Joint ICTP-INFN-SISSA Conference: Topical Issues in LHC Physics

29 June - 2 July, 2009

Jet Physics at the LHC

Gavin SALAM
LPTHE, Universites Paris VI, France

Towards Jetography

Gavin Salam
LPTHE, CNRS and UPMC (Univ. Paris 6)

Based on work with
Jon Butterworth, Matteo Cacciari, Mrinal Dasgupta, Adam Davison, Lorenzo Magnea, Juan Rojo, Mathieu Rubin \& Gregory Soyez

Topical Issues in LHC Physics Joint ICTP-INFN-SISSA Conference, Trieste, Italy, June 2009

Gluon emission:

quark

Gluon emission:
quark
$\int \alpha_{\mathrm{s}} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1$

At low scales:
gluon

Gluon emission:

$$
\int \alpha_{\mathrm{s}} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1
$$

At low scales:

Gluon emission:
$\int \alpha_{s} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1$

At low scales:

$$
\alpha_{\mathrm{s}} \rightarrow 1
$$

Parton fragmentation

This is a jet

Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?

Jets are what we see. Clearly(?) 2 jets here

How many jets do you see?

Jets are what we see. Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself this question for 10^{9} events?

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see? Do you really want to ask yourself this question for 10^{9} events?

jet definition

$\left\{p_{i}\right\}$,
4-momenta,
calorimeter towers,

+ parameters (usually at least the radius R)

+ recombination scheme

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate

LO partons
Jet ${ }_{\downarrow}$ Def n

NLO partons
Jet \mid Def ${ }^{n}$

parton shower

$$
\text { Jet } \downarrow \operatorname{Def}^{\mathrm{n}}
$$

hadron level
jet 1
jet 2

Projection to jets should be resilient to QCD effects

Jet (definitions) provide central link between expt., "theory" and theory

Jet (definitions) provide central link between expt., "theory" and theory And jets are an input to almost all analyses

What jet algorithms are out there?

2 broad classes:

1. sequential recombination
"bottom up", e.g. k_{t}, preferred by many theorists

2. cone type

"top down", preferred by many experimenters
\Rightarrow Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$

- Recombine
- Repeat

Bottom-up jets:

Sequential recombination

(attempt to invert QCD branching)
\Rightarrow rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$

- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
R sets minimal interjet angle
- Find smallest of all $d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}$ and $d_{i B}=k_{i}^{2}$
- Recombine i, j (if $i B: i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{i j}^{2}=\left(\phi_{i}-\phi_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$
- rapidity $y_{i}=\frac{1}{2} \ln \frac{E_{i}+p_{z i}}{E_{i}-p_{z i}}$
- $\Delta R_{i j}$ is boost invariant angle
R sets minimal interjet angle

NB: $d_{i j}$ distance \leftrightarrow QCD branching probability $\sim \alpha_{\mathrm{s}} \frac{d k_{t j}^{2} d R_{i j}^{2}}{d_{i j}}$

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents
Found by iterating from some initial seed directions

Top-down jets:

cone algorithms

(energy flow conserved by QCD)

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions
- Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

Tevatron \& ATLAS cone algs have two main steps:

- Find some/all stable cones
\equiv cone pointing in same direction as the momentum of its contents Found by iterating from some initial seed directions
- Resolve cases of overlapping stable cones

By running a 'split-merge' procedure

Tevatron \& ATLAS cone algs have two main steps:

Procedure:

- Find one stable cone

Procedure:

- Find one stable cone

By iterating from hardest seed particle

Procedure:

- Find one stable cone

By iterating from hardest seed particle

Procedure:

- Find one stable cone

By iterating from hardest seed particle

Procedure:

- Find one stable cone

Procedure:

- Find one stable cone

By iterating from hardest seed particle

Procedure:

- Find one stable cone
> Call it a jet; remove its particles from the event;

By iterating from hardest seed particle

Procedure:

- Find one stable cone
- Call it a jet; remove its particles from the event; repeat

Procedure:

- Find one stable cone

By iterating from hardest seed particle

- Call it a jet; remove its particles from the event; repeat

Procedure:

- Find one stable cone

By iterating from hardest seed particle

- Call it a jet; remove its particles from the event; repeat

Procedure:

- Find one stable cone

By iterating from hardest seed particle

- Call it a jet; remove its particles from the event; repeat

Procedure:

- Find one stable cone

By iterating from hardest seed particle

- Call it a jet; remove its particles from the event; repeat

Procedure:

- Find one stable cone

By iterating from hardest seed particle

- Call it a jet; remove its particles from the event; repeat

Iterative Cone with Progressive Removal (IC-PR)

e.g. CMS it. cone, [Pythia Cone, GetJet], ...

- NB: not same type of algorithm as Atlas Cone, MidPoint, SISCone

Readying jet "technology" for the LHC era

 [a.k.a. satisfying Snowmass]
Toward a Standardization of Jet Definitions *

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;
5. Yields a cross section that is relatively insensitive to hadronization.

Toward a Standardization of Jet Definitions *

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;
5. Yields a cross section that is relativelv insensitive to hadranizatinn

$$
\text { Property } 1 \Leftrightarrow \text { speed. (+other aspects) }
$$

- LHC events may have up to $N=4000$ particles (at high-lumi)
- Sequential recombination algs. $\left(k_{t}\right)$ slow, $\sim N^{3} \rightarrow 60 s$ for $N=4000$

$$
k_{t} \text { not practical for } \mathcal{O}\left(10^{9}\right) \text { events }
$$

Toward a Standardization of Jet Definitions •

Several important properties that should be met by a jet definition are [3]:

1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross section at any order of perturbation theory;
5. Yields a cross section that is relativelv insensitive to hadronizatinn Property $4 \equiv$ Infrared and Collinear (IRC) Safety. It helps ensure:

- Soft (low-energy) emissions \& collinear splittings don't change jets
- Each order of perturbation theory is smaller than previous (at high p_{t})
- for N particles: $N^{2} d_{i j}$ searched through N times $=N^{3}$
- 4000 particles (or calo cells): 1 minute NB: often study $10^{7}-10^{9}$ events (20-2000 CPU years)
- Heavy lon Snowmass issue \#1

As far as po. The $\mathbf{k}_{\mathbf{t}}$ algorithm and its speed mputing.

