HOMEWORK \# $\mathbf{2}^{1}$

1. Use the method of variation to find the general solution of the following second order differential equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=x e^{-x} \tag{1}
\end{equation*}
$$

2. Find the general solution of the following second-order differential equation using power series solution.

$$
\begin{equation*}
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-y=0 \tag{2}
\end{equation*}
$$

3. Use the Frobenius series to find the solution of

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x(2+x) y^{\prime}-2 y=0 \tag{3}
\end{equation*}
$$

in some interval $0<x<d$.
4. Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{lc}
f(x)=x & 0 \leq x \leq \pi \tag{4}\\
f(x)=\pi & \pi \leq x \leq 2 \pi
\end{array}\right.
$$

5. Solve the following initial value problem

$$
\begin{align*}
x_{1}^{\prime} & =2 x_{1}-x_{2}+4-t^{2} \tag{5}\\
x_{2}^{\prime} & =-x_{1}+2 x_{2}+1 \tag{6}
\end{align*}
$$

with $x_{1}(0)=1$ and $x_{2}(0)=0$.

[^0]
[^0]: ${ }^{1}$ Return date is on 6 April 2012.

