime}+2 y=\sin (2 t) \tag{1}
\end{equation*}
$$

where $y(0)=2$ and $y^{\prime}(0)=-1$.
2. Find the canonical form of the following partial differential equation.

$$
\begin{equation*}
y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}=\frac{y^{2}}{x} u_{x}+\frac{x^{2}}{y} u_{y} \tag{2}
\end{equation*}
$$

3. Compute the characteristic curves of the following wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-a^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{3}
\end{equation*}
$$

and draw them on an $x-t$ coordinate system.
4. Find the eigenvlues and eigenfunction of the following Sturm-Liouville system

$$
\begin{equation*}
y^{\prime \prime}+\lambda y=0, \quad 0<x<1 \tag{4}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
h y(0)-y^{\prime}(0) & =0 \tag{5}\\
y^{\prime}(1) & =0 \tag{6}
\end{align*}
$$

and $h>0$.
5. Use the separation of variables, $u(x, y)=X(x) Y(y)$, to solve the following partial differential equation

$$
\begin{equation*}
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{7}
\end{equation*}
$$

in a domain with $0<x<1$ and $0<y<1$. The boundary conditions are

$$
\begin{array}{ll}
u(0, y)=0, & u_{x}(1, y)=0 \\
u(x, 0)=0, & u(x, 1)=1 \tag{9}
\end{array}
$$

[^0]
[^0]: ${ }^{1}$ Return date is on 4 May 2012.