Even if we're clever about repeating the full search each time, we still have $\mathcal{O}\left(N^{2}\right) d_{i j}$'s to establish?
'Trivial' computational issue:

- for N particles: $N^{2} d_{i j}$ searched through N times $=N^{3}$
- 4000 particles (or calo cells): 1 minute

NB: often study $10^{7}-10^{9}$ events (20-2000 CPU years)

- Heavy lons: 30000 particles: 10 hours/event

As far as possible physics choices should not be limited by computing.
Even if we're clever about repeating the full search each time, we still have $\mathcal{O}\left(N^{2}\right) d_{i j}$'s to establish?

‘Trivial' computational issue:

- for N particles: $N^{2} d_{i j}$ searched through N times $=N^{3}$
- 4000 particles (or calo cells): 1 minute

$$
\text { NB: often study } 10^{7}-10^{9} \text { events (20-2000 CPU years) }
$$

- Heavy lons: 30000 particles: 10 hours/event

As far as possible physics choices should not be limited by computing.
Even if we're clever about repeating the full search each time, we still have $\mathcal{O}\left(N^{2}\right) d_{i j}$'s to establish? No!

The FastJet trick: separate momentum \& ("easy") geometry:

$$
\min _{i, j}\left[\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2}\right] \quad \longrightarrow \quad \min _{i}\left[k_{t i}^{2} \min _{j} \Delta R_{i j}^{2}\right]
$$

Allows for N In N implementation. Cacciari \& GPS ' 05 + CGAL

Towards Jetography, G. Salam (p. 14)
Snowmass
k_{t} algorithm speed: old \& new

Towards Jetography, G. Salam (p. 14)
—Snowmass
-Speeding up k_{t}

Factorisation of momentum \& geometry $\rightarrow 2 \mathbf{2}$ orders of magnitude gain in speed!

Speed competitive with fast cone algorithms

Cone algorithms and IR safety

$\alpha_{s}^{2} \alpha_{E W}$
2-jet
$\mathcal{O}(1)$

$\alpha_{\mathrm{s}}^{2} \alpha_{\text {EW }}$
2-jet $\mathcal{O}(1)$

$\alpha_{\mathrm{s}}^{2} \alpha_{E W}$
1-jet
2-jet
$\mathcal{O}(1)$

$\alpha_{s}^{3} \alpha_{E W}$
$-\infty$
$\alpha_{s}^{3} \alpha_{E W}$

Towards Jetography, G. Salam (p. 15)
—Cone IR issues

$\alpha_{s}^{2} \alpha_{E W}$
1-jet
2-jet
$\mathcal{O}(1)$

JetClu (\& Atlas Cone) in Wjj © NLO

$\alpha_{\mathrm{s}}^{3} \alpha_{\text {EW }}$
$-\infty$
jet

$\alpha_{\mathrm{s}}^{3} \alpha_{E W}$ $+\infty$

$\alpha_{s}^{2} \alpha_{E W}$
1-jet
2-jet
$\mathcal{O}(1)$

$\alpha_{\mathrm{s}}^{3} \alpha_{E W}$
$-\infty$
jet

$$
\begin{gathered}
\alpha_{\mathrm{s}}^{3} \alpha_{E W} \\
+\infty \\
0
\end{gathered}
$$

With these (\& most) cone algorithms, perturbative infinities fail to cancel at some order \equiv IR unsafety

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

Multi-jet contexts much more sensitive: ubiquitous at LHC

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

	Last meaningful order			Known at
	JetClu, ATLAS cone $[\mathrm{IC}$-SM]	MidPoint [$\mathrm{IC}_{\mathrm{mp}}$-SM]	$\underset{[I C-P R]}{\text { CMS it. cone }}$	
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)
$W / Z+1$ jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
$W / Z+2$ jets	none	LO	LO	NLO [MCFM]
$m_{\text {jet }}$ in $2 j+X$	none	none	none	LO

NB: 50,000,000\$/£/CHF/€ investment in NLO
Multi-jet contexts much more sensitive: ubiquitous at LHC

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

	Last meaningful order			Known at
	JetClu, ATLAS cone [IC-SM]	MidPoint [$\mathrm{IC}_{\mathrm{mp}}$-SM]	CMS it. cone [IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)
$W / Z+1$ jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
$W / Z+2$ jets	none	LO	LO	NLO [MCFM]
$m_{\text {jet }}$ in $2 j+X$	none	none	none	LO

Multi-jet contexts much more sensitive: ubiquitous at LHC
And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters

I do searches, not QCD. Why

 should I care about IRC safety?- Are you looking for a mass-peak? $\quad \Leftrightarrow$ you needn't care much
- Are you looking for an excess over bkgd? $\quad \rightarrow$ you need control samples, validated against QCD
\longleftrightarrow
$\underbrace{W+n \text { jets }}$
new-physics search
LO IO+MC v. data

I do searches, not QCD. Why should I care about IRC safety?

- Are you looking for a mass-peak?
- Are you looking for an excess over bkgd? $\quad \rightarrow$ you need
control samples, validated against QCD

$$
\underbrace{W+1,2,3 \text { jets }}_{\text {NLO v. data }} \longleftrightarrow \underbrace{W+n \text { jets }}_{\text {LO, LO+MC v. data }} \longleftrightarrow \underbrace{\text { new-physics search }}_{\text {LO }+M C \text { v. data }}
$$

Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

- Are you looking for a mass-peak?
\rightarrow you needn't care much
- Are you looking for an excess over bkgd?
\rightarrow you need
control samples, validated against QCD

$$
\begin{aligned}
& \underbrace{W+1,2,3 \text { jets }}_{\text {NLO v. data }} \longleftrightarrow \underbrace{W+n \text { jets }}_{\text {LO, LO+MC v. data }} \longleftrightarrow \underbrace{\text { new-physics search }}_{\text {LO }+M C \text { v. data }} \\
& \text { IR safe alg. } \\
& \text { IR safe alg. } \\
& \text { IR safe alg. }
\end{aligned}
$$

Does lack of IRC safety matter?

I do searches, not QCD. Why should I care about IRC safety?

- Are you looking for a mass-peak?
\rightarrow you needn't care much
- Are you looking for an excess over bkgd?
\rightarrow you need
control samples, validated against QCD

$$
\underbrace{W+1,2,3 \text { jets }}_{\begin{array}{c}
\text { NLO v. data } \\
\text { IR safe alg. }
\end{array}} \longleftrightarrow \underbrace{\text { IR safe alg. }}_{\text {LO, LO+MC v. data }} \underset{\begin{array}{c}
\text { LO+MC v. data } \\
\text { IR unsafe alg. }
\end{array}}{\text { W+n jets }}
$$

Fix stable-cone finding
 SISCone

GPS \& Soyez '07
Same family as Tev. Run II alg cone IR safety problems?

Essential characteristic of cones?

-Cone IR issues

Essential characteristic of cones?

—Cone IR issues

Essential characteristic of cones?

(Some) cone algorithms give circular jets in $y-\phi$ plane Much appreciated by experiments
e.g. for acceptance corrections
k_{t} jets are irregular
Because soft junk clusters together first:

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2}
$$

Regularly held against k_{t}

(Some) cone algorithms give

 circular jets in $y-\phi$ plane Much appreciated by experiments e.g. for acceptancecorrections
k_{t} jets are
Is there some other, non cone-based way of getting circular jets?

Because soft junk clusters together first:

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2}
$$

Regularly held against k_{t}

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour
Privilege collinear divergence over soft divergence Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } k_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour
Privilege collinear divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence
 Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour Privilege collinear divergence over soft divergence

Generalise inclusive-type sequential recombination with

$$
d_{i j}=\min \left(k_{t i}^{2 \mathrm{p}}, k_{t j}^{2 \mathrm{p}}\right) \Delta R_{i j}^{2} / R^{2} \quad d_{i B}=k_{t i}^{2 \mathrm{p}}
$$

	Alg. name	Comment	time
$p=1$	k_{t} CDOSTW '91-93; ES '93	Hierarchical in rel. k_{t}	$N \ln N$ exp.
$p=0$	Cambridge/Aachen Dok, Leder, Moretti, Webber '97 Wengler, Wobisch '98	Hierarchical in angle Scan multiple R at once $\leftrightarrow Q C D$ Qngular ordering	$N \ln N$
$p=-1$	anti- k_{t} Cacciari, GPS, Soyez '08 \sim reverse- k_{t} Delsart	Hierarchy meaningless, jets like CMS cone (IC-PR)	$N^{3 / 2}$
SC-SM	SISCone GPS Soyez '07 + Tevatron run II' '00	Replaces JetClu, ATLAS MidPoint (\times C-SM) cones	$N^{2} \ln N$ exp.

All these algorithms [\& much more] coded in (efficient) C++ at http://fastjet.fr/ (Cacciari, GPS \& Soyez '05-'09)

Algorithm	Type	IRC status	Evolution
exclusive k_{t}	$\mathrm{SR}_{p=1}$	OK	$N^{3} \rightarrow N \ln N$
inclusive k_{t}	$\mathrm{SR}_{p=1}$	OK	$N^{3} \rightarrow N \ln N$
Cambridge/Aachen	$\mathrm{SR}_{p=0}$	OK	$N^{3} \rightarrow N \ln N$
Run II Seedless cone	SC-SM	OK	\rightarrow SISCone
CDF JetClu	ICr_{r}-SM	IR_{2+1}	[\rightarrow SISCone]
CDF MidPoint cone	$\mathrm{IC}_{\text {mp }}$-SM	IR_{3+1}	\rightarrow SISCone
CDF MidPoint searchcone	$\mathrm{IC}_{\text {se,mp}}$-SM	IR_{2+1}	[\rightarrow SISCone]
D0 Run II cone	IC ${ }_{\text {mp }}$-SM	IR_{3+1}	\rightarrow SISCone [with p_{t} cut?]
ATLAS Cone	IC-SM	IR_{2+1}	\rightarrow SISCone
PxCone	$1 \mathrm{C}_{\text {mp }}$-SD	IR_{3+1}	[little used]
CMS Iterative Cone	IC-PR	Coll_{3+1}	\rightarrow anti- k_{t}
PyCell/CellJet (from Pythia)	FC-PR	Coll_{3+1}	\rightarrow anti- k_{t}
GetJet (from ISAJET)	FC-PR	Coll_{3+1}	\rightarrow anti- k_{t}

SR = seq.rec.; IC = it.cone; $\mathrm{FC}=$ fixed cone;
$\mathrm{SM}=$ split-merge; $\mathrm{SD}=$ split-drop; $\mathrm{PR}=$ progressive removal

Snowmass is solved

But it was a problem from the 1990s
What are the problems we should be trying to solve for LHC?

Which jet definition(s) for LHC?
 Choice of algorithm (k_{t}, SISCone, ...) Choice of parameters (R, \ldots)

Can we address this question scientifically?

Which jet definition(s) for LHC?
 Choice of algorithm (k_{t}, SISCone, ...) Choice of parameters (R, \ldots)

Can we address this question scientifically? Jetography

Jet definitions differ mainly in: alg $+R$

1. How close two particles must be to end up in same jet [discussed in the '90s, e.g. Ellis \& Soper]
2. How much perturbative radiation is lost from a jet [indirectly discussed in the '90s (analytic NLO for inclusive jets)]

Jet definitions differ mainly in: alg $+R$

1. How close two particles must be to end up in same jet [discussed in the '90s, e.g. Ellis \& Soper]
2. How much perturbative radiation is lost from a jet [indirectly discussed in the '90s (analytic NLO for inclusive jets)]
3. How much non-perturbative contamination (hadronisation, UE, pileup) a jet receives

Jet definitions differ mainly in:

$$
\operatorname{alg}+R
$$

2. How much perturbative radiation is lost from a jet [indirectly discussed in the '90s (analytic NLO for inclusive jets)]
3. How much non-perturbative contamination (hadronisation, UE, pileup) a jet receives
[partially discussed in '90s - Korchemsky \& Sterman '95, Seymour '97]

The question's dangerous: a "parton" is an ambiguous concept

Three limits can help you:

- Threshold limit
e.g. de Florian \& Vogelsang '07
- Parton from color-neutral object decay (Z^{\prime})
- Small- R (radius) limit for jet

One simple result

$$
\frac{\left\langle p_{t, j e t}-p_{t, \text { parton }}\right\rangle}{p_{t}}=\frac{\alpha_{\mathrm{s}}}{\pi} \ln R \times\left\{\begin{array}{ll}
1.01 C_{F} & \text { quarks } \\
0.94 C_{A}+0.07 n_{f} & \text { gluons }
\end{array}+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)\right.
$$

only $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ depends on algorithm \& process cf. Dasgupta, Magnea \& GPS '07

Hadronisation: the "parton-shower" \rightarrow hadrons transition

Method:

- "infrared finite α_{s} " à la Dokshitzer \& Webber '95
- prediction based on $e^{+} e^{-}$event shape data
- could have been deduced from old work Korchemsky \& Sterman '95

Seymour '97
Main result

$$
\left\langle p_{t, j e t}-p_{t, \text { parton-shower }}\right\rangle \simeq-\frac{0.4 \mathrm{GeV}}{R} \times \begin{cases}C_{F} & \text { quarks } \\ C_{A} & \text { gluons }\end{cases}
$$

cf. Dasgupta, Magnea \& GPS '07 coefficient holds for anti- k_{t}; see Dasgupta \& Delenda '09 for k_{t} alg.

Underlying Event (UE)

"Naive" prediction (UE \simeq colour dipole between $p p$):

$$
\Delta p_{t} \simeq 0.4 \mathrm{GeV} \times \frac{R^{2}}{2} \times \begin{cases}C_{F} & q \bar{q} \text { dipole } \\ C_{A} & \text { gluon dipole }\end{cases}
$$

DWT Pythia tune or ATLAS Jimmy tune tell you:

This big coefficient motivates special effort to understand interplay between jet algorithm and UE: "jet areas"
"Naive" prediction (UE \simeq colour dipole between $p p$):

$$
\Delta p_{t} \simeq 0.4 \mathrm{GeV} \times \frac{R^{2}}{2} \times \begin{cases}C_{F} & q \bar{q} \text { dipole } \\ C_{A} & \text { gluon dipole }\end{cases}
$$

DWT Pythia tune or ATLAS Jimmy tune tell you:

$$
\Delta p_{t} \simeq 10-15 \mathrm{GeV} \times \frac{R^{2}}{2}
$$

This big coefficient motivates special effort to understand interplay between jet algorithm and UE: "jet areas"

How does coefficient depend on algorithm? How does it depend on jet p_{t} ? How does it fluctuate? cf. Cacciari, GPS \& Soyez '08

1. One hard particle, many soft

Jet area $=$ Measure of jet's susceptibility to uniform soft radiation

Depends on details of an algorithm's clustering dynamics.

Jet area $=$

Measure of jet's susceptibility to uniform soft radiation

Depends on details of an algorithm's clustering dynamics.

Jet area $=$

Measure of jet's susceptibility to uniform soft radiation

Depends on details of an algorithm's clustering dynamics.

Jet area $=$
Measure of jet's susceptibility to uniform soft radiation

Depends on details of an algorithm's clustering dynamics.

Jet area $=$

Measure of jet's susceptibility to uniform soft radiation

Depends on details of an algorithm's clustering dynamics.

SISCone's area (1 hard particle)

$$
=\frac{1}{4} \pi R^{2}
$$

Small area \equiv low sensitivity to UE \& pileup

	k_{t}	Cam/Aachen	anti- k_{t}	SISCone
reach	R	R	R	$\left(1+\frac{p_{t 2}}{p_{t 2}}\right) R$
$\Delta p_{t, P T} \simeq \frac{\alpha_{s} C_{i}}{\pi} \times$	$\ln R$	$\ln R$	$\ln R$	$\ln 1.35 R$
$\Delta p_{t, \text { hadr }} \simeq-\frac{0.4 \mathrm{GeV} C_{i}}{R} \times$	0.7	$?$	1	$?$
area $=\pi R^{2} \times$	0.81 ± 0.28	0.81 ± 0.26	1	0.25
$\quad+\pi R^{2} \frac{C_{i}}{\pi b_{0}} \ln \frac{\alpha_{s}\left(Q_{0}\right)}{\alpha_{\mathrm{s}}\left(R p_{t}\right)} \times 0.52 \pm 0.41$	0.08 ± 0.19	0	0.12 ± 0.07	

In words:

- k_{t} : area fluctuates a lot, depends on p_{t} (bad for UE)
- Cam/Aachen: area fluctuates somewhat, depends less on p_{t}
- anti- k_{t} : area is constant (circular jets)
- SISCone: reaches far for hard radiation (good for resolution, bad for multijets), area is smaller (good for UE)

Can we benefit from this

 understanding in our use of jets?Jet momentum significantly affected by R

So what R should we choose?

Examine this in context of reconstruction of dijet resonance
E.g. to reconstruct $m_{X} \sim\left(p_{t q}+p_{t \bar{q}}\right)$

PT radiation:

$q:\left\langle\Delta p_{t}\right\rangle \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} p_{t} \ln R$
Hadronisation:
$q:\left\langle\Delta p_{t}\right\rangle \simeq-\frac{C_{F}}{R} \cdot 0.4 \mathrm{GeV}$
Underlying event:
$q, g:\left\langle\Delta p_{t}\right\rangle \simeq \frac{R^{2}}{2} \cdot 2.5-15 \mathrm{GeV}$
Minimise fluctuations in p_{t}
Use crude approximation:

$$
\left\langle\Delta p_{t}^{2}\right\rangle \simeq\left\langle\Delta p_{t}\right\rangle^{2}
$$

50 GeV quark jet

PT radiation:

$q:\left\langle\Delta p_{t}\right\rangle \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} p_{t} \ln R$
Hadronisation:
$q:\left\langle\Delta p_{t}\right\rangle \simeq-\frac{C_{F}}{R} \cdot 0.4 \mathrm{GeV}$
Underlying event:
$q, g:\left\langle\Delta p_{t}\right\rangle \simeq \frac{R^{2}}{2} \cdot 2.5-15 \mathrm{GeV}$

Minimise fluctuations in p_{t}
Use crude approximation:

$$
\left\langle\Delta p_{t}^{2}\right\rangle \simeq\left\langle\Delta p_{t}\right\rangle^{2}
$$

1 TeV quark jet

PT radiation:

$q:\left\langle\Delta p_{t}\right\rangle \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} p_{t} \ln R$
Hadronisation:
$q:\left\langle\Delta p_{t}\right\rangle \simeq-\frac{C_{F}}{R} \cdot 0.4 \mathrm{GeV}$
Underlying event:
$q, g:\left\langle\Delta p_{t}\right\rangle \simeq \frac{R^{2}}{2} \cdot 2.5-15 \mathrm{GeV}$

Minimise fluctuations in p_{t}
Use crude approximation:

$$
\left\langle\Delta p_{t}^{2}\right\rangle \simeq\left\langle\Delta p_{t}\right\rangle^{2}
$$

1 TeV quark jet

PT radiation:

$q:\left\langle\Delta p_{t}\right\rangle \simeq{\frac{\alpha}{s} C_{F}}_{p_{t} \ln R}$

$$
\left\langle\Delta p_{t}\right\rangle \simeq \alpha_{\mathrm{s}} C_{F} p_{t} \ln R
$$

At low p_{t}, small R limits relative impact of UE
At high p_{t}, perturbative effects dominate over non-perturbative $\rightarrow R_{\text {best }} \sim 1$.

Underlying event:

Use crude approximation:

$$
\left\langle\Delta p_{t}^{2}\right\rangle \simeq\left\langle\Delta p_{t}\right\rangle^{2}
$$

in small- R limit (?!)
cf. Dasgupta, Magnea \& GPS '07

$\mathrm{R}=0.3$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

 jet

$\mathrm{R}=0.5$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=0.6$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=0.7$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=0.8$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=0.9$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=1.0$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=1.1$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

$\mathrm{R}=1.3$
qq, $M=100 \mathrm{GeV}$

Resonance $\mathbf{X} \rightarrow$ dijets

After scanning, summarise "quality" v. R. Minimum \equiv BEST picture not so different from crude analytical estimate

$\mathbf{m}_{\mathrm{qq}}=100 \mathrm{GeV}$ qq, $M=100 \mathrm{GeV}$

Best R is at minimum of curve

$\mathrm{m}_{\mathrm{qq}}=150 \mathrm{GeV}$ qq, $M=150 \mathrm{GeV}$

Best R is at minimum of curve

$\mathbf{m}_{\mathrm{qq}}=200 \mathrm{GeV}$ qq, $M=200 \mathrm{GeV}$

Best R is at minimum of curve

$\mathbf{m}_{\mathrm{qq}}=300 \mathrm{GeV}$ qq, $M=300 \mathrm{GeV}$

Best R is at minimum of curve

$\mathrm{m}_{\mathrm{qq}}=500 \mathrm{GeV}$ qq, $M=500 \mathrm{GeV}$

Best R is at minimum of curve

$\mathrm{m}_{\mathrm{qq}}=700 \mathrm{GeV}$ qq, $M=700 \mathrm{GeV}$

Best R is at minimum of curve

Best R is at minimum of curve

Best R is at minimum of curve

- Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction NB: current analytics too crude
 involve running with fixed smallish R values

Best R is at minimum of curve

- Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish R values
e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algo
from http://quality.fastjet.fr

Best R is at minimum of curve

- Best R depends strongly on mass of system
- Increases with mass, just like crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC's plans involve running with fixed smallish R values

e.g. CMS arXiv:0807.4961

NB: 100,000 plots for various jet algorithms, narrow $q q$ and $g g$ resonances from http://quality.fastjet.fr Cacciari, Rojo, GPS \& Soyez '08

Towards Jetography, G. Salam (p. 36)
-Physics with jets

- Dijet resonances
http://quality.fastjet.fr/

File Edit View History Bookmarks Iools Help 菌


```
8
TPE Testing jet definitions: \(\mathrm{qq} \& \mathrm{gg} \mathrm{c} . .\).

\section*{Testing jet definitions: qq \& gg cases}

- \(\mathrm{kt}_{\mathrm{t}} \bigcirc \mathrm{C} / \mathrm{A} \bigcirc\) anti- \(\mathrm{kt} \bigcirc\) SISCone \(O\) C/A-filt

(a) \(Q_{f=z}^{w}\) ○ \(Q_{W=x / M}^{1 / t}\)
- rebin \(=2+\)
- qq ○ggmass \(=2000+\)
pileup: © none \(0.05 \bigcirc 0.25 \mathrm{mb}^{-1} / \mathrm{ev}\)

This page is intended to help visualize how the choice of jet definition impacts a dijet invariant mass reconstruction at LHC.

The controls fall into 4 groups:
- the jet definition
- the binning and quality measures
- the jet-type (quark, gluon) and mass scale
- pileup and subtraction

The events were simulated with Pythia 6.4 (DWT tune) and reconstructed with FastJet 2.3

For more information, view and listen to the flash demo, or click on individual terms.

\section*{This page has been tested with Firefox v2 and v3, IE7, Safari v3, Opera v9.5.} Chrome 0.2.

\section*{Reset}

\title{
How about task of resolving separate jets from separate partons?
}

\section*{Illustrate in context of boosted \(H \rightarrow b \bar{b}\) reconstruction}
- Signal is \(W \rightarrow \ell \nu, H \rightarrow b \bar{b}\).

Studied e.g. in ATLAS TDR
- Backgrounds include \(W b \bar{b}, t \bar{t} \rightarrow \ell \nu b \bar{b} j j, \ldots\)

Difficulties, e.g.
\(-g g \rightarrow t \bar{t}\) has lubb with same intrinsic mass scale, but much higher partonic luminosity
- Need exquisite control of bkgd shape

- Signal is \(W \rightarrow \ell \nu, H \rightarrow b \bar{b}\).
- Backgrounds include \(W b \bar{b}, t \bar{t} \rightarrow \ell \nu b \bar{b} j j, \ldots\)


- \(g g \rightarrow t \bar{t}\) has \(\ell \nu b \bar{b}\) with same intrinsic mass scale, but much higher partonic luminosity
- Need exquisite control of bkgd shape

- Signal is \(W \rightarrow \ell \nu, H \rightarrow b \bar{b}\).
- Backgrounds include \(W b \bar{b}, t \bar{t} \rightarrow \ell \nu b \bar{b} j j, \ldots\)


\section*{Try a long shot?}
- Go to high \(p_{t}\left(p_{t H}, p_{t V}>200 \mathrm{GeV}\right)\)
- Lose \(95 \%\) of signal, but more efficient?
- Maybe kill \(t \bar{t}\) \& gain clarity?

\section*{Difficulties, e.g.}
- \(g g \rightarrow t \bar{t}\) has \(\ell \nu b \bar{b}\) with same intrinsic mass scale, but much higher partonic luminosity
- Need exquisite control of bkgd shape


\section*{Studied e.g. in ATLAS TDR}
- Signal is \(W \rightarrow \ell \nu, H \rightarrow b \bar{b}\).
- Backgrounds include \(W b \bar{b}, t \bar{t} \rightarrow \ell \nu b \bar{b} j j, \ldots\)

gd shape


\section*{Past methods}
—Boosted heavy particles


Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and \(\mathbf{b}\) with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use \(k_{t}\) jet-algorithm's hierarchy to split the jets


Use \(k_{t}\) alg.'s distance measure (rel trans. mom.) to cut out QCD bkgd:


Fig. 2. A hadronic W decay, as seen at calorimeter level, a without, and \(\mathbf{b}\) with, particles from the underlying event. Box sizes are logarithmic in the cell energy, lines show the borders of the sub-jets for infinitely soft emission according to the cluster (solid) and cone (dashed) algorithms

Use \(k_{t}\) jet-algorithm's hierarchy to split the jets


Use \(k_{t}\) alg.'s distance measure (rel. trans. mom.) to cut out QCD bkgd:
\[
d_{i j}^{k_{t}}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \Delta R_{i j}^{2}
\]

Y-splitter

Work out \(\Delta R_{i j}^{2}=\Delta y_{i j}^{2}+\Delta \phi_{i j}^{2}\) between all pairs of objects \(i, j\);
Recombine the closest pair;
Repeat until all objects separated by \(\Delta R_{i j}>R\).
Gives "hierarchical" view of the event; work through it backwards to analyse jet

\section*{Our tool}

\section*{The Cambridge/Aachen jet alg.}

Dokshitzer et al '97 Wengler \& Wobisch '98
Work out \(\Delta R_{i j}^{2}=\Delta y_{i j}^{2}+\Delta \phi_{i j}^{2}\) between all pairs of objects \(i, j\);
Recombine the closest pair;
Repeat until all objects separated by \(\Delta R_{i j}>R\).
[in FastJet]
Gives "hierarchical" view of the event; work through it backwards to analyse jet
\(k_{t}\) algorithm


\section*{Cam/Aachen algorithm}


Allows you to "dial" the correct \(R\) to keep perturbative radiation, but throw out UE

Towards Jetography, G. Salam (p. 41)

Herwig \(6.510+\) Jimmy 4.31 + FastJet 2.3


Cluster event, \(\mathrm{C} / \mathrm{A}, \mathrm{R}=1.2\)

Towards Jetography, G. Salam (p. 41)

Herwig \(6.510+\) Jimmy \(4.31+\) FastJet 2.3


Fill it in, \(\rightarrow\) show jets more clearly

Towards Jetography, G. Salam (p. 41)
\(p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}\)

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3


Consider hardest jet, \(m=150 \mathrm{GeV}\)

SIGNAL


Zbb BACKGROUND \(200<p_{\mathrm{tz}}<250 \mathrm{GeV}\)

arbitrary norm.

Towards Jetography, G. Salam (p. 41)
\(p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}\)

Herwig \(6.510+\) Jimmy \(4.31+\) FastJet 2.3

split: \(m=150 \mathrm{GeV}, \frac{\max \left(m_{1}, m 2\right)}{m}=0.92 \rightarrow\) repeat

SIGNAL


Zbb BACKGROUND \(200<p_{\mathrm{t} z}<250 \mathrm{GeV}\)

arbitrary norm.

Towards Jetography, G. Salam (p. 41)
\(p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}\)
Herwig \(6.510+\) Jimmy \(4.31+\) FastJet 2.3

arbitrary norm.

Towards Jetography, G. Salam (p. 41)
\(p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}\)
Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

arbitrary norm.

Towards Jetography, G. Salam (p. 41)
\(p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}\)

Herwig \(6.510+\) Jimmy \(4.31+\) FastJet 2.3

\(R_{\text {filt }}=0.3\)

SIGNAL


Zbb BACKGROUND \(200<\mathrm{p}_{\mathrm{tz}}<250 \mathrm{GeV}\)

arbitrary norm.

Towards Jetography, G. Salam (p. 41)
\(p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}\)

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

\(R_{\text {filt }}=0.3\) : take 3 hardest, \(\mathbf{m}=117 \mathrm{GeV}\)

SIGNAL


Zbb BACKGROUND \(200<p_{\mathrm{tz}}<250 \mathrm{GeV}\)

arbitrary norm.

Cross section for signal and the \(Z+\) jets background in the leptonic \(Z\) channel for \(200<p_{T Z} / \mathrm{GeV}<600\) and \(110<m_{J} / \mathrm{GeV}<125\), with perfect \(b\)-tagging; shown for our jet definition (C/A MD-F), and other standard ones close to their optimal \(R\) values.
\begin{tabular}{l|r|r|r} 
Jet definition & \(\sigma_{S} / \mathrm{fb}\) & \(\sigma_{B} / \mathrm{fb}\) & \(S / \sqrt{B \cdot \mathrm{fb}}\) \\
\hline \(\mathrm{C} / \mathrm{A}, R=1.2, \mathrm{MD}-\mathrm{F}\) & 0.57 & 0.51 & 0.80 \\
\(k_{t}, R=1.0, y_{\text {cut }}\) & 0.19 & 0.74 & 0.22 \\
SISCone, \(R=0.8\) & 0.49 & 1.33 & 0.42 \\
anti- \(_{t}, R=0.8\) & 0.22 & 1.06 & 0.21
\end{tabular}


At \(\sim 5 \sigma\) for \(30 \mathrm{fb}^{-1}\) this looks like a competitive channel for light Higgs discovery. A powerful method!

High \(-p_{t}\) top production often envisaged in New Physics processes. \(\sim\) high \(-p_{t}\) EW boson, but: top has 3-body decay and is coloured.

6 papers on top tagging in '08-'09 (at least). All use the jet mass + something extra.

\section*{Questions}
- What efficiency for tagging top?
- What rate of fake tags for normal jets?

Rough results for top quark with \(\mathrm{p}_{\mathrm{t}} \sim 1 \mathrm{TeV}\)
\begin{tabular}{l|l|r|r}
\hline & "Extra" & eff. & fake \\
\hline [from T\&W] & just jet mass & \(50 \%\) & \(10 \%\) \\
Brooijmans '08 & \(3,4 k_{t}\) subjets, \(d_{\text {cut }}\) & \(45 \%\) & \(5 \%\) \\
Thaler \& Wang '08 & \(2,3 k_{t}\) subjets, \(z_{\text {cut }}+\) various & \(40 \%\) & \(5 \%\) \\
Kaplan et al. '08 & 3,4 C/A subjets, \(z_{\text {cut }}+\theta_{h}\) & \(40 \%\) & \(1 \%\) \\
Almeida et al. '08 & predict mass dist", use jet-shape & - & - \\
Ellis et al '09 & C/A pruning & - & - \\
ATLAS '09 & \(3,4 k_{t}\) subjets, \(d_{\text {cut }}\) MC likelihood & \(90 \%\) & \(15 \%\) \\
\hline
\end{tabular}

\section*{Conclusions}

\section*{Conclusions}
- There are no longer any valid reasons for using jet algorithms that are incompatible with the Snowmass criteria.

LHC experiments are adopting the new tools Individual analyses need to follow suit
- It's time to move forwards with the question of how best to use jets in searches
- Examples here show two things:
- Good jet-finding brings significant gains
- There's room for serious QCD theory input into optimising jet use

Not the only way of doing things
But brings more insight than trial \& error MC

This opens the road towards Jetography, QCD-based autofocus for jets

Towards Jetography, G. Salam (p. 47)
-Extras

\section*{EXTRAS}

There are \(N(N-1) / 2\) distances \(d_{i j}\) - surely we have to calculate them all in order to find smallest?

\section*{\(k_{t}\) distance measure is partly geometrical:}


There are \(N(N-1) / 2\) distances \(d_{i j}\) - surely we have to calculate them all in order to find smallest?
\(k_{t}\) distance measure is partly geometrical:
\[
\min _{i, j} d_{i j} \equiv \min _{i, j}\left(\min \left\{k_{t i}^{2}, k_{t j}^{2}\right\} \Delta R_{i j}^{2}\right)
\]

There are \(N(N-1) / 2\) distances \(d_{i j}\) - surely we have to calculate them all in order to find smallest?
\(k_{t}\) distance measure is partly geometrical:
\[
\begin{aligned}
\min _{i, j} d_{i j} & \equiv \min _{i, j}\left(\min \left\{k_{t i}^{2}, k_{t j}^{2}\right\} \Delta R_{i j}^{2}\right) \\
& =\min _{i, j}\left(k_{t i}^{2} \Delta R_{i j}^{2}\right) \\
& =\min _{i}\left(k_{t i}^{2} \min \Delta R_{i j}^{2}\right)
\end{aligned}
\]

In words: for each \(i\) look only at the \(k_{t}\) distance to its 2D geometrical nearest neighbour (GNN)

There are \(N(N-1) / 2\) distances \(d_{i j}\) - surely we have to calculate them all in order to find smallest?
\(\underline{k_{t} \text { distance measure is partly geometrical: }}\)
\[
\begin{aligned}
\min _{i, j} d_{i j} & \equiv \min _{i, j}\left(\min \left\{k_{t i}^{2}, k_{t j}^{2}\right\} \Delta R_{i j}^{2}\right) \\
& =\min _{i, j}\left(k_{t i}^{2} \Delta R_{i j}^{2}\right) \\
& =\min _{i}\left(k_{t i}^{2} \min _{j} \Delta R_{i j}^{2}\right)
\end{aligned}
\]

In words: for each \(i\) look only at the \(k_{t}\) distance to its 2D geometrical nearest neighbour (GNN).

There are \(N(N-1) / 2\) distances \(d_{i j}\) - surely we have to calculate them all in order to find smallest?
\(k_{t}\) distance measure is partly geometrical:
\[
\begin{aligned}
\min _{i, j} d_{i j} & \equiv \min _{i, j}\left(\min \left\{k_{t i}^{2}, k_{t j}^{2}\right\} \Delta R_{i j}^{2}\right) \\
& =\min _{i, j}\left(k_{t i}^{2} \Delta R_{i j}^{2}\right) \\
& =\min _{i}\left(k_{t i}^{2} \min _{j} \Delta R_{i j}^{2}\right)
\end{aligned}
\]

In words: for each \(i\) look only at the \(k_{t}\) distance to its 2D geometrical nearest neighbour (GNN).
\(k_{t}\) distance need only be calculated between GNNs
Each point has 1 GNN \(\rightarrow\) need only calculate \(N d_{i j}\) 's Cacciari \& GPS, '05

\section*{2d nearest-neighbours}

Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all noints closest to each vertex

How does use of GNN help?
Aren't there still \(\frac{N^{2}}{2} \Delta R_{i j}^{2}\) to check. . . ? is al-
Geometrical nearest neighbour finding is a classic problem in the field of Computational Geometry

\section*{2d nearest-neighbours}

Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908
A vertex's nearest other vertex is always in an adjacent cell.
E.g. GNN of point 7 must be among 1,4,2,8,3 (it is 3 )

Construction of Voronoi diagram for \(N\) points: \(N \ln N\) time

\section*{2d nearest-neighbours}


Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908
A vertex's nearest other vertex is always in an adjacent cell.
E.g. GNN of point 7 must be among 1,4,2,8,3 (it is 3 )

Construction of Voronoi diagram for \(N\) points: \(N \ln N\) time
Update of 1 point in Voronoi diagram: expected In \(N\) time
Devillers '99 [+ related work by other authors]
Convenient C++ package available: CGAL, http://www.cgal.org

\section*{2d nearest-neighbours}


Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908
A vertex's nearest other vertex is always in an adjacent cell.
E.g. GNN of point 7 must be among \(1,4,2,8,3\) (it is 3 )

Construction of Voronoi diagram for \(N\) points: \(N \ln N\) time
Update of 1 point in Voronoi diagram: expected In \(N\) time
Devillers '99 [+ related work by other authors]
Convenient C++ package available: CGAL, http://www.cgal.org
with help of CGAL, \(\mathrm{k}_{\mathrm{t}}\) clustering can be done in \(\mathbf{N} \ln \mathbf{N}\) time Coded in the FastJet package (v1), Cacciari \& GPS '06

LICPR unsafety


LICPR unsafety







LICPR unsafety


LICPR unsafety











Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \(\Longrightarrow\) perturbative calculations give \(\infty\)


Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \(\Longrightarrow\) perturbative calculations give \(\infty\)

Collinear Safe


Infinities cancel

\section*{Collinear Unsafe}


Infinities do not cancel

\section*{Collinear Safe}


\section*{Collinear Unsafe}


Infinities do not cancel

Invalidates perturbation theory

\section*{NLO}


\section*{LO+PS}




For it to be a significant discovery channel requires decent b-tagging, lowish mass Higgs [and good experimental resolution]



\section*{Most scenarios above \(3 \sigma\)}

For it to be a significant discovery channel requires decent \(b\)-tagging, lowish mass Higgs [and good experimental resolution]

In nearly all cases, looks feasible for extracting \(W H, Z H\) couplings```

